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Abstract: Polypropylene oxide (PPO) and poly(9-(2,3-epoxypropyl) carbazole) (PEPK) di-block
copolymers are prepared in one pot via sequential monomer addition by using i-PrONa/i-Bu3Al
as an anionic catalytic system. An almost 100% monomer conversion is obtained, and the length of
each block is controlled through the monomer/catalyst ratio used. Copolymer molecular weights
are quite close to theoretical values calculated assuming the formation of one polymer chain per
catalyst; therefore, it is hypothesized that the polymerization reaction proceeds with a living character.
The synthesis appears to be particularly efficient and versatile. The calorimetric properties of copoly-
mers obtained in this work are remarkable, since they show two distinct Tg values, corresponding to
the PPO and PEPK blocks. The optical measurements of di-block copolymers show more analogous
features than those of PEPK homopolymer. Copolymer solution emission spectra just exhibit isolated
carbazole fluorescence, whereas in the solid state, film spectra show excimer fluorescence.

Keywords: anionic polymerization; di-block copolymers; carbazole; living polymerization

1. Introduction

The synthesis of polymers with pendant carbazolyl groups has attracted great aca-
demic and industrial interest thanks to the unique spectroscopic properties that they
exhibit [1–7]. Starting from polyvinylcarbazole (PVK) [8], different kinds of polymers with
pendant carbazolyl groups, i.e., polyacrylate [9,10], polymethacrylate [11–14], polystyrene
[15–17], and polyolefin [18–21] derivates, have been reported. Poly(9-(2,3-epoxypropyl) car-
bazole) (PEPK) has been widely studied because of its high carrier and hole drift mobility,
too [22–26]. As regards photoconductive properties of PEPK, they are similar or superior
than those of PVK [1]. In recent years, block copolymers presenting polymeric blocks
containing pendant carbazolyl groups have also gained much attention because of their
potential ability to form ordered structures through self-assembly processes, which makes
them promising materials for applications in optoelectronics. For example, they could be
employed as light-emitting or organic photo-refractive materials. By tuning the chemical
nature and length of each block, block copolymers with peculiar chemical, physical and
optoelectronic properties can be suitably obtained. To this aim, controlled polymerization
techniques, i.e., controlled radical or living anionic methods, have to be employed. A va-
riety of research papers describe the synthesis of carbazole-containing block copolymers
using controlled radical polymerization [27–29]. By living anionic polymerization, block
copolymers based on olefin monomers containing carbazole groups were also obtained [30].
In this paper, the synthesis and characterization of di-block copolymers polypropylene
oxide (PPO) and PEPK are reported. PPO-b-PEPK copolymer samples (see Figure 1)
were synthesized in one pot via sequential monomer (propylene oxide (PO) and 9-(2,3-
epoxypropyl) carbazole (EPK)) addition by using i-PrONa and i-Bu3Al as initiating system.
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It is worth noting that PO anionic polymerization initiated by alkali metal alkoxides mainly
produces oligomeric species, some of which exhibit terminal allyl unsaturations [31–33].
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Scheme 1. However, this side reaction, leading to PO oligomeric species, can be avoided 
by using initiating systems formed by combining an alkali metal alkoxide with trialkyl-
aluminum [34]. The latter, acting as an activator of PO, not only through the oxygen coor-
dination onto the electrophilic aluminum center, but also increasing selectivity toward 
active species, would favor the ring opening polymerization reaction rather than the mon-
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As a matter of fact, Deffieux et al. reported a controlled anionic polymerization of PO 
by using i-PrONa/i-Bu3Al as an initiating system, which provided 100% conversion in a 
very short time [34]. The observed experimental PPO molar masses were very close to the 
theoretical values calculated assuming the formation of one polymer chain per i-PrONa 
and dispersity values were also quite narrow [34]. Therefore, starting from the idea that 
anionic initiators based on alkali metal alkoxides and trialkylaluminum can lead, at least 
in suitable experimental conditions, to the polymerization of PO presenting living char-
acter, we applied this polymerization strategy to prepare PPO-b-PEPK copolymers with 
the aim to obtain a precise control of each block length. It is worth underlining that PPO-
b-PEPK copolymers are truly intriguing materials because they combine the properties of 
a low-toxic and soft material such as PPO with those of PEPK, which shows remarkable 

Figure 1. Polypropylene oxide (PPO)-b-poly(9-(2,3-epoxypropyl) carbazole) (PEPK) copolymer structure.

Due to the high basicity of propagating species, a proton abstraction from the PO
methyl group may occur, resulting in a transfer reaction to monomers, as shown in
Scheme 1. However, this side reaction, leading to PO oligomeric species, can be avoided
by using initiating systems formed by combining an alkali metal alkoxide with trialky-
laluminum [34]. The latter, acting as an activator of PO, not only through the oxygen
coordination onto the electrophilic aluminum center, but also increasing selectivity to-
ward active species, would favor the ring opening polymerization reaction rather than the
monomer transfer reaction (see Scheme 1) [34].
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Scheme 1. Transfer reaction to monomer (top) and propagation reaction (bottom) in the anionic polymerization of PO.

As a matter of fact, Deffieux et al. reported a controlled anionic polymerization of
PO by using i-PrONa/i-Bu3Al as an initiating system, which provided 100% conversion
in a very short time [34]. The observed experimental PPO molar masses were very close
to the theoretical values calculated assuming the formation of one polymer chain per
i-PrONa and dispersity values were also quite narrow [34]. Therefore, starting from the
idea that anionic initiators based on alkali metal alkoxides and trialkylaluminum can lead,
at least in suitable experimental conditions, to the polymerization of PO presenting living
character, we applied this polymerization strategy to prepare PPO-b-PEPK copolymers
with the aim to obtain a precise control of each block length. It is worth underlining that
PPO-b-PEPK copolymers are truly intriguing materials because they combine the properties
of a low-toxic and soft material such as PPO with those of PEPK, which shows remarkable
photoconductive properties. Furthermore, the PPO-b-PEPK copolymers could be also able
to form ordered structures through self-assembly processes. The microstructure, physico-
chemical and optical properties of the obtained di-block copolymers are also reported in
the paper.
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2. Materials and Methods
2.1. Materials

All manipulations involving air and moisture sensitive compounds were carried out
under an atmosphere of dried and purified nitrogen with standard vacuum-line, Schlenk,
or glovebox techniques. Glassware and vials used in the polymerization were dried in an
oven at 120 ◦C overnight and exposed to a vacuum-nitrogen cycle three times. All reagents
and solvents were purchased from Sigma-Aldrich s.r.l. (Milan, Italy). Toluene was refluxed
over sodium for 48 h and distilled before use, propylene oxide was purified on CaH2 and
distilled before use, and other reagents were used without further purification. i-PrONa
was synthesized by reaction of i-PrOH with sodium dispersed in toluene. The mixture was
reacted at 50 ◦C for one night and stored over a small excess of sodium.

2.2. Synthesis of 9-(2,3-epoxypropyl) Carbazole (EPK)

9-(2,3-Epoxypropyl) carbazole was prepared following a procedure already reported
in the literature [35]. In a 500 mL round bottom flask, to a solution of KOH (75.0 mmol,
4.21 g) in 200 mL of N,N-dimethylformamide, 5.02 g (30 mmol) of carbazole were added.
Mixture was allowed to stir for 30 min, then the temperature was lowered at 4 ◦C and
epichlorohydrin (60.0 mmol, 4.70 mL) was added dropwise. Temperature was left to raise
at 20 ◦C and the reaction mixture was stirred overnight. Afterwards, water (150 mL) was
added to the mixture and a white solid precipitant formed. The raw product was filtered,
washed with water (3 x 15 mL) and, finally, crystallized in a mixture of ethyl acetate and
hexane (1/2). Yields: 65 %. M.p.: 107.3 ◦C. 1H NMR (400 MHz, CDCl3) δ: 2.17 (1 H, t, CH),
1.93 (1H, m, CH2O), 2.71 (1H, m, CH2O), 3.67 (1H, d, CH2N), 4.04 (1H, d, CH2N), 7.47-6.61
(8H, aromatic CH) ppm. 13C NMR (100.62 MHz, CDCl3) δ:138.84, 124.30, 121.01, 118.64,
117.0, 107.15, 49.00, 43.58, 42.87 ppm.

2.3. PPO and PPO-b-PEPK Synthesis

The polymerization procedure reported below refers to samples 1 and 2 of Table 1. In a
50 mL glass reactor equipped with a magnetic stirring bar, 3.0 mL of PO (42.9 mmol) was
dissolved in 6.0 mL of toluene under nitrogen atmosphere. The reactor was thermostated
at 0 ◦C and 0.25 mL of i-PrONa solution in toluene (0.45 M, 0.11 mmol) was added to
the reaction mixture. After fifteen minutes, 0.86 mL of tri-isobutyl aluminum (1 M in
toluene, 0.86 mmol) was added to start the polymerization. The system was maintained
under stirring in the thermostated bath. After 3.5 h, half of the reaction mixture was
transferred to another glass reactor and 0.5 mL of ethanol was added to stop polymerization.
Solvent was then evaporated under vacuum, and the polymer was dried until it reached a
constant weight. (Yield: 99%) As for the remaining half of the reaction mixture, the system
was heated up to room temperature (20 ◦C) and 0.478 g of EPK (2.1 mmol) was added.
The system was maintained under stirring for 3.5 h and then 0.5 mL of ethanol was added
to stop polymerization. The solvent was then evaporated under vacuum, and the polymer
was dried until constant weight. The recovered polymer sample was finally washed 3 times
with cold pentane. (Yield: 99%)

2.4. Methods

NMR: NMR spectra of the monomer were recorded on Bruker Advance 400 spec-
trometer (1H, 400 MHz; 13C, 100.62 MHz) operating at 298 K. The sample was prepared
by dissolving 5 mg of monomer in 0.5 mL of deuterated chloroform (CDCl3). Tetram-
ethylsilane (TMS) was used as internal chemical shift reference. NMR spectra of polymers
were recorded on a Bruker Advance 600 spectrometer (1H, 600.13 MHz; 13C, 150.92 MHz)
operating at 298 K. The samples were prepared by dissolving 10 mg of polymer in 0.5 mL
of CDCl3. Tetramethylsilane (TMS) was used as internal chemical shift reference.

Gel permeation chromatography (GPC): The molecular weights (Mn and Mw) and
dispersity (Ð) of polymer samples were measured by gel permeation chromatography
(GPC) at 30 ◦C, using tetrahydrofuran (THF) as solvent, an eluent flow rate of 1 mL/min,
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and narrow polystyrene standards as reference. The measurements were performed on a
Waters 1525 binary system equipped with a Waters 2414 RI detector using four Styragel
columns (range 1000–1,000,000 Å).

DSC: Calorimetric measurements were carried out on a DSC Q20 apparatus manu-
factured by TA Instruments in flowing N2. Polymer samples of 5–10 mg were placed in
aluminum pans and heated/cooled at a rate of 10 ◦C/min. Measurements were taken in
the range −80 to 200 ◦C.

UV–vis and fluorescence analysis: UV–vis measurements were performed by a Varian
Cary 50 spectrophotometer and photoluminescence was recorded by a Varian Cary Eclipse
spectrophotometer. Thin polymer films were prepared by spin coating on a quartz slide
substrate. The film thickness and roughness were measured by a KLA Tencor P-10 surface
profiler. Fluorescence measurements in solutions were performed in THF.

3. Results and Discussion

PPO-b-PEPK block copolymer samples were obtained by highly selective one-pot
reaction adding sequentially PO and EPK monomers to the polymerization system. For the
sake of clarity, the polymerization reaction is depicted in Scheme 2. Experimental polymer-
ization conditions and copolymer features are shown in Table 1. Sequential polymerizations
were carried out with different EPK/i-PrONa ratios, as reported in Table 1, and the molecu-
lar weights of copolymers, both theoretical and experimental, increased with an increasing
EPK/i-PrONa ratio, indicating a living polymerization.
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Table 1. Experimental polymerization conditions and copolymer features.

Run PO/
i-PrONa

i-Bu3Al/
i-PrONa

EPK/
i-PrONa

Conv.
(%)

Mn (teor)
(g/mol)

Mn (exp)
b

(g/mol) Ð b
Tg

(◦C)
Tg(PPO)/Tg(PEPK)

c

1 a 390 7.8 - 100 22,651 24,100 1.05 −60/-
2 390 7.8 39 100 31,352 33,500 1.05 −60/130
3 390 7.8 78 100 40,053 43,000 1.10 −60/136
4 390 7.8 20 100 27,113 28,000 1.05 −60/97
a Recovered from polymerization mixture after 3.5 h. b Estimated by gel permeation chromatography (GPC) based on polystyrene standards.
c Tg(PPO) = Tg of PPO block; Tg(PEPK) = Tg of PEPK block.

PPO-b-PEPK copolymer microstructures were evaluated by 1H and 13C NMR analyses.
As an example, the 1H and 13C NMR spectra of sample 2 of Table 1 are shown in Figures 2
and 3, respectively. In particular, the characteristic signals of both PO and EPK regioregular
sequence units were recognized and assigned in both spectra. Unfortunately, in both
spectra, diagnostic signals, proving the effective formation of PPO-b-PEPK copolymer
rather than the presence of PPO and PEPK homopolymers, are not detectable. In order to
demonstrate the successful sequential polymerization of PO and EPK monomers, a DOSY
NMR experiment was set up. In detail, a DOSY NMR experiment of sample 2 was achieved
in dilute CDCl3. The DOSY map with the related 1H NMR spectrum projected on top
is reported in Figure 4. The 1H NMR spectrum exhibits signals related to both PPO
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(δ = 3.56, 3.41, 1.15 ppm) and PEPK (δ = 7.89 - 6.89 (aromatic), 3.05, 2.52, 2.42 ppm)
blocks. As shown on the DOSY map, 1H NMR signals of PPO and PEPK present the same
diffusion coefficient—3.99 × 10−11 m2 s−1, which is consistent with an efficient sequential
polymerization. Moreover, to prove that PPO growing chains totally reacted with EPK
monomer and no residual PPO homopolymer was present in sample 2, a dilute CDCl3
solution of sample 1 (PPO homopolymer) of Table 1 was analyzed by DOSY NMR and
compared to sample 2 (PPO-b-PEPK block copolymer) spectrum. The diffusion coefficient
of sample 1 was found to be 1.70 × 10−9 m2 s−1, different from the one of sample 2,
thus proving that no unreacted PPO homopolymer is present and that the formation of the
copolymer was successful.
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Table 2. Chem. shift assignments of the carbon atoms in PPO-b-PEPK 13C NMR spectrum.

Carbon Chem. Shift

C1 73.79

C2 75.38

C3 17.75

C4 69.20

C5 67.40

C6 44.47

C7 140.59

C8 109.48

C9 125.43

C10 119.05

C11 120.25

C12 122.84
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TMS scale, 25 ◦C) (Supplementary Materials).

In addition to the NMR evidence, PPO and PPO-b-PEPK samples showed monomodal
curves in the GPC analysis (see Figure 5). Molecular weights are quite close to theoretical
values, calculated assuming the formation of one polymer chain per i-PrONa (see Table 1).
Moreover, GPC curves also show very narrow dispersity values. Consistent with those
already reported in [34], polymerization seems to proceed with living character without
any significant contribution of the monomer transfer process.
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From thermal analysis, all PPO-b-PEPK copolymer samples showed decomposition
temperatures of 330 ◦C (5% weight loss), while DSC measurements showed two distinct Tg
values, corresponding to the PPO and PEPK blocks, respectively. It is worth underlining
that the two Tg values observed for each single copolymer seem to depend on the length of
each block, as reported in Table 1. In fact, while the Tg of the PPO block remains unchanged
in all copolymer samples, consistent with the similar PPO block length in each copolymer,
the Tg values relative to the PEPK block increase with increasing block lengths. As an
example, in Figure 6, TGA and DSC curves of PPO-b-PEPK sample 2 are reported.
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The optical properties of the obtained PPO-b-PEPK copolymer samples were also
investigated. As an example, the UV–vis spectrum of PPO-b-PEPK copolymer sample 2 is
shown in Figure 7. The peaks at 330 and 344 nm are distinctive of carbazole and are always
observed in the absorption spectra of carbazole-containing polymers [36,37].

The fluorescence spectrum of a THF solution of PPO-b-PEPK copolymer (sample 2,
Table 1), measured under an excitation wavelength of 290 nm at room temperature, is re-
ported in Figure 8A. Only two bands in the high energy region presenting maxima at
355 and 367 nm were detected. Differently, the fluorescence spectrum of PPO-b-PEPK
copolymer sample 2 film, in the solid state, presents a broad band at 400 nm with two
shoulders at 354 and 375 nm (see Figure 8B). As expected, both spectra are very similar to
those expected for the PEPK homopolymer. It is worth recalling that the optical properties
of EPK homopolymers and oligomers [38,39], as well as other polymers containing car-
bazole pendant groups, have been already deeply investigated [2–5,20]. It is well known
the peculiarity of the photophysical behavior of this class of polymers is able, in some
cases, to show excimer fluorescence [40–43]. In particular, it was reported that polymers
with pendant carbazolyl groups do not exhibit excimer emissions in diluted solutions at
room temperature, except when the carbazole chromophores are directly bound to the
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polymer backbone as in the case of PVK [1,40–43]. On the contrary, in the solid state,
carbazole-containing polymers also present a short spacer between the polymer chain
and the carbazole groups give rise to excimer fluorescence [1,2,15,18–21,40–43]. Moreover,
it was reported that, depending on polymer chain conformation, two different excimer
fluorescences can be generated: the low energy “sandwich like” excimer and/or the high
energy “partially overlapping” excimer fluorescence (see Scheme 3) [2,15,18–21,40–43].
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Consistent with the literature concerning the PEPK homopolymer photoluminescent
feature [1], the fluorescence spectra of diluted solutions of PPO-b-PEPK copolymers do not
exhibit excimer emission (see Figure 8A): the observed bands at 354 and 375 nm, have to be
associated to the isolated carbazole fluorescence of PEPK block. Conversely, PPO-b-PEPK
copolymers in the solid state as thin films seem to show excimer emissions. In our opinion,
the broad band observed at 400 nm should be associated to excimer fluorescence, probably,
to the low energy “sandwich like” excimer fluorescence. As already reported for other
polymers containing pendant carbazole groups [15,18–21], these experimental results can
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be explained assuming that polymer chain conformational freedom in solution prevents
excimer formation, while in the solid state, a reduced conformational freedom allows the
excimer formation.

4. Conclusions

PPO-b-PEPK copolymers have been synthesized by using i-PrONa/i-Bu3Al as an initi-
ating system in one pot via sequential monomer addition. This synthetic approach allows
the length of each block to be easily controlled by modulating the ratio initiator/monomer
in the reaction mixture. The formation of copolymer structures rather than homopolymer
mixtures, when starting from a PPO block, was proved by NMR investigations on the
diffusion coefficient of the PPO homopolymer compared to the one of PPO-b-PEPK block
copolymer. Interestingly, both the copolymer molecular weights, quite close to theoreti-
cal values calculated, indicate the formation of one polymer chain per i-PrONa, and the
narrow dispersity values seem to indicate that polymerization proceeds with living char-
acter. Altogether, the findings here open the route for an efficient, economic synthesis of
copolymers whose blocks can be easily modulated depending on the desired final material.
With respect to PPO-b-PEPK copolymers, they show intriguing “calorimetric” properties
since they consist of two blocks based on homopolymers with very different Tg values.
Such Tgs values are both reproduced in the final copolymeric products making the latter
particularly interesting as compatibilizers. As for optical properties, copolymer solutions
show only isolated carbazole fluorescence, whereas in the solid state, PPO-b-PEPK film
samples give rise to excimer emission.
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