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The COVID-19 pandemic has highlighted a need for improved

frameworks for drug discovery, repurposing, clinical trial

design and therapy optimization and personalization.

Mechanistic computational models can play an important role

in developing these frameworks. We discuss how mechanistic

models, which consider viral entry, replication in target cells,

viral spread in the body, immune response, and the complex

factors involved in tissue and organ damage and recovery, can

clarify the mechanisms of humoral and cellular immune

responses to the virus, viral distribution and replication in

tissues, the origins of pathogenesis and patient-to-patient

heterogeneity in responses. These models are already

improving our understanding of the mechanisms of action of

antivirals and immune modulators. We discuss how closer

collaboration between the experimentalists, clinicians and

modelers could result in more predictive models which may

guide therapies for viral infections, improving survival and

leading to faster and more complete recovery.
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Introduction
Therapies for viral infection can function in many ways.

For example, small molecules or antibodies can directly

interfere with viral life cycle, drugs can promote
www.sciencedirect.com 
interferon-induced or other types of antiviral resistance

in target cells, drugs can stimulate cellular responses for

more effective elimination of virus-infected cells, and

drugs can reduce the severity of symptoms resulting from

infection or hyper-immune response [1,2]. The develop-

ment of therapies that minimize the duration and severity

of illness may require multiple approaches to treatment at

different phases of infection. Patient-to-patient variabil-

ity may mean that the choice of drugs, and their dosing

and timing all need to be personalized.

Traditionally, the standard pipeline of drug-therapy devel-

opment progresses from a serendipitous guess of drug

candidates, through in vitro and in vivo drug testing, to

clinical trials in humans, and post-clinical optimization,

with a dramatic drop in the probability of success at each

phase [1]. Data-based methodologies like bioinformatics

and Machine Learning have been able to augment seren-

dipity with extrapolation and structural similarity metrics

for lead identification [3] but have not yet allowed the

design of optimized therapies. Two types of mechanistic

computer models which explicitly simulate biological com-

ponents, interactions and dynamics are commonly used in

drug development and therapy optimization: molecular

dynamics (MD) simulations of limited numbers of indi-

vidual molecules allow docking calculations which are

widely used in lead identification [4,5], and models of drug

absorption, transport, metabolism and elimination allow

dosage optimization [6]. However, these molecular-scale

and whole-body-scale models generally neglect the spatio-

temporal complexity of the dynamic multicellular immune

response, the movement of virus within the body, and the

ways in which both virus and immune response can lead to

either pathological outcomes or recovery.

Available blood-based clinical measurements of viral

load, cytokine or immune-cell profiles and imaging-based

measurements of regions and types of damage provide

snapshots of viral infection in individuals, which when

aggregated, allow us to characterize typical patterns of

infection progression. However, these measurements are

usually too limited in frequency and detail to predict

individual immune responses in a way that allows opti-

mized personalized treatments. Our inability to predict

the immune response and immune-viral interactions in

individuals, means that we still have very limited mecha-

nistic understanding of why some individuals have mild
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Spatiotemporal scales in virus infection dynamics.

Top row shows schematics of biological systems at different scales. Bottom row shows sample model representations and outputs for the scales

shown in the top row. From left to right: (1) top: Schematic of a whole body, bottom: PBPK model of drug absorption, distribution, metabolism,

and excretion, (2) top: Lung and Lymph node, bottom: model of flow, transport and response in a lymph node (adapted from Ref. [16]), (3) top:

Infection and immune response in a lung epithelial tissue, bottom: multi-cellular simulation of virus, target cells and immune cells in a patch of lung

epithelium [17�]. (4) top: Viral life cycle inside a host cell, bottom: multiscale model of influenza A virus infection (adapted from Ref. [18]), (5) top:

Middle East Respiratory Syndrome virus particles (blue) binding to a VERO E6 cell (adapted from Ref. [19]), bottom: molecular dynamics model of

ACE2 - SARS-CoV-2 S protein docking (adapted from Ref. [13]).
symptoms, while others develop severe disease in

response to the same virus, or why recovery is complete

in some individuals and long-term consequences like

post-polio syndrome or long-COVID occur in others

[7,8]. Consequently, at present, we usually cannot accu-

rately predict how a particular patient will respond to

treatment with an antiviral drug or immune modulators,

whether for new viruses introduced by a pandemic, or

endemic circulating viruses such as seasonal influenza.

Mechanistic models are most useful when we lack intui-

tive understanding of the significance of experimental

observations and the causal processes that underlie them.

The complex web of interactions between virus, cyto-

kines and immune cells both at the site of infection and in

the lymph nodes is a classic example of how multiple

feedback cycles can lead initially similar situations to

evolve in very different temporal and spatial patterns

and result in different clinical outcomes. In the immune
Current Opinion in Virology 2021, 50:103–109 
system, cytokine levels, immune-cell profiles and damage

patterns can change in complex ways in space and time,

making prediction from qualitative models nearly

impossible.

The complexity of viral infection and immune response

has led to the development of mechanistic computational
models, differing in their mathematical and computational

representation of components, interactions, levels of spa-

tial detail and the time scales they consider. A conceptual
mechanistic model is a phenomenological description of the

dynamics of a biological system. In the case of a model of

infection, it is based on biologically motivated hypotheses
identifying the key physical components of viral infection

and immune response, how their interactions lead to

infection dynamics and what key measurable variables

best describe these components and interactions. To

make this model quantitative and dynamic, requires

hypotheses for the specific mathematical forms governing
www.sciencedirect.com
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the changes of the variables describing these components.

To build a mechanistic computational model, we also need to

decide how to translate the dynamic mechanistic model

into a computer simulation, for example, by deciding if

we will represent individual virions or viral concentra-

tions, or whether changes happen continuously in time or

as stochastic events. For an interesting discussion of the

process of constructing a complex model of immunologi-

cal cross-talk see Ref. [9].

This short piece cannot cover the many existing relevant

models comprehensively. For a more comprehensive

review see Refs. [10��,11]. Here we describe successful

models of gradually increasing complexity, and end by

discussing some promising areas of research and devel-

opment that would benefit from more intensive collabo-

ration between experimentalists and modelers.

How understanding viral kinetics and immune
response can assist development of antiviral
therapies
The COVID-19 crisis has revealed significant gaps in our

understanding of within-host viral kinetics and immune

response, which impede the discovery of new therapies,

and the optimization and personalization of existing

therapies. Mechanistic computational models are uniquely

positioned to bridge these gaps.

The dynamics of interaction between a virus, host cells

and the immune response are complex, involving multi-

ple spatial and temporal scales (Figure 1). Infection starts

from viral transport to the site of initial infection, evasion

of host defenses and infection of target cells. As infection

progresses, both virus dissemination and immune

response progressively involve more components and

can spread to different tissues and organs.

At the smallest scale, MD simulations rely on information

on the dynamic properties of macromolecules and can

provide information about details of virus recognition not

accessible using crystallography. For example, flexibility

of the viral peptide presented by the major histocompati-

bility complex (MHC) may play an important role in the

recognition of the peptide by a T cell, leading in some

cases to ‘conformational frustration’ [12]. Molecular-

docking simulations of affinity between SARS-CoV-2

spike and ACE2 in different species [13] were able to

identify the most useful animal models of human infec-

tion. At the largest whole-body scale, physiologically

based pharmacokinetic (PBPK) modeling is a well-devel-

oped framework that models drug absorption, distribu-

tion, metabolism, and excretion (ADME) and may help to

optimize drug treatment in the case of emergent viruses.

For example, a PBPK model was used to scale the optimal

dosing of remdesivir from adults to pediatric patients with

COVID-19 [14].
www.sciencedirect.com 
Proper understanding of the immune response to a viral

infection requires modeling at multiple scales simulta-

neously. Picking the correct level of detail for each scale

requires us to decide which elements are critical to the

behaviors of the system [15]. Often, we need to represent

the intermediate scales with the most detail. For exam-

ple, a weather forecasting model of hurricane trajectory

and strength might include a detailed submodel of the

winds in the hurricane, and less detailed submodels

representing heat flow in the ocean beneath and weather

patterns across the globe, which provide boundary con-

ditions for the detailed hurricane submodel. Multi-level

models of factories, traffic in cities and agent-based

models in epidemiology also often represent the inter-

mediate-scale components in the most detail. To under-

stand and control the interaction between a virus and the

immune system, we need models that cover intermediate

scales between molecules and the whole body. We will

focus on models at these intermediate scales, including

population-dynamics models, models of viral life cycle,

multi-cellular models and their integration into multi-

scale models.

The challenge of understanding the immune response in

HIV infection has shaped the field of mathematical

modeling in immunology. A target-cell-limited model

initially proposed to understand the dynamics of HIV

infection [20,21] established a framework for within-host

modeling that later was extended in multiple ways and

applied to different viral infections. The simple target-

cell-limited model has three variables: uninfected sus-

ceptible target cells, infected virus-producing cells, and

the viral load. Fitting this model to the viral-load data

allowed estimation of the rate of production of virions by

infected cells and the life-spans of infected target cells

and virus particles [20]. These early models provided the

groundwork for later development of greatly improved

HIV therapies.

Interferons (IFNs) are the frontline defenders of the

innate immune system, both interfering with infection

of host cells and reducing viral replication inside infected

cells. Recent models have explored the importance of

innate immune response feedback pathways in determin-

ing the outcome of disease in individuals [22�,23]. The

target-cell-limited modeling framework has been

extended to analyze the effect of interferon-a therapy

in treatment of Hepatitis C virus (HCV) infection [24]

and to evaluate the relative importance of the two modes

of IFN action (reducing production of virions by infected

cells and reducing de novo rates of cell infection) [24]. The

model allowed estimation of the otherwise unobservable

death rate of infected cells, and showed that its variation

correlated closely with the variability in patient outcomes,

with higher cell death rates during the first two weeks of

IFN therapy predicting eventual cure, with virus unde-

tectable by polymerase chain reaction after 3 months.
Current Opinion in Virology 2021, 50:103–109
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Results of this kind can help personalize the optimal

duration of therapies.

The failure of the simple target-cell-limited model to

explain observed primary HIV dynamics in an infected host

suggested a role for cytotoxic T lymphocytes (CTLs) and

cytokine suppression of viral replication in controlling the

viral load after the initial acute viral-load peak [25]. Models

including the adaptive immune response have provided

insights with significant therapeutic value. For example, a

model of effector-cell response and exhaustion explained

the ‘post-treatment control’ of HIV viral load observed in

some HIV patients [26], and suggested that boosting effec-

tor-cell response through therapeutic vaccination [27]

before termination of antiretroviral treatment might

increase the chances of post-treatment control of viral load.

A recent extension of the model [26] explored four different

mechanisms behind post-treatment control of Simian

immunodeficiency virus (SIV) in macaques and showed

that the primary mechanism differs between individuals, an

important step towards using modeling to personalize treat-

ment [28��]. The target-cell-limited modeling framework

was adapted to model viral-load dynamics under antiviral

treatment and to explore three different mechanisms of

action [29�] and to compare within-host SARS-CoV-2,

MERS-CoV, and SARS-CoV dynamics. The model pre-

dicted a shorter time from symptom onset to viral-load peak

for SARS-CoV-2 infection compared to MERS-CoV and

SARS-CoV, suggesting that controlling SARS-CoV-2 infec-

tion using antivirals would be more difficult.

The cost and toxicity of direct-acting antiviral (DAA)

therapy led to models optimizing the length of the

therapy. Dahari et al. [30] demonstrated that viral-kinetic

models applied to early viral-kinetic data under drug

treatment can predict the duration of DAA therapy

needed to achieve cure in patients infected with HCV

(a virus able to cause a persistent infection in humans),

and thus personalize the treatment. Interestingly, the

model predicted that the one patient who relapsed under

standard 12-week DDA therapy would have benefitted

from an additional week of sofosbuvir + ledipasvir. Goyal

et al. [31] extended these models [30,32] by assuming that

HCV RNA in serum includes both infectious and non-

infectious virus, explaining the ability of ultrashort DAA

therapy to cure some individuals. Baral et al. [33] explored

the hypothesis that the viral decline induced by DAAs

during chronic HCV treatment reversed the exhaustion of

CTLs, which then cleared the infection after treatment.

Estimating the parameters defining the CTL response for

individual patients allowed the model to predict the

necessary duration of DAA therapy for each patient

and thus personalize the treatment.

In age-structured models, the rate of production of viral

particles and the death rate of infected cells depend on

how long a cell has been infected [34]. All viruses share
Current Opinion in Virology 2021, 50:103–109 
steps in their replication: attachment to a target cell in a

host, release of viral genetic material into the host cell,

replication using host-cell machinery, assembly of new

viral particles and release of viral particles from the

infected cell. Mechanistic models can determine which

of these steps should be blocked for the fastest and most

effective treatments. For example, models can explore

how multiplicity of infection affects viral replication rate

[35]. Model simulations can also predict the effects of

drug-based perturbations when viral-replication pathways

contain both positive and negative feedback. Age-struc-

tured models with detailed submodels of the viral life

cycle allow systematic exploration of new drug targets

[32,18]. A multi-scale model of influenza A virus infection

[18] combined an intracellular model of the synthesis of

new viral particles with an extracellular model of virus

spread to new host cells to explore how drugs affecting

different stages of the viral life cycle might affect the

dynamics of viral titer. The model allowed ranking of the

effectiveness in decreasing viral titer of potential anti-

virals targeting different stages of the viral life-cycle,

including viral entry, nuclear trafficking, viral RNA and

protein synthesis and viral particle assembly and release.

Often simulations show that changes in particular model

parameters change model dynamics in ways that could

correlate with improved clinical outcomes. Drugs that

control these parameters become promising drug candi-

dates. In both in vivo and clinical trials, the savings in

time, labor and cost can be substantial. In Ref. [36�],
exhaustive combinatorial sensitivity analysis for all pair-

wise parameter changes in a model of the SARS-CoV-2

viral life cycle predicted that drugs targeting viral genome

replication (like remdesivir) and protein synthesis would

result in the most effective reduction of viral titer.

In cases where we have a highly effective antiviral, we

might expect that the optimal treatment strategy would

be to treat as soon as possible after infection or diagnosis.

Delaying antiviral therapy carries a risk of tissue damage

from the virus and immune response. However, early

antiviral treatment might prevent triggering of the adap-

tive immune response and hence the development of

long-term protective immunity. A model by Stromberg

et al. [37] explored this trade-off and suggested a limited

time window after infection during which antiviral ther-

apy could limit disease symptoms without inhibiting

development of long-term immunity, thus ensuring that

those infected receive the benefits of vaccination with

reduced risk from the disease.

While the within-host models described above model

mean levels of virus and immune components clinically

measurable in the blood, patterns of infection and

immune response are spatially localized within an

infected individual. In respiratory disease, lesions are

usually highly localized and develop in different places
www.sciencedirect.com
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at different times, even within a single individual [38]. In

the models discussed above (PBPK, ODE-population

models) in each compartment, each cell senses the same

level of, for example, cytokines. In cellular automaton

(CA) and agent-based models (ABM), cells are discrete

and occupy explicit volumes in space, and chemicals are

expressed as concentration fields. CA and ABMs can

explore the effects of spatial heterogeneity on the pro-

gression of infection, immune response and therapy

[17�,39], and improve estimates of parameters and their

typical ranges of variation for the non-spatial models we

described above.

Figure 1 shows a tissue-scale agent based multicellular

simulation of COVID infection and immune response

(‘tissue level’, bottom row). This simulation represents

the dynamic evolution of a small (typically 1 mm � 1 mm)

patch of host tissue, the extracellular viral and cytokine

concentrations, and various immune-cell types and their

functions [17�,39]. Individual host cells contain indepen-

dent models of viral entry, replication, and release. Mod-

els of this type can explore the effects of stochasticity at

the subcellular, cell and patch level in determining local

outcomes and the effects of viral spread, interferon,

antiviral and immune modulators. These models are

often coupled to pharmacodynamic (PD) and PBPK

models of therapeutics and to models of lymph-node

response to allow more detailed understanding of hetero-

geneity in patient response and treatment optimization

[17�,36�]. They can also be coupled to larger-scale spatial

models of transport within and between organs, as has

been done for bacterial infections like tuberculosis [40�],
or generated from calibrated non-spatial models, as has

been done for influenza infections [41,42].

Computational fluid dynamic (CFD) flow models consider

transport at the level of entire organs. Immune response is

orchestrated by chemokines and depends on leukocyte

migration in infected tissues and lymph nodes (LNs).

The models of Jafarnejad et al. [16,43] showed how lymph

flow (Figure 1, ‘whole organ level’), fluid exchange with

blood vessels, chemokine binding, and cell response deter-

mine immunosurveillance and response in LNs. Such

understanding may allow development of improved immu-

nomodulatory therapies and clarify the way in which innate

and adaptive immune responses coordinate after vaccina-

tion, allowing the design of improved adjuvants and vac-

cines. CFD models have also been valuable in determining

the distribution of aerosol-delivered drugs in the lungs

[44,45] and the localization of infectious virus after inhala-

tion and in estimating the infectivity of individuals with

lung infections during different activities [46].

Mathematical approaches can help us prioritize experi-

ments to improve understanding of immune response.

Classical numerical sensitivity analysis identifies condi-

tions where the model predicts that small changes of
www.sciencedirect.com 
parameters or different hypothesized model structures

will lead to different quantitative or qualitative outcomes.

When these parameters are ones which can be manipu-

lated in experiments, the model can be used to design

maximally discriminatory experiments to test hypotheses,

optimizing experimental time, cost and effort.

While the models mentioned above vary in scope and

methodology, they can all be useful in optimizing windows

for time, dosage, and personalization of treatment (see

recent work on patient heterogeneity in SARS-CoV-2

pathogenesis [47]). When modelers collaborate with

experimentalists to develop therapy-design models which

predict the effects of experimentally changeable biological

parameters, the models become a powerful tool to reduce

the cost, time and effort of antiviral drug discovery.

Conclusion
Mechanistic computational models can help us to understand

the heterogeneous outcomes of infection in different indi-

viduals, distinguish between mechanistic hypotheses,

extrapolate from in vitro and animal experiments to humans

and infer parameters that would be difficult to measure

directly in experiments, using synthetic data sets. Using

computational models, we can design Virtual Clinical Trials
[48] to test the efficacy of complex combination therapies,

where the number of possible combinations is challenging

to test in animal or human trials. The models can suggest

previously overlooked vulnerabilities of viruses (including

repurposing drugs developed in other contexts). Simula-

tions can help identify the most informative experiments to

test hypotheses and improve the design of clinical trials

[49]. Often, the process of building a self-contained, mean-

ingful model will reveal critical missing information,

whether in the form of pathways, relationships between

stimuli and outcomes, parameters, or inter-individual vari-

ability. Indeed, model building is brutally effective at

revealing what we don’t know.

Mechanistic computational models are not an alternative to

bioinformatics and Omics data-driven statistical models.

On the contrary, combining these approaches along with

the modeler’s intuition and knowledge will usually work

better than any approach alone. New data emerge almost

daily from modern Omics studies, and as the sample size

increases, information connecting an individual’s charac-

teristics (age, sex, pre-existing conditions, level of prior

immunity, etc.) with disease-course outcomes will pro-

vide correlative data that can help to develop mechanistic

models. Integrating machine learning with mechanistic

multiscale modeling could be especially beneficial [50].

A new generation of mathematical models may help us

solve some of the key puzzles in immune response, such

as the determinants of the duration and amplitude of T-

cell and B-cell memory, the onset and severity of septic

responses, and viral evolution and escape from immune
Current Opinion in Virology 2021, 50:103–109
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control. Models could help us understand how to handle

coinfections, where you might need separate therapies for

each virus and specific approaches to deal with viral-

immune-viral interactions, like giving an IFN booster

after IAV infection to reduce the pathogenic effects of

secondary respiratory viral infections.

While the promise of mechanistic computational models to

improve the development and use of antiviral therapies is

strong, their successful creation and implementation will

require more than the current over-the-fence approach

which separates modelers from therapy developers and

clinicians. Currently, we face a bootstrapping problem.

Contemporary models are not always sufficiently predic-

tive to be useful to therapy developers, so the motivation to

do experiments specifically to enable modeling is limited.

However, current experiments often measure end points

with limited time-series data, which limits our ability to

build and validate models. We can’t infer dynamics from

even a limitless number of single-time-point snapshots if

they are done in different individuals. Building useful

dynamic models requires expensive and demanding

experiments which measure key metrics (viral load, cyto-

kine levels, fraction of infected cells) frequently in indi-

vidual samples, animals or patients. Similarly, if modelers

design models without considering the needs and priorities

of therapy developers from the beginning, they are likely to

deliver models which solve the ‘wrong’ problems. To build

experimentally and clinically useful models, modelers

need experimentalists to be clear about what they can

practically measure and manipulate. Ultimately, effective

model building requires team effort at all stages from

exploratory research to therapeutic application.
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