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Abstract: Colistin is considered the last resort for the treatment of multi-drug resistant Gram-negative
bacterial infections. We studied colistin resistance and the mcr-1 gene carriage in Salmonella isolates
recovered from food animals in South Korea between 2010 and 2018. Colistin resistance was found
in 277 isolates, predominantly in Salmonella Enteritidis (57.1%) and Salmonella Gallinarum (41.9%).
However, the mcr-1 gene was identified in only one colistin-resistant Salmonella Typhimurium (MIC
= 16 µg/mL) isolated from a healthy pig. The mcr-1 carrying isolate presented additional resistance
to multiple antimicrobials. The strain belonged to sequence type (ST)19 and carried various virulence
factor genes that are associated with adhesion and invasion of Salmonella into intestinal epithelial
cells, as well as its survival in macrophages. The mcr-1 gene was identified on an IncI2 plasmid and
it was also transferred to the E. coli J53 recipient strain. The mcr-1-carrying plasmid (pK18JST013) in
this study was closely related to that previously reported in S. Indiana (pCFSA664-3) from chicken in
China. This is the first report of mcr-1 carrying S. Typhimurium in South Korea. The finding indicates
the importance of regular screening for the presence of the mcr-1 gene in S. Typhimurium in food
animals to prevent the spread to humans.
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1. Introduction

Non-typhoidal Salmonella serovars are common causes of foodborne diseases, espe-
cially in the elderly, children, and immunocompromised individuals [1]. Non-typhoidal
Salmonella-associated enterocolitis was associated with 95 million illnesses and 50,000
deaths globally in 2017, and most of the cases were foodborne [2]. In South Korea (Korea),
Salmonella was detected in about 8% of gastroenteritis cases in 2017 [3]. Contaminated food
products from food animals are the most common sources of human infections [1].

Colistin belongs to the group of polymyxins and has been used for the treatment and
prevention of gut infections in food animals particularly poultry and pigs. In humans,
although their parenteral usage has been limited because of concerns of toxicity, it is the last
resort treatment for severe infections caused by multi-drug resistant (MDR) Gram-negative
bacteria, particularly carbapenem-resistant Enterobacteriaceae [4]. Colistin use in animals
has promoted the selection and transmission of mcr-harboring strains [5]. The mcr genes
encode phosphoethanolamine transferases that modify the lipopolysaccharides of the outer
membrane in Gram-negative bacteria, which leads to reduced susceptibility or resistance
to colistin [5].

Since the first report of the mcr-1 gene in Escherichia coli in China in 2016 [6], the MCR-
family genes have been detected in several other Enterobacteriaceae in many countries [7].
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The mcr-1 and mcr-9 are the most widely disseminated MCR-family genes, being identified
in 40 countries across six continents; mcr-3 and mcr-5 are the next most widely spread
genes. The remaining MCR-family genes are disseminated across small areas [7]. In Korea,
mcr-1, mcr-3, and mcr-9 genes were identified in Enterobacteriaceae isolated mainly from
food animals [8–10].

Several studies have identified the mcr-1 harboring Salmonella from patients, food
and companion animals, and food of animal origin in Asia [11–14], Europe [15,16], and
South America [17,18]. In Korea, however, this gene has been detected only in E. coli
and Enterobacter aerogenes isolated from humans, food and companion animals, and fresh
vegetables [8,19–21]. The mcr-1 gene was so far associated with diverse plasmids belonging
to the IncI2, IncHI1, IncHI2, IncP1, IncX4, IncFII, and IncY replicon types. Among them,
IncHI2 and IncI2 plasmids were the most common replicons in Salmonella spp [22]. In view
of the concerning horizontal spread of the mcr-1 gene among Enterobacteriaceae in food
animals and its significant public health impacts, we performed a retrospective evaluation
of colistin resistance and investigated the mcr-1-carrying plasmid in Salmonella isolated
from food animals between 2010 and 2018 in Korea.

2. Materials and Methods
2.1. Identification of Colistin-Resistant and mcr-1 Carrying Salmonella Serotypes

Recently, we identified and serotyped 3018 Salmonella isolates recovered from cattle,
pigs, and chickens throughout Korea from 2010 to 2018. Isolates were obtained from
16 laboratories/centers participating in the Korean Veterinary Antimicrobial Resistance
Monitoring System [23]. In this study, we performed a retrospective evaluation of the
colistin susceptibility profiles of these isolates. The minimum inhibitory concentration
(MIC) of colistin was determined by the broth microdilution method using Sensitire panel
KRNV5F (Trek Diagnostic Systems, Cleveland, OH, USA), following the manufacturer’s
instructions. Additionally, multiplex-polymerase chain reaction (mPCR) analysis was
performed to determine the mcr gene (mcr-1 to mcr-9) carriage of colistin-resistant serotypes,
as described previously [24,25].

2.2. Characterization of mcr-1-Carrying Isolate

We investigated the susceptibility profiles of the mcr-1-carrying isolate as described
above. The following antimicrobials were studied: amoxicillin/clavulanic acid (2/1–
32/16 µg/mL), ampicillin (2–64 µg/mL), cefepime (0.25–16 µg/mL), cefoxitin (1–32 µg/mL),
ceftazidime (1–64 µg/mL), ceftiofur (0.5–8 µg/mL), chloramphenicol (2–64 µg/mL),
ciprofloxacin (0.12–16µg/mL), colistin (2–16µg/mL), gentamicin (1–64µg/mL), meropenem
(0.25–4 µg/mL), nalidixic acid (2–128 µg/mL), streptomycin (16–128 µg/mL), sulfisoxa-
zole (16–256 µg/mL), tetracycline (2–128 µg/mL), and trimethoprim/sulfamethoxazole
(0.12/2.38–4/76 µg/mL). The MIC values were interpreted according to the Clinical and
Laboratory Standards Institute [26] and the European Committee on Antimicrobial Suscep-
tibility Testing [27] guidelines.

Multilocus sequence typing was performed as described previously [28]. Sequence
type (ST) was assigned using the multilocus sequence typing website for Salmonella
(http://pubmlst.org/organisms/salmonella-spp). Plasmid replicon typing was performed
using a PCR-based replicon typing kit (Diatheva, Fano, Italy). We investigated the presence
of 30 major plasmid incompatibility groups circulating among Enterobacteriaceae: IncHI1,
HI2, I1, I2, X1, X2, X3, X4, L, M, N, FIA, FIB, FIC, FII, FIIS, FIIK, FIB KN, FIB, KQ, W,
Y, P1, A/C, T, K, U, R, B/O, HIB-M, and FIB-M. Additionally, a mPCR assay (iNtRON
Biotechnology, Seongnam, South Korea) was performed to detect virulence factor genes
that enable Salmonella to reach the systemic circulation and increase its infectivity (cdtB,
invA, iroN, lpfC, msgA, orgA, pagC, pefA, prgH, sifA, sipB, sitC, sopB, spaN, spiA, spvB, and
tolC), as described previously [29].

Conjugation was performed by the filter mating method using azide-resistant E. coli
J53 as the recipient strain, as described by Na et al. [30]. Putative transconjugants were
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selected on a Muller–Hinton agar plate supplemented with sodium azide (150 µg/mL) and
colistin (2 µg/mL). The transconjugants were confirmed by PCR detection of the mcr-1 gene,
as described above. Transfer frequency was calculated based on the number of transcon-
jugants obtained per donor and conjugation efficiency is explained as mean ± standard
deviation of triplicate experiments. Additionally, the antimicrobial susceptibility profile of
the transconjugants was determined as described above.

2.3. Whole-Genome Sequencing and Annotation

Genomic DNA was extracted and purified using MG genomic DNA purification kit,
according to the manufacturer’s instructions (MGmed, Seoul, Korea). For PacBio RS II
(Pacific Biosciences, Menlo Park, CA, USA) sequencing, 8 µg of input genomic DNA was
used for 20-kb library preparation. The library insert sizes were optimal; genomic DNA
was sheared with g-TUBE (Covaris Inc., Woburn, MA, USA) and purified using AMPure
PB magnetic beads (Beckman Coulter Inc., Brea, CA, USA) if the apparent size was >40 kb.
We sequenced the plasmid genome to 149× depth using the PacBio Sequel platform. De
novo assembly and consensus polishing were performed using the Hierarchical Genome
Assembly Process (HGAP) 2 package contained in the SMRT version 2.3.0 software. As-
sembly data were then circularized using circulator 1.4.0. Glimmer 3 [31] was used to
predict genes, and annotation was done using a homology search based on the Clusters of
Orthologous Groups (COG) database.

The sequences of the mcr-1-carrying plasmid in this study (pK18JST013, GenBank
accession number. CP065423) was compared with those of previously reported plasmids
(Table S1). Briefly, nucleotide sequences of mcr-1 carrying plasmids were downloaded
from the GenBank nucleotide database. As the sequences have different starting points,
sequences were rotated for accurate alignment so that the start sites of sequences were
set as RepA using GAMOLA2 [32]. The sequence of each plasmid was aligned using
Blastn (v 2.8.1) and compared using EasyFig (v.2.2.3) [33]. Besides that, average nucleotide
identity (ANI) values were calculated with pairwise genome alignment of sequences by
using the ANI-blast method implemented in PYANI (v.0.2.9) [34] and the phylogenetic tree
is reconstructed based on the ANI values.

3. Results and Discussion

The overall proportion of colistin-resistant Salmonella strains (9.2%, 277/3018) in
this study was slightly higher than previous reports from 11 European countries (5.3%,
92/1774) [35], Japan (1.2%, 1/82) [36], and Korea (1%, 1/100) [37] (Table 1). However,
it was lower than the finding of Figueiredo et al. [15] (14.3%, 37/258) from retail meat
in Portugal. The majority of colistin-resistant strains (98.9%, 274/277) belonged to the
Salmonella serogroup D (Salmonella Enteritidis (57.7%) and Salmonella Gallinarum (42.3%))
(Table S2). Indeed, colistin resistance was observed in 49.2% of S. Enteritidis and 92.8%
of S. Gallinarum isolated from chickens. The only colistin-resistant isolate in serogroup B
belonged to Salmonella Typhimurium (Isolate no. 18-A02-013), while serogroup(s) of the
two colistin-resistant strains were unidentified. The colistin-resistant (MIC = 16 µg/mL)
S. Typhimurium was recovered from a healthy pig from Jeju in 2018. The high colistin
resistance rate in S. Enteritidis and S. Gallinarum isolated from chickens in our study could
be due to the intrinsic colistin resistance in these serotypes [38], which is related to the
presence and composition of O antigens [39].

Among the colistin-resistant Salmonella strains (n = 277), we detected the mcr-1
gene in the only (0.4%) S. Typhimurium strain. In agreement with this study, many
researchers have reported a very low prevalence of mcr-1 gene in Salmonella strains isolated
from food animals and humans in other Asian countries (0.3%–2%) [40,41] and Europe
(0.1%–3.1%) [15,35,42]. In contrast, Yi et al. [14] (14.8%) and Ma et al. [43] (11.4%) have
found a relatively higher percentage of mcr-1 carriage in Salmonella isolated from food
animals and humans in China. Previous studies have also detected other MCR-family
genes (mcr-2 to mcr-5 and mcr-9) in Salmonella spp isolated from different sources [44,45].
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Our result suggests that healthy pigs are a matter of concern in terms of transmission of
mcr-1-carrying Salmonella to humans through the food chain. The differences in the number
of tested isolates and resistance detection methods should be considered while comparing
and contrasting findings from other studies.

Table 1. Prevalence of colistin resistance in Salmonella serogroups isolated from healthy cattle,
chickens, and pigs in Korea between 2010 and 2018.

Serogroups Prevalence (%)
(no. of Resistance/no of Tested)

B 0.1 (1/867)
C1 0 (0/996)

C2–C3 0 (0/402)
D1 56.1 (274/488)
E1 0 (0/125)
E2 0 (0/1)
E4 0 (0/74)
G 0 (0/1)
H 0 (0/1)
K 0 (0/1)
L 0 (0/1)
M 0 (0/1)
NT 3.3 (2/60)

Total 9.2 (277/3018)
Abbreviation: NT, Unidentified

The mcr-1-carrying S. Typhimurium in this study (18-A02-013) presented additional
resistance to multiple antimicrobials, including resistance to ampicillin, chloramphenicol,
streptomycin, sulfisoxazole, and tetracycline (Table 2). This multidrug resistance pattern is
characteristic of the European S. Typhimurium clones [46,47] and it is strongly associated
with pork [48]. Multiple resistance determinants could co-exist with the mcr-1 gene in the
same plasmid, and this can generate resistance to multiple antimicrobials [13,49]. Our S.
Typhimurium strain belonged to sequence type (ST) 19. Consistently, mcr-1-carrying S.
Typhimurium ST19 was identified from patients and retail meat in Brazil [17], China [49],
and Denmark [42]. Similarly, Suh and Song [50] have identified S. Typhimurium ST19,
although susceptible to colistin, from swine carcasses in Korea. S. Typhimurium ST19 is
globally distributed and associated with outbreaks of human gastroenteritis, mainly in
Europe and the US [25,51,52]. Additionally, the mcr-1-carrying S. Typhimurium identified
in this study carried a large repertoire of virulence factor genes (Table 2). Except for iroN
and sitC, all the detected virulence factor genes encode products that are related to host
cell adhesion, invasion, and intracellular survival [29]. The iroN and sitC genes were
related to other traits thought to be important in Salmonella pathogenesis, such as iron
acquisition [29,53]. Leite et al. [52] also reported on mcr-9-carrying S. Typhimurium ST19
strain carrying a plethora of virulence factors associated with Salmonella adhesion, stress
adaptation, immune evasion, and invasion. Thus, the association of the mcr-1 and virulence
factor genes with one of the most widely distributed Salmonella strains isolated from pig
presented a potential risk to public health.

The association of the mcr-1 gene with different plasmids is vital for its dissemination
into various hosts. The mcr-1 gene in S. Typhimurium strain isolated in this study belonged
to the IncI2 plasmid, a finding consistent with those of Torpdah et al. [42] in Denmark and
Lu et al. [54] in China. Similarly, other studies in China [40] and Great Britain [55] have
reported the link between the mcr-1 gene and the IncI2 plasmid in S. Typhimurium isolated
from patients. The mcr-1-carrying plasmids are highly stable in bacteria even in the absence
of polymyxin selection pressure. Thus, the existence of the mcr-1 gene embedded into the
IncI2 plasmid is a huge concern, because it facilitates the transfer of the mcr-1 gene to other
bacterial pathogens of animal and human origin, including commensals [6,55].
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Table 2. Characteristics of the mcr-1-carrying S. Typhimurium.

Isolate Source Isolation
Year

Resistance
Pattern of

Donor

Sequence
Type

Conjugation
Efficiency

Resistance
Pattern of
Recipient

Replicon
Type of

Transcon-
jugant

Virulence
Factors

18-A02-013 Healthy Pig 2018
AMP CHL
GEN STR
FIS TET

ST19 3.0 ± 0.8 × 10−3 COL I2

spiA, pagC,
msgA, invA,
sipB, prgH,
spaN, orgA,
tolC, lpfC,
sifA, sopB,
iroN, sitC

Abbreviations: AMP, Ampicillin; CHL, chloramphenicol; COL, colistin; GEN, gentamicin; STR, streptomycin; FIS, sulfisoxazole; TET,
tetracycline.

The conjugation efficiency of the mcr-1-carrying IncI2 plasmid in this study (3.0± 0.8× 10−3)
was higher than those of the mcr-1-carrying IncI2 plasmids reported by Anjum et al. [55] (between
10−7 and 10−9). However, it was low compared to some of the mcr-1-carrying IncI2 plasmids
reported by Lu et al. [54]. The IncI2 plasmids, which have a broad host range, are commonly
associated with the acquisition and transfer of new antibiotic resistance genes. Additionally, they
are known to adapt to new bacterial hosts [56].

The mcr-1 carrying plasmid (pK18JST013) from this study was compared with those
of previously reported strains (Table S1); pK18JST013 was clustered with the plasmid
pCFSA664-3 that was detected in S. Indiana from chicken in China (Figure 1); pK18JST013
is also related to other mcr-1-carrying plasmids detected in E. coli and S. Typhimurium
from humans and food animals in Korea and other countries. Additionally, the mcr-1
carrying plasmid IncI2 pK18JST013 (60,864 bp) had a substantial sequence homology (>98%
sequence identity) compared to other IncI2 plasmids. Indeed, insertion sequences were
missing upstream of the mcr-1 gene compared to the original mcr-1 carrying plasmid
from China (pHNSHP45) (Figure 2). The low genetic variability observed among the
mcr-1-carrying plasmids indicates no major evolutionary divergences [52]. Thus, the mcr-1
carrying plasmid might be transmitted to Salmonella from other mcr-1-positive bacteria
such as E. coli which co-exist in gastrointestinal tract food animals [40].

Figure 1. Average nucleotide identity analysis was performed using the ANI-blast method imple-
mented in PYANI (v.0.2.9) and the tree was generated based on the ANI values. The horizontal lines
represent the 95% threshold value. The scale bar represents sequence divergence, i.e., the percentage
of nucleotide substitution rate over the length of the genome. Detailed information on the sources
and characteristics of the compared plasmids is presented in Table S1.
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Figure 2. Comparative analyses of the mcr-1-carrying pK18JST013 from Salmonella Typhimurium with mcr-1 carrying
plasmids in E. coli strains isolated from food animals and humans. The sequence of each plasmid (Table S1) was aligned
using Blastn (v 2.8.1) and compared using EasyFig (v.2.2.3). Highly conserved regions with normal alignment are indicated
in red, and regions with inverted alignment are indicated in blue.

In conclusion, although colistin-resistant Salmonella remains rare in food animals in
Korea, the detection mcr-1 gene in virulent S. Typhimurium strain imposes the greatest
awareness. This is the first report of mcr-1-carrying S. Typhimurium in Korea, indicating a
recent introduction of this clone into the pig husbandry. This finding emphasizes the role
of food animals as potential reservoirs of mcr-carrying S. Typhimurium ST19.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-260
7/9/2/398/s1. Table S1. Lists of plasmids identified in E. coli and Salmonella isolates recovered from
humans and food animals. Table S2. Prevalence of colistin resistance in Salmonella Serogroup B and
D isolated from cattle, chickens, and pigs in Korea between 2010 and 2018.
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