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of Single Walled Carbon Nanotubes
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J. Andreas Larsson1

Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only 
possible with a uniform product. Thus, direct control over the product during chemical vapor 
deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate 
goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to 
compute the stability of SWNT fragments of all chiralities in the series representing the targeted 
products for such applications, which we compare to the chiralities of the actual CVD products 
from all properly analyzed experiments. From this comparison we find that in 84% of the cases the 
experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) 
from the computations. Our analysis shows that the diameter of the SWNT product is governed by 
the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally 
determined by the product’s relative stability, suggesting thermodynamic control at the early stage 
of product formation. Based on our findings, we discuss the effect of other experimental parameters 
on the chirality of the product. Furthermore, we highlight the possibility to produce any tube 
chirality in the context of recent published work on seeded-controlled growth.

Single-walled carbon nanotubes (SWNTs) possess remarkable electrical, mechanical and chemical prop-
erties, and are widely discussed for various applications such as integration in electronic circuits1–3, 
mechanical reinforcement of light-weight composites4,5, as well as for chemical- and bio-sensors6,7 and 
synthetic muscles8. However, many applications rely on having SWNTs with defined properties and, since 
both electrical and structural characteristics of SWNTs can vary greatly depending on the chirality and 
diameter, huge efforts have been made to either selectively grow SWNT with single or few chiralities9–21 
or to post-purify them after synthesis22–31. Alternatively, efforts have been made to tailor SWNT proper-
ties by chemical doping32–42, which significantly affects the electrical and chemical properties of SWNTs.

Although the post-purification methods result in relatively high yield of certain chiralities; such meth-
ods are expensive and time consuming, and may modify the properties of the tube, for example, by 
functionalization or structural damage. The chemical doping approach, on the other hand, suffers from 
the fact that the dopant elements can incorporate into SWNTs in different configurations; therefore 
doped samples are usually inhomogeneous. The limitations and disadvantages of the post modification 
methods have encouraged researchers to continue investigating possible approaches to selectively grow 
SWNTs. Chemical vapor deposition (CVD) has become the most promising technique for this purpose, 
since it involves several controllable growth parameters. The vapor-liquid-solid43–45 (VLS) mechanism 
of fiber growth serves as a basis for understanding SWNT growth through catalytic-CVD, but one also 
has to account for the tubes being hollow: Since this results in an unstable growing end that has to be 
stabilized by a catalyst particle that has the metal–carbon binding energy in the required region–not too 
weak and not too strong, following a “Goldilocks” principle that is only fulfilled for a limited number of 
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metals46–49, and can be tuned by alloying50,51. It has been shown that it is possible to affect the chirality 
of the growing SWNT by varying the experimental conditions, such as catalyst composition12,14–16,52–55 
temperature56, carbon precursor10,17, carrier gas pressure57, and catalyst support11,18. Concurrently, several 
reports have investigated the energetic stability of different chiralities58,59 and their caps60–63, and some 
studies have also compared theoretical and experimental data in an effort to clarify the production of 
SWNTs of certain chiralities64,65. However, despite numerous studies on the production of SWNTs, a 
detailed understanding of the correlation between experiment and theory is lacking. In our study we try 
to answer the following key questions; i) To what extent can the observed statistical abundance of certain 
SWNT chiralities be explained by their energetic stability?, ii) What experimental growth parameters 
have high impact on the chirality of the growing SWNT?, iii) Why are certain tubes so seldom observed 
in experimental studies? and, finally, iv) What strategy should be followed to obtain a high relative abun-
dance of more exotic tubes seldom seen in SWNT products?

We try to answer these questions by taking advantage of all relevant experimental studies made so far, 
meaning that we consider experiments where methods have been used that are able to properly detect 
all or nearly all present SWNT chiralities in a sample with tolerable statistics. SWNTs with different chi-
ralities and diameters all have unique band structures, which influences the criteria for eligible detection 
techniques. For example, photo-luminescence only detects semiconductor SWNTs and in the case of 
Raman spectroscopy it is necessary to have excitation wavelengths equal to the difference between van 
Hove singularity (VHS) pairs to satisfy the resonance condition66–68. In the literature survey made for our 
comparison of theoretical stability and experimental abundance we have defined three main techniques 
that we deem to be appropriate to meet this criterion; either a combination of photo-luminescence, elec-
tron diffraction, and/or ultraviolet-visible-near infrared spectroscopy or Raman spectroscopy obtained 
by at least three different excitation lasers evenly distributed over the wavelength region from 450–
1054 nm (1.2–2.8 eV). A single study that utilizes surface enhanced Raman spectroscopy is also con-
sidered in the study, as it seems to properly detect all present SWNTs69. There is a risk that even in the 
selected studies some tubes might be out of resonance with the excitation wavelength used for detection, 
but since our statistics are based on number of “hits” and not the statistical abundance, and since each 
resonance window for a SWNT is roughly 0.3 eV70, we believe that our criterion gives valid data for our 
analysis. The data from the experimental studies are collected in Table S1 in the supplementary material. 
The combined experimental data are discussed in the context of theoretical data on the energetic stability 
of eleven different SWNT-series, namely the (n +  m =  8) to (n +  m =  18) series, where n and m are the 
SWNT chiral indices.

Methods
We have calculated the total energy of all carbon nanotube series for which (n +  m) =  8, 9, 10, ..., 18 using 
density functional theory (DFT). The nanotubes were modeled using six-layered hydrogen terminated 
structures, for which the number of carbon atoms per layer is equal to 2(n +  m) (see inset to Fig.  1). 
These structures were placed in a 27 ×  27 ×  27 Å cubic box, giving at least 10 Å of vacuum separation 
between the periodic images.

The DFT calculations were performed using the Vienna Ab initio Simulation Package71 (VASP). Only 
the gamma point was used in the calculations to minimize the interactions between periodic images. The 
calculations were performed using the projector-augmented wave method72, a plane wave basis set and 
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional73. The plane wave basis set energy 
cutoff was set to 575 eV and the electronic self-consistence loop was converged to 1 ×  10−6 eV.

Gaussian smearing was used; the smearing width (SIGMA) was adjusted in order to give energies 
associated with the electronic entropy of approximately 0.5 meV/atom. All of the calculations were spin 
polarized (ISPIN =  2), with an antiferromagnetic initial magnetization (one end of the SWNT spin up 
and the other spin down). The nanotube structures were relaxed with no symmetry constraints using the 
conjugate-gradient algorithm, until all of the forces acting on the ions were smaller than 6 ×  10−3 eV/Å.

The formation enthalpy Hf was calculated using a simplified version of the equation given in74
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Here, E(n,m) is the energy of the SWNT, EC =  − 9.201514 eV is the energy per C atom for a 500 atom 
super-cell of graphite and EH = −6.771933 eV is the energy for an H2 molecule in a 27 ×  27 ×  27 Å cubic 
box. a = 6 ×  2(n +  m) is equal to the number of carbon atoms in the nanotube and b =  2(n +  m) is the 
number of hydrogen atoms used for termination of the nanotube ends. The diameters of the SWNTs 
were determined using the relaxed structures through the radial distance to the center-line of the tube 
averaged over the 4 central layers (excluding the hydrogen atoms and one layer at each side of the tube).

Results and Discussion
We have computed the total energies of six-layer SWNT segments of the (n +  m =  8) to (n +  m =  18) 
series with hydrogen-terminated ends (see inset to Fig. 1). The relative energies of the segments within 
each series are shown in Fig.  1, meaning that the most stable tube in each series corresponds to zero 
energy. As reported in earlier studies, hydrogen-terminated tube segments with a zigzag character have 
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antiferromagnetic ground states75–77. We report energy windows (∆E) of the difference between the most 
stable and least stable SWNT within the series (see Table 1) in agreement with previously reported values 
for the 9 to 11 series58, and the 12 and 13 series59.

In the lower series 8 to 10 zigzag tubes are the most stable while in the other series (11 to 18) armchair 
tubes are the most stable. In the 13-series and above the stability follows the chiral index, with the zigzag 
tubes being the least stable within each series. In the 8 series the stability follows the reverse order, with 
the armchair tube being the least stable. In the 9 series the order of stability is (9, 0), (8, 1), (5, 4), (6, 3),  
and (7, 2). In the 10 series the order is (10, 0), (8, 2), (9, 1), (7, 3), (6, 4), and (5, 5), and in the 11-series 
it is (6, 5), (7, 4), (10, 1) and (11, 0) only differing with 5 meV, (9, 2) and (8, 3). In the 12-series the order 
is (6, 6), (8, 4), (7, 5), (9, 3) (12, 0), (10, 2) and (11, 1).

We have reviewed the reported SWNTs in all relevant experimental studies10–12,14–18,20,21,52–57,69,78–89, 
which properly detect all present SWNT chiralities in the sample, and correlate the resulting statistics 
with the computed relative stabilities in Fig. 1. Specific CVD conditions are tabulated in Table S1 in the 
supplementary material.

Four observations can be made from this rather simplistic experimental/theoretical comparison: 
Firstly, there are no reported SWNT products in the 8 and 9 series (and only (7,3) from the 10 series), 
which we attribute to the fact that these small-diameter tubes have formation enthalpies that are too large 
(see Fig. 2). Secondly, most of the products are in the 10 to 14 series, although the formation enthalpies 
of the higher series are progressively lower. We argue that this is the result of the catalyst particle size 
targeted in the majority of these studies, as there is plenty of evidence for the relationship between cata-
lytic metal nanoparticle size and the diameter of the grown tubes20,86,90,91. Thirdly, and most importantly, 

Figure 1.  Relative energies between SWNTs of each (n +  m) series from (n +  m) =  8 to 18 plotted against 
the nanotube segment diameter. The zero line thus represents the most stable tube in each series. The 
colored points represent products from SWNT growth, with the color code representing the hit-rate of how 
many times a particular SWNT has been reported as a product in a unique CVD experiment (see Table S1). 
Inset shows the hydrogen terminated six-layer SWNT segments of the (6,5), (6,6) and (9,8) armchair and 
near-armchair tubes.

Series 8 9 10 11 12 13 14 15 16 17 18

∆E (eV) 2.023 1.385 0.935 0.667 0.470 1.420 1.517 2.246 2.590 3.079 3.489

Table 1.   Energy windows (∆E) of the difference between the most stable and least stable SWNT within 
the series.
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we observe that the vast majority of all SWNT products found in the experimental reports are among 
the most stable tubes in its series. This is a very surprising finding, since the energy differences between 
different chiralities are rather small, especially considering the differences in stability between the dif-
ferent series (see the formation enthalpies in Fig. 2)92,93. We have thus found that if no special measures 
are taken, the majority of the grown SWNTs will correspond to the few most stable SWNTs within the 
series, under the condition that the nanotube diameter matches the size of the metal nanoparticles used 
to catalyze the growth of the SWNT. Fourthly, we note, however, that there seems to be one major excep-
tion to the strong correlation between abundance and energetic stability; All experimental data indicate 
significantly lower abundance of pure armchair tubes (n= m) compared to near-armchair tubes (n ≈  m), 
despite the fact that armchair tubes display higher energetic stability, especially for series 12 and higher 
(see values for (6,6), (7,7), (8,8) and (9,9) in Fig. 1). The explanation for this can be found in the work 
by Yakobson group, who report that pure-armchair tubes (and pure-zigzag tubes) grow by a different 
growth mechanism than all other (so-called chiral) tubes that grow from screw-dislocations64,65. As a 
result, armchair and zigzag tubes will grow significantly more slowly (and hence be shorter) than chiral 
tubes. Since spectroscopic techniques such as Raman spectroscopy and photoluminescence scale with 
number of phonons, and number of electrons in the VHS, respectively, they both scale with number of 
atoms in the SWNTs, and hence an equal abundance of e.g. the armchair (6,6) and the chiral (7,5) tube in 
a given experiment will display a weaker signal of the armchair tube, since these have a shorter length94. 
It is important to point out that this observation does not rule out the possibility to target pure-armchair 
tubes as the main product, as recently shown by Sanchez-Valencia et al.89, since when using synthesized 
molecules as seeds (as discussed later) such tubes can indeed dominate. We note that our computational 
data points toward the (10,0) zigzag tube being produced in CVD growth using small diameter catalytic 
particles, but their short lengths make them undetectable.

We have found that the majority (84%) of the experimental product (hit-rate in Fig. 1) is among the 
most stable SWNT fragments (below 0.2 eV). Looking at tubes with similar diameter it is clear that, in 
addition to the relative energies of the tubes within the same series, the differences in formation enthalpy 
(see Fig. 2) is essential in understanding what SWNTs are formed: Clear examples where the formation 
enthalpy plays a major role in the growth abundance of certain chiralities can be seen by comparing e.g., 
the (7,5) and (8,4) tubes of the 12 series that both have significantly higher “hit-rates” than the (10,1) 
tube of the 11 series that have similar diameter as the (7,5) and the (8,4) tubes but a formation enthalpy 
that is around 2 eV higher. Similar observations can be made for the abundant (7,7) and (8,6) tubes of 
the 14 series and the rarely seen (10,3) and (11,2) tubes of the 13 series with similar diameters but much 
higher formation enthalpy. The above analysis of the data in Fig.  2 shows comprehensively how the 

Figure 2.  Formation enthalpy of each SWNT in this study (as defined by Eq. (1) in the main text) 
plotted against the nanotube segment diameter. This figure thus displays the energies of the tubes on a 
comparable scale.
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experimental hits are concentrated near the baseline when recasting the data into series disregarding the 
stability relation between different series, as in Fig. 1. Lastly, we want to point out the rather remarkable 
fact that we have been able to draw all these conclusions using just SWNT segments, without considering 
their interface with the catalytic metal.

Growth parameters discussion.  In the context of our findings that the catalyst particle size together 
with the relative energetic stability represent the two most important criteria that influence the growth of 
specific SWNT chiralities, we review the effects of the other growth parameters, temperature, pressure, 
feedstock, substrate and catalyst composition, on the selective growth of SWNTs.

Temperature.  The most distinct impact that temperature has on the growth products is the increase 
in overall tube diameters. This is obvious from Fig. 3a–c. The increase in diameter can be rationalized 
by an effect on the catalytic metal nanoparticles known as Ostwald ripening95–98 at temperatures above 
700 °C, meaning that the metal atoms become more mobile when the temperature rises. The result is 
disappearance of small metal nanoparticles where the material builds up the size of the remaining par-
ticles, as well as other temperature effects, such as agglomeration. This is exemplified by the report by 
Loebick et al.86, who showed that the average size of Co nanoparticles increases with temperature in 
the CVD reaction chamber. Although, in their work, the Co nanoparticles were deposited on MCM-41 
mesoporous silica template and mixed with Mn to minimize the effect of temperature, still, the average 
diameter of the catalyst particles increases slightly at higher temperature, namely from 8 Å at 600 °C to 
12.5 Å at 800 °C (at intermediate temperature, 700 °C, the particle size increases to 9 Å). As a result, the 
dominating SWNTs in the sample are also shifted, as represented in Fig. 3a, showing the chirality distri-
bution vs growth temperature. Further, it is interesting to note that production of tubes with high relative 
energy for the diameters represented by the metal particle size distribution in this specific experiment, 
such as the (7,3), (8,3) and (9,2), is shifted to production of tubes with lower relative energy such as (8,4), 
(8,6), and (9,7) (cf. Fig. 1). This phenomenon will be further discussed below. The change in particle size 
(tube diameter) with temperature seems to be more significant in smooth (nonporous, weakly interact-
ing) substrates such as silicon wafer. For instance, Fouquet et al.14 observed an up-shift in diameter dis-
tribution of the grown SWNT from 6.1–11.9 Å for 600 °C (growth temperature) to 6.3–14.9 Å for 700 °C, 
for Co catalyst deposited on a silicon wafer. The temperature increase also shifts the dominant chiral-
ities from (6,5), (6,6) and (7,4) for 600 °C to (7,5), (7,6) and (10,9) tube for 700 °C. These observations 
manifest our previous statement about the strong correlation between relative energetic stability and 
high abundance under the pre-requirement of matching catalyst particle size since, although these tubes 
belong to different series with different formation enthalpies (see Fig. 2), the “new” observed tubes also 
have the lowest energies in each series but with larger diameters (see Fig. 1). Figure 3b,c show two other 
examples of the temperature effect: Wei et al.85 grew SWNTs by plasma-enhanced ethanol decomposition 
using Co catalyst particles supported on MCM41, while Lolli et al.56 studied the temperature effect for 
SWNT growth on CoMo catalysts. In our report we have given a few representative examples to reveal 
the effect of temperature on the selective growth process by highlighting studies that have examined the 
chirality distribution in detail. Our conclusions are, however, perfectly valid when compared with the 
data in other work16,80–82.

Pressure.  We also consider the carbon precursor pressure in the reaction chamber, which has been 
shown to have a significant effect on the chirality distribution. The influence of this parameter is, however, 

Figure 3.  Effect of temperature on chirality distribution (a) represented from work by Loebick et al.86  
(b) represented from work by Wei et al.85 (c) represented from work by Lolli et al.56. The arrows indicate the 
direction of diameter increase.
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more complex to study, since it may also relate to the composition of the catalyst particles, with regard 
to their carbon saturation, especially at elevated temperature. Picher et al.99 showed that a combination 
of precursor pressure and reaction temperature affects the chirality distribution of the growing SWNTs 
and suggest that, compared to large catalyst particles, small catalyst particles can withstand higher carbon 
content before saturation. As a consequence, at a specific temperature, higher carbon precursor pressure 
will result in preferential activation of small catalyst particles and, consequently, preferential growth of 
small diameter tubes. A similar conclusion was made by Wang et al.57, who studied carbon precursor 
pressure ranging from 2 to 18 bar at fixed reaction temperature.

Feedstock.  Figure. 3a,b also introduce another important parameter for SWNT growth: the choice of 
carbon precursor. While Loebick et al.86 used CO (Fig. 3a) as carbon precursor, Wei et al.85 used ethanol. 
Several studies have speculated that the hydrogen produced when using a hydrocarbon as precursor 
affects the rate of catalyst particle reduction, remaining active for a longer time56,100,101. This is consistent 
with the results presented in Fig.  3a,b, showing a distribution with more small-diameter tubes for the 
CO precursor. Similar results have also been observed in other reports99. Wang et al.10, examined four 
different carbon precursors; CO, C2H2, C2H5OH and CH3OH to grow SWNTs and they also observed a 
clear shift to large-diameter tubes when hydrocarbons were used compared to CO.

Substrate.  The studies presented in Fig.  3a,b utilize CoMn and Co catalyst particles deposited on 
MCM41. Here, it is interesting to note that Mn is highly stable against reduction and does not act as 
a catalyst for SWNT growth (too large M-C bond strength)49, but instead acts in the alloy to prevent 
melting and evaporation of Co from the particles, thereby minimizing the effect of Ostwald ripening and 
agglomeration. This is the reason that the chirality distribution is less affected by temperature in Fig. 3a. 
For the same reason, inclusion of other non-catalytic metals (e.g., Mo, W, Cr, etc.) into the catalytic par-
ticles has a positive effect, producing uniform distributions of SWNTs, most likely because they help to 
reduce the effect of temperature10,19,55. It should be noted that inclusion of these metals also affects the 
catalytic particles’ effective M-C bond strength50,51. We also find that at low temperature these alloy cat-
alysts lead to production of tubes with higher relative energy for the diameters represented by the metal 
particle size distribution in this specific experiment ((7,3), (8,3) and (9,2) in Fig. 3a). The reason for this 
is that the surface geometry of the particles does not adapt, but remains frozen (see more about this effect 
below). These observations also relate to the very important relation between the catalyst particles and 
the substrates for SWNT growth. Such particle-substrate interaction can also prevent restructuring of 
the particles driven by temperature as well as affecting the morphology of catalyst particles. Lolli et al.56 
used CoMo supported on two different materials, SiO2 and MgO, to grow SWNTs under similar reaction 
conditions. Interestingly, the chirality distribution was broader when MgO was used as support, which 
the authors explain by a difference in particle-substrate interaction as well as a change in the catalyst 
particle morphology. Thus, the choice of substrate can have an effect on the restructuring of the catalytic 
particles similar to that of the alloying elements Mn, Mo, W and Cr, which will be considered below.

Catalyst composition.  Another parameter that affects the chirality distribution is the interaction 
between catalyst particle and the dissociating carbon atoms. Within the M-C bond strength “Goldilocks” 
window of catalytic activity46–49 (see Introduction), the use of different metals with different bond 
strengths affects the distribution of SWNT product. This effect has been described by Barzegar et al.20, 
who show that slight changes in the Co/Fe ratio of the catalyst particles could influence the chirality 
distribution. Similarly, H. Chiang et al.53 observed a change in chirality distribution of the grown SWNTs 
when they systematically studied a change in catalyst particle composition from pure Fe to pure Ni (with 
a number of steps utilizing different admixtures of Fe and Ni), while the average catalyst particle size 
was kept constant.

Overall the experimental and theoretical data strongly suggest that a selective growth mechanism is 
dictated by a two-parameter model in which the diameter of the tubes produced is primarily governed by 
the nature of the catalyst particle, in particular size, and the specific chirality is governed by the relative 
energetic stability at the diameter in question, pointing towards a high degree of thermodynamic control 
at the initial stage of growth. There are a few exceptions to the two-parameter model. In some cases a 
relatively high abundance of tubes with lower stability, such as the (7,3), (8,3), (9,2), and the (9,4) tubes, 
can be found. We have described above that in such cases the conditions to grow “low-stability” tubes 
occur for SWNT growth at low temperatures. It is reasonable to think that certain metal nanoparticles 
with ideal size and surface morphology can catalyze the growth of such tubes and that the low temper-
ature hinders adaptation of the nanoparticles to the geometry demanded for more stable tubes with this 
diameter.

Seeded growth.  We subsequently turn our focus to special measures that can be taken in order 
to promote the growth of energetically unfavorable SWNTs found higher up in the ladder of a series. 
Two recent reports with very different seeding approaches give important insight into this matter: 
Sanchez-Valencia et al.89 use pre-grown chemically synthesized precursors of (6,6) caped segments as 
seeds to promote the growth of single chirality SWNTs samples. This work is in some aspects inspired 
by the work by Smalley et al.102, who use pre-cut SWNT segments as seeds to promote single chirality 
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growth; Yang et al.69,103, on the other hand, take in two different studies advantage of a metal catalyst with 
a very high melting temperature, W6Co7. By growing nanotubes at 1030 °C a nearly complete selective 
growth process is achieved, with a 94% selectivity for the (12,6) tube, and a 80% selectivity for the (16,0) 
tube, respectively. Looking at Fig. 1, it is clear that the (12,6) tube is far from being the most stable tube 
in the 18 series. The authors explain the stabilization of this specific tube with the very high melting 
temperature of W6Co7 (2500 °C), which results in an unchanged morphology of the faceted catalyst 
nanoparticles during the CVD growth. The authors also indicate that, under slightly different conditions, 
other SWNTs with high relative energy for their diameter (as found in the present study, see Fig. 1) can 
grow, such as (14,4). The hypothesis made by the authors about frozen catalyst surfaces giving preference 
to certain tubes is fully supported by our observations. Tubes with high relative energy can grow from 
catalyst nanoparticles that exactly meet the requirement of only this specific chirality when frozen. If the 
conditions allow, the catalyst nanoparticle will adapt to the shape (and size) that better match the tubes 
with higher stability, but at low temperature (as discussed previously), for very stable catalyst particles 
(for example, due to high melting temperature), or for catalyst nanoparticles that are stabilized due to 
other reasons, exotic low-stability tubes with certain chirality can grow. The latter proposal is supported 
by our analysis of the experimental data, summarized in Fig. 1, which for some reports indicate a rather 
high abundance of e.g., the (7,4), (9,2) and (8,3) tubes of the 11 series, and the (8,5), (9,4) and (10,3) 
tubes of the 13 series. Looking further in Table S1, it can be seen that, in all of these experiments, the 
catalytic metal particles are deposited on a porous substrate that forms strong bonds to the metal cata-
lyst. We believe that using such substrates results in a broader catalyst particle distribution and that the 
strong bonds between the particles and the substrate inhibit both reshaping of metal nanoparticles as 
well as diffusion of metal atoms, resulting in larger particles, thus providing a template for less stable 
tubes to be formed. The molecular seeds used in the Sanchez-Valencia et al.89 study, on the other hand, 
represent a very promising development where cap, ring and belt-shaped molecules from chemical syn-
thesis (such as the molecules in ref. 104) could be used to promote the growth of particular SWNTs in 
a controlled way (as also suggested in ref. 73). Such seeds could also be substrate bound (non-catalytic) 
with subsequent deposition of the catalyst metal in order to reap the benefits of tip growth, both for 
feedstock access (SWNT length) and closely packed seeds (SWNT packing density). Bear in mind that 
the tube with the highest formation enthalpy seen in CVD is the (7,3) tube and, thus, all tubes with 
lower formation enthalpy (see Fig.  2) could be possible products that could be targeted through seeded 
growth. The molecular seeding approach can also be used to eliminate the complication of using metal 
nanoparticles and the tube diameter dependence on their size, since the (6,6) tube growth in ref. 89 was 
catalyzed by a smooth Pt surface.

We believe that the major effect of the growth temperature, of larger metal particles leading to larger 
diameter tubes, could just as well be achieved by a pre-treatment annealing of the catalyst with growth at 
a lower temperature. Furthermore, we suggest that a combination of low temperature and high precursor 
pressure would result in the smallest diameter tubes. A combination of alloying with Mn, Mo, W, or Cr and/
or a porous and sticky substrate would possibly open up for the production of exotic small diameter tubes.

Conclusions
We have compared computed SWNT fragment stabilities from DFT with all CVD growth experiments 
evaluated by methods that properly detect all present nanotube chiralities. We have found that the very 
smallest diameter tubes of the 8, 9, and 10 series are not produced because of high formation enthalpies, 
but that otherwise the SWNT diameter is governed by the well-known dependence with the catalytic par-
ticle size, not by the SWNT formation enthalpy, the latter favoring large-diameter SWNTs. It is, however, 
natural that tubes of larger diameter than the catalytic particles are not formed. Our most important find-
ing is that the specific chirality of the SWNT product is strongly dependent on the relative stability of the 
tubes within their series, which can be rationalized to a dependence on the formation enthalpy of tubes 
of similar diameter. Thus, the dominating SWNT products are among the few most stable in each series, 
and our study shows that 84% of the products in all reported CVD growth to date is within 0.2 eV of the 
most stable tube of its series. We wish to point out that our strong correlation between energetic stability 
and abundance in experimental studies is obtained by only considering the SWNT segments, without the 
inclusion of the interface with the catalytic metal. We thus conclude that the effect of the actual growth 
conditions and the interaction with the metal is less dominant with respect to the product outcome, and 
that the initial formation of the product is governed mainly by thermodynamic control. Regarding the 
possibility to influence product outcome by fine-tuning the experimental conditions, our analysis shows 
that the growth temperature has by far the largest effect on the index of the SWNT product. We show, 
however, that this is directly related to the temperature influence on the metal particle size. At low growth 
temperatures (below 650 °C), or high melting temperature of the catalyst due to alloying, or strong sub-
strate binding, the “frozen” metal surfaces can act as templates for growth of less stable tubes. Such con-
ditions account for most of the remaining 16% experimental products, and thus strengthens our already 
strong correlation with the fragment stability. Other parameters such as carbon precursor pressure, vapor 
pressure, and feed stock composition have less impact on the chirality of the product, but here we note 
that the low number of appropriate experimental studies makes it difficult to perform a full evaluation.

Lastly we show that the choice of substrate and catalyst composition can drastically diminish the 
influence of temperature on the metal particle size and lead to static/frozen metal surfaces that act 
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as templates for growth of less stable SWNTs, and even lead to metal particle seeds for index specific 
growth.
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