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Abstract

Here we present our Python toolbox “MR. Estimator” to reliably estimate the intrinsic time-

scale from electrophysiologal recordings of heavily subsampled systems. Originally

intended for the analysis of time series from neuronal spiking activity, our toolbox is applica-

ble to a wide range of systems where subsampling—the difficulty to observe the whole sys-

tem in full detail—limits our capability to record. Applications range from epidemic spreading

to any system that can be represented by an autoregressive process. In the context of neu-

roscience, the intrinsic timescale can be thought of as the duration over which any perturba-

tion reverberates within the network; it has been used as a key observable to investigate a

functional hierarchy across the primate cortex and serves as a measure of working memory.

It is also a proxy for the distance to criticality and quantifies a system’s dynamic working

point.

1 Introduction

Recent discoveries in the field of computational neuroscience suggest a major role of the so-

called intrinsic timescale for functional brain dynamics [1–8]. Intuitively, the intrinsic time-

scale characterizes the decay time of an exponentially decaying autocorrelation function (in

this work and in many contexts it is synonymous to the autocorrelation time). Exponentially

decaying correlations are commonly found in recurrent networks (see e.g. Refs. [5, 9]), where

the intrinsic timescale can be related to information storage and transfer [10–12]. More impor-

tantly, such decaying autocorrelations are also found in the network-spiking-dynamics

recorded in the brain: Here, the intrinsic timescale serves as a measure to quantify working

memory [3, 4] and unravels a temporal hierarchy of processing in primates [1, 2].

Although autocorrelations and the intrinsic timescale can be derived from single neuron

activity, they characterize the dynamics within the whole recurrent network. The single neuron

basically serves as a readout for the local network activity. One can consider spiking activity in

a recurrent network as a branching or spreading process, where each presynaptic spike triggers

on average a certain numberm of postsynaptic spikes [13–15]. Such a spreading process
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typically features an exponentially decaying autocorrelation function, and the associated time

constant is in principle accessible from the activity of each unit. However, approaching the sin-

gle-unit level, the magnitude of the autocorrelation function can be much smaller than

expected, and can be disguised by noise.

In experiments we approach this level: we typically sample only a small part of the system,

sometimes only a single or a dozen of units. This subsampling problem is especially problem-

atic in neuroscience, where even the most advanced electrode measurements can record at

most a few thousand out of the billions of neurons in the brain [16, 17]. However, we recently

showed that this spatial subsampling only biases the magnitude of the autocorrelation function

(of autoregressive processes) and that—despite the bias—the associated intrinsic timescale can

still be inferred by using multi-step regression (MR). Because the intrinsic timescale inferred

by MR is invariant to spatial subsampling, one can infer it even when recording only a small

set of units [5].

Here, we present our Python toolbox “MR. Estimator” that implements MR to estimate the

intrinsic timescale of spiking activity, even for heavily subsampled systems. Since our method

is based on spreading processes in complex systems, it is applicable beyond neuroscience, e.g.

in epidemiology or social sciences such as the timescale of epidemic spreading (from subsam-

pled infection counts) [5] or the timescale of opinion spreading (from subsampled social net-

works) [18].

The main advantage of using our toolbox over a custom implementation to determine

intrinsic timescales is that it provides a consistent way that can now be adopted across studies.

It supports trial structures and we demonstrate how multiple trials can be combined to com-

pensate for short individual trials. Lastly, the toolbox calculates confidence intervals by default,

when a trial structure is provided.

In the following, we discuss how to apply the toolbox using a code example (Sec. 2). We

then briefly focus on the neuroscience context (including a real-life example, Sec. 3) before we

derive the MR estimator and discuss technical details such as the impact of short trials (Sec. 4).

While of general interest, this section is not required for a general understanding of the tool-

box. In the discussion (Sec. 5), we present selected examples where intrinsic timescales play an

important role. Lastly, an overview of parameters and toolbox functions is given in Tables 1

and 2 at the end of the document.

2 Workflow

To illustrate a typical workflow, we now discuss an example script that generates an overview

panel of results, as depicted in Fig 1. The discussed script and other examples are provided

online [19].

In the example, we generate a time series from a branching process with a known intrinsic

timescale (Fig 1A). At the discrete time steps Δt of such a branching process, every active unit

activates a random number of units (on averagem units) for the next time step. As this princi-

ple holds for any unit, activity can spread like a cascade or avalanche over the system. Taking

the perspective of the entire system, the current activity At (or number of active units) depends

on the previous activity and the branching parameterm. Then, the branching parameter is

directly linked to the intrinsic timescale τ = −Δt/ln(m): Asm becomes closer one, τ grows to

infinity (for the mathematical background, see Sec. 4). Because τ corresponds to the decay

time of the autocorrelation function (Fig 1C), a larger τ will cause a slower decay.

With this motivation in mind, it is the main task of the toolbox to determine the correlation
coefficients rk—that describe the autocorrelation function of the data—and to fit an analytic

autocorrelation function to the determined rk—which then yields the intrinsic time scale. In
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the example, we determined rk with the toolbox’s default settings (Fig 1C) and we fitted two

alternative exponentially decaying functions to determine the intrinsic timescale (a plain expo-

nential and an exponential that is shifted by an offset). The toolbox returns estimates and 75%

confidence intervals for the branching parameter and the intrinsic timescale (Fig 1D); the esti-

mates match the known valuesm = 0.98 and τ� 49.5 that were used in the example. To dem-

onstrate the effect of subsampling in the example, we recorded only 5% of the occurring events

of the branching process.

Listing 1. Example script (Python) that creates artificial data from a branching process and

performs the multistep regression. An example to import experimental data is available online,

along with detailed documentation explaining all function arguments [19].

Table 1. List of the most common parameters and functions where they are used. For a full list of each function’s possible arguments, please refer to the online docu-

mentation [43].

Symbol Parameter description Function Example argument

k Discrete time steps of correlation coefficients (shift between original

and delayed time series)

full_analysis() kmax = 1000

coefficients() steps=(1, 1000)

fit() steps=(1, 1000)

Unit of discrete time steps full_analysis() dtunit=‘ms’

coefficients() dtunit=‘ms’

fit() dtunit=‘ms’

Δt Size of the discrete time steps in dtunits full_analysis() dt = 4

coefficients() dt = 4

fit() dt = 4

rk Correlation coefficients fit() data

Method for calculating rk full_analysis() coefficientmethod=‘sm’

coefficients() method=‘ts’

Selecting Fitfunctions: full_analysis() fitfuncs=[‘exp’, ‘offset’,
‘complex’]

fit() fitfunc=‘exp’

α Subsampling fraction simulate_subsampling
()

prob

simulate_branching() subp

hAti Activity (e.g. of a branching process) simulate_branching() a = 1000

m Branching parameter simulate_branching() m = 0.98

h External input simulate_branching() h = 100

Bootstrapping: number of samples, rng seed full_analysis() numboot = 100, seed = 101

coefficients() numboot = 100, seed = 102

fit() numboot = 100, seed = 103

https://doi.org/10.1371/journal.pone.0249447.t001

Table 2. The (lengthy) descriptions of fit-functions and coefficient-methods can be abbreviated.

Full name Abbreviation

‘trialseparated’ ‘ts’

‘stationarymean’ ‘sm’

‘exponential’ ‘e’, ‘exp’

‘exponential_offset’ ‘eo’, ‘exp_offset’, ‘exp_off’

‘complex’ ‘c’, ‘cplx’

https://doi.org/10.1371/journal.pone.0249447.t002
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Fig 1. The toolbox provides a full_analysis() function that performs all required steps and produces an

overview panel. A: Time series of the input data, here the activity At of ten trials of a branching process withm = 0.98

and τ = Δt/ln(m)� 49.5 steps (Δt is the step size of the branching process). B: Mean activity and standard deviation of

activity for each trial. This display can reveal systematic drifts or changes across trials. C: Correlation coefficients rk are

determined from the input data, and exponentially decaying autocorrelation functions are fitted to the rk. Several

alternative fit functions can be chosen. D: The decay time of the autocorrelation function corresponds to the intrinsic

timescale τ, and allows to infer the corresponding branching parameterm. The shown fit results contain confidence

intervals in square brackets (75% by default).

https://doi.org/10.1371/journal.pone.0249447.g001
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# load the toolbox

import mrestimator as mre

# enable matplotlib interactive mode so

# figures are shown automatically

mre.plt.ion ()

# 1. -----------------------------------#

# example data from branching process

bp = mre. simulate_branching (m = 0.98, a = 1000,
subp = 0.05, length = 20000, numtrials = 10, seed = 43771)

# make sure the data has the right format

src = mre.input_handler (bp)

# 2. -----------------------------------#

# calculate autocorrelation coefficients,

# embed information about the time steps

rks = mre.coefficients (src, steps = (1, 500), dt = 1, dtu-
nit = ‘bp steps’, method = ‘trialseparated’)

# 3. -----------------------------------#

# fit an autocorrelation function, here

# exponential (without and with offset)

fit1 = mre.fit(rks, fitfunc = ‘exp’)

fit2 = mre.fit(rks, fitfunc = ‘exp_offset’)

# 4. -----------------------------------#

# create an output handler instance

out = mre.OutputHandler ([rks, fit1, fit2])

# save to disk

out.save (‘*/mre_example/result’)

# 5. -----------------------------------#

# gives same output with other file title

out2 = mre.full_analysis (data = bp, dt = 1, kmax = 500,
dtunit = ‘bp steps’, coefficientmethod = ‘trialseparated’,
fitfuncs = [‘exp’, ‘exp_offset’], targetdir = ‘*/mre_exam-
ple/’)
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1. Prepare data: After the toolbox is loaded, the input data needs to be in the right format: a

2D NumPy array [20–22]. To support a trial structure, the first index of the array corresponds

to the trial (even when there is only one trial), the second index corresponds to the time (in

fixed time steps). All trials need to have the same length.

We provide an optional input_handler() that tries to guess the passed format and

convert it automatically. For instance, it can check and convert data that is already loaded (as

shown in Listing 1) or load files from disk, when a file path is provided.

2. Multiple regressions: Once the data is in the right format, multiple linear regressions are

initiated by calling coefficients() (see Sec. 4.3 for more details). The function performs

linear regressions between the original time series (src), and the same time series after it was

shifted by k time steps. It returns the slopes found by the regression—we call them correlation

coefficients rk (rks). Here, we specify to calculate the correlation coefficients for steps 1�

k� 500. In Listing 1, the linear regression is performed for each trial separately. To obtain a

joint estimate across all trials, the estimated rk are averaged (trialseparated method).

Confidence intervals are calculated using bootstrapping.

Please note that (independent from subsampling) the linear regression can be biased due to

short trials [23, 24]. In case of stationary activity across trials, the issue can be circumvented by

using the stationarymean method (see Sec. 4.3 and Fig 5).

3. Fit the autocorrelation function: Next, we fit the correlation coefficients using a desired

function (fitfunc). In order to estimate the intrinsic timescale, this function needs to decay

exponentially. Motivated by recent experimental studies [1], the default function is expo-
nential_offset (other options include an exponential and a complex fit with

empirical corrections).

4. Visualize and store results: Multiple correlation coefficients and fits can be exported

using an instance of OutputHandler. The save() function not only exports a plot but

also a text file containing the full information that is required to reproduce it.

5. Wrapping up: For convenience, the full_analysis() function performs all steps

with default parameters and displays an overview panel as shown in Fig 1.

3 Interpretation in a neuroscience context

Timescales of neural dynamics have been analyzed in various contexts and can be interpreted

as reward memory [25] or as temporal receptive windows [26]. Here, however, we focus on

the timescale of the decay of the autocorrelation function [1], which is thought to be related to

the duration of integration in local circuits [2] or to working memory [3, 4]. As such, the

intrinsic timescale represents a measure of how long information is kept (or can be integrated)

in a local circuit; it ranges between 50 to 500 ms and this diversity of timescales is believed to

arise from differences in local connectivity [27, 28].

In the brain, the autocorrelation function is not only determined by the intrinsic timescale.

If the spiking activity is dominated by a single timescale τ, the autocorrelation is expected to

decay exponentially (see Sec. 4): C kð Þ / exp � k
t

� �
. However, often the autocorrelation is more

complex, which we take into account and provide a complex fit function, based on an empir-

ical analysis of autocorrelation functions by König [29]:

CðkÞ ¼ De�
k

texp þ Ee�
k

toscð Þ
g

cos ð2pnkÞ þ Fe
� k

tgauss

� �2

þ O :
ð1Þ

In addition to the exponential decay, the complex fit function features three terms that

account for:

PLOS ONE MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0249447 April 29, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0249447


• Neural oscillations, reflected as an exponentially decaying cosine term: Ee�
k

toscð Þ
g

cos ð2pnkÞ.

• Short term dynamics of a neuron with a refractory period, reflected as a Gaussian decay:

Fe
� k

tgauss

� �2

.

• An offset O which arises due to the small non-stationarities of the recordings on timescales

longer than a few seconds.

To illustrate the usefulness of the complex fit function, we analyze an openly available

dataset of spiking activity in rat hippocampus [30]. We find an intrinsic timescale of around

1.5 seconds (which is similar to the timescales found in rat cortex [31]). One challenging char-

acteristic of this dataset are theta oscillations (5–10 Hz) in the population activity, which carry

over to the autocorrelation function. Because the complex fit function features an oscillatory

term, it can capture these oscillations, and still yield a solid estimate of the autocorrelation

time. (Fits from functions without the oscillatory term will deviate from the data and lead to

biased estimates.) Additionally, by including this term into the fit, we also obtain an estimate

of the oscillation frequency: In the shown example (Fig 2), we find ν = 6.1 Hz, which is well in

the range of theta oscillations. This shows that our toolbox can deal with complex neuronal

dynamics of single-cell activity.

4 Technical details

4.1 Derivation of the multi-step regression estimator for autoregressive

processes

The statistical properties of activity propagation in networks can be approximated by a sto-

chastic process with an autoregressive representation [15, 18, 32], at least to leading order [14].

We will use this framework of autoregressive processes to derive the multi-step regression esti-

mator and show that it is invariant under subsampling [5].

Here, we consider the class of stochastic processes with an autoregressive representation of

first order. This process combines a stochastic, internal generation of activity with a stochastic,

external input. The internal generation on average yieldsm new events per event, wherem is

Fig 2. Example analysis of spiking activity from rat hippocampus during an open field task that demonstrates the

usage of the complex fit function. A short example code that analyzes the data [30] and produces this figure is listed

in appendix A.

https://doi.org/10.1371/journal.pone.0249447.g002
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called the branching parameter (using the terminology of the driven branching process) [33–

35]. The external input is assumed to be an uncorrelated Poisson process with rate h (a gener-

alization to non-stationary input can be found in Ref. [36]). For discrete time steps Δt, we

denote the number of active units at time t with At and obtain the autoregressive representa-

tion

hAtþ1jAti ¼ mAt þ hDt ; ð2Þ

where h�i denotes the expectation value. This autoregressive representation is the basis of our

subsampling invariant method and makes it applicable to the full class of first-order autore-

gressive processes. From Eq (2), we can also see that one could determinem from a time series

of a system’s activity by using linear regression. The linear regression estimate ofm is

mlr ¼
Cov½Atþ1;At�

Var½At�
¼

PT� 1

t¼1
ðAtþ1 � hAtþ1iÞðAt � hAtiÞ
PT� 1

t¼1
ðAt � hAtiÞ

2
: ð3Þ

This well established approach [5, 33, 37, 38] only considers the pairs of activity that are

separated by one time step—it measures the slope of the line that best describes the point

cloud (At+1, At). Instead, themulti-step regression (MR) estimator considers all the pairs of

activity separated by increasing time differences k—it estimates multiple regression slopes.

Analogous to the case of k = 1 in Eq (3), we define the correlation coefficients rk as the slope

of the line that best describes the point cloud (At+k, At)

rk
Cov½Atþk;At�

Var½At�
¼
hðAtþk � hAtþkiÞðAt � hAtiÞi

hA2
t i � hAti

2
: ð4Þ

For an autoregressive process that is fully sampled, these correlation coefficients become rk =

mk. To show this, we first generalize Eq (2) using the geometric series (cf. Ref. [5, 36])

hAtþkjAti ¼ mkAt þ hDt
1 � mk

1 � m
: ð5Þ

We then use the law of total expectation to obtain hAt+k Ati = hhAt+k|AtiAti and hAt+ki = hhAt
+k|Atii. This allows us to rewrite the covariance:

Cov½Atþk;At� ¼ hAtþk Ati � hAtþkihAti ð6Þ

¼ hhAtþkjAtiAti � hhAtþkjAtiihAti ð7Þ

¼ mkhA2
t i þ hDt

1 � mk

1 � m
hAti � m

khAti
2
� hDt

1 � mk

1 � m
hAti ð8Þ

¼ mkðhA2
t i � hAti

2
Þ ¼ mk Var½At� : ð9Þ

When we insert this result into Eq (4), we find that the correlation coefficients are related to

the branching parameter as rk =mk, which enables the toolbox to detect the branching parame-

ter from recordings of processes that are subcritical (m< 1), critical (m = 1) or supercritical

(m> 1).

In the special case of stationary activity, where hAti = hAt+ki, the correlation coefficients can

be further related to an autocorrelation time. In this case, the correlation coefficients, Eq (4),
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match the correlation function

rk ¼
hAtþk Ati � hAti

2

hA2
t i � hAti

2
¼ CðAtþk;AtÞ : ð10Þ

Note that we here consider the definition of the autocorrelation function normalized to the

time-independent variance (other definitions are also common, e.g. a time-dependent Pearson

correlation coefficient Cov [At+k, At] / Std [At] Std [At+k]). For stationary autoregressive pro-

cesses, the correlation function decays exponentially and we can introduce an autocorrelation

time τ

CðAtþk;AtÞ ¼ eð� k Dt=tÞ ð11Þ

¼ eðk lnmÞ ¼ mk: ð12Þ

We can thus identify a relation between the branching parameterm and the intrinsic timescale

τ (or, more precisely, the autocorrelation time) via the time discretization Δt:

t ¼ � Dt= ln ðmÞ : ð13Þ

It is important to note that τ is an actual physical observable, whereasm offers an interpre-

tation of how the intrinsic timescales are generated—it sets the causal relation between two

consecutive generations of activity. Whereasm depends on how we chose the bin size of each

time step Δt, the intrinsic timescale τ is independent of bin size.

4.2 Subsampling invariant estimation of the intrinsic timescale by multi-

step regression

Subsampling describes the typical experimental constraint that often one can only observe a

small fraction of the full system [5, 39, 40]. Given the full activity At, we denote the activity that

is recorded under subsampling with at. We describe the amount of subsampling (the fraction

of the system that is observed) through the sampling probability α, where α = 1 recovers the

case of the fully sampled system.

It can be shown that subsampling causes a bias b that only affects the amplitude of the

autocorrelation function—but not the intrinsic timescale that characterizes the decay [5].

This is illustrated in Fig 3. By fitting the exponential and the amplitude, the subsampling

problem boils down to an additional free parameter in the least-square fit of the correlation

coefficients:

rk ¼ b mk ¼ b e� kDt=t with b ¼ a2
Var½At�
Var½at�

; ð14Þ

where at is the (recorded) activity under subsampling and At is the (unknown) activity that

would hypothetically be observed under full sampling. As we see above (Eq (14), Fig 3) the

intrinsic timescale τ is independent of the sampling fraction α. In general, when measuring

autocorrelations, Eq (10), by definition r0 = 1. Under subsampling however, the amplitude

for rk � 1 decreases as fewer and fewer units of the system are observed. This can cause a

severe underestimation in the single regression approach, Eq (3).

In order to formalize the estimation of correlation coefficients rk forsubsampled activity, let

us denote the set of all activity observations with x = {at} and the observations k time steps

later with y = {at+k}. If T is the total length of the recording, then we have T − k discretized
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time steps to work with. Then

rk ¼
Cov½x; y�
Var½x�

¼

PT� k
t¼1
ðxt � hxiÞðyt � hyiÞ
PT� k

t¼1
ðxt � hxiÞ

2
; ð15Þ

where we approximate the expectation values hxi and hyi using

�x ¼
1

T � k

XT� k

t¼1
at and �y ¼

1

T � k

XT� k

t¼1
atþk :

In other words, �x is the mean of the observed time series and �y is the mean of the shifted time

series.

4.3Different methods to estimate correlation coefficients

The drawback of the naive implementation, Eq (11), is that it is biased if T is rather short—

which is often the case if the recording time was limited (for a recent discussion of this topic

see also Ref. [24]). In the case of short recordings, �x and �y are biased estimators of the expecta-

tion values hati and hat+ki. However, we can compensate the bias by combining multiple short

recordings, if available.

In practice, multiple recordings are often available: If individual recordings are repeated

several times under the same conditions, we refer to these repetitions as trials. One typically

assumes that across these trials, the expected value of activity is stationary. However, this is not

necessarily the case because trial-to-trial variability might be systematic. Since this assumption

has to be justified case-by-case, the toolbox offers two methods to calculate the correlation

coefficients: the trialseparated and stationarymean method.

4.3.1 Trialseparated. The trialseparated method makes less assumptions about

the data than the stationarymean method. Each trial provides a separate estimate of the

Fig 3. The amplitude of correlation coefficients decreases under subsampling, whereas the intrinsic timescale τ
and the branching parameter m (characterized by the slope of the rk on a logarithmic scale) are invariant.

Coefficients were determined by the toolbox for a fully sampled and binomially subsampled branching processes [19].

https://doi.org/10.1371/journal.pone.0249447.g003
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correlation coefficients ri,k. Let us again denote the observations before (after) the time lag

with xi (yi), where index i denotes the i-th out of N total trials. All trials share the same number

of time steps T. We can apply Eq (15) to each trial separately and thereafter average over the

per-trial result:

rk ¼
1

N

XN

i¼1

PT� k
t¼1
ðxi;t � �xi;kÞðyi;t � �yi;kÞ
PT� k

t¼1
ðxi;t � �xi;kÞ

2

" #

¼
1

N

XN

i¼1

ri;k ð16Þ

with

�xi;k ¼
1

T � k

XT� k

t¼1

ai;t and �yi;k ¼
1

T � k

XT� k

t¼1

ai;tþk :

As the expected activity hati is estimated within each trial separately, this method is robust

against a change in the activity from trial to trial. On the other hand, the trialseparated
method suffers from short trial lengths when �xi;k and �yi;k become biased estimates for the

activity.

4.3.2 Stationarymean. The stationarymean method assumes the activity to be sta-

tionary across trials: Now, the expected activity hati is estimated by �x �;k and �y �;k that use the full

pool of recordings (containing all trials):

rk ¼

PN
i¼1

1

T � k

XT� k

t¼1
xi;t � �x �;k
� �

yi;t � �y �;k
� �

� �

PN
i¼1

1

T

XT

t¼1
ðxi;t � �x �;kÞ

2

ð17Þ

with

�x �;k ¼
1

NðT � kÞ

XN

i¼1

XT� k

t¼1

ai;t and �y �;k ¼
1

NðT � kÞ

XN

i¼1

XT� k

t¼1

ai;tþk :

The two methods are illustrated in Fig 4 and the impact of the trial length on the estimated

autocorrelation time is shown in Fig 5. For short trials (red shaded area), the stationary-
mean provides precise estimates—already for time series that are only on the order of ten

Fig 4. Illustration of the two methods for determining the correlation coefficients rk from spiking activity At.

Both methods assume a trial structure of the data (discontinuous time series)Top: The trialseparated
method calculates one set of correlation coefficients ri,k for every trial i (via linear regression).Bottom: The

stationarymean method combines the information of all trials to perform the linear regression on a single, but

larger pool of data. This gives an estimate of rk that is bias corrected for short trial lengths.

https://doi.org/10.1371/journal.pone.0249447.g004
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times as long as the autocorrelation time itself. The trialseparated method, on the other

hand, is biased for short trials but it makes less strict assumptions on the data. Thus, the

trialseparated method should be used if one is confident that trial durations are long

enough.

As a rule of thumb, if an a priori estimate of τ exists, we advise to use trials that are at least

10 times longer than that estimate. The longer, the better. As an example, to reliably detect t̂ �

200ms (for instance in prefrontal cortex), a time series of 2 s could suffice (when using the

stationarymean method). Furthermore, as a consistency check, we recommend to com-

pare estimates that derive from both methods.

4.4 Toolbox interface to estimate correlation coefficients

The correlation coefficients are calculated by calling the coefficients() function, with

the method keyword.

Fig 5. Independent of subsampling, correlation coefficients can be biased if trials are short. As a function of trial

length, the autocorrelation time that was estimated by the toolbox (t̂) is compared with the known value of a

stationary, fully sampled branching process (τ). Each measurement featured 50 trials and was performed once with

each method, trialseparated (solid lines) and stationarymean (dashed lines). For short time series (red

shaded area), it is known analytically that the correlation coefficients are biased [23]. The bias propagates to the

intrinsic timescale (black dotted line) and it is consistent with the timescale obtained from the trialseparated
method. The stationarymean method can compensate the bias, if enough trials are available across which the

activity is indeed stationary. However, the improvement to the estimates scales directly with the number of trials—the

effective statistical information is increased with each trial. Error bars (for clarity only depicted for τ = 103): standard

deviation across 100 simulations. For more details, see appendix B.

https://doi.org/10.1371/journal.pone.0249447.g005

# typical keyword arguments, steps from 1 to 500

rks = mre.coefficients(src, method = ‘stationarymean’,
steps = (1, 500))

# create custom steps as a numpy array,

# here from 1 to 750 with increment 2

my steps = np.arange(1, 750, 2)
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From the code example above, it is clear that one has to choose for which k-values the coef-

ficients are calculated. This choice needs to reflect the data: the chosen steps determine the

range that can be fitted. If not enough steps are included, the tail of the exponential is over-

looked, whereas if too many steps are included, fluctuations may cause overfitting. A future

version of the toolbox will give a recommendation, for now it is implemented as a console

warning.

The k-values can be specified with the steps argument, by either specifying an upper and

lower threshold or by explicitly passing an array of desired values. In order to give the rk physi-

cal meaning, the function also takes the time bin size Δt (corresponding to the step size k) and

the time unit as arguments: dt and dtunit, respectively. Those properties become part of

the returned data structure CoefficientResult, so that the subsequent fit- and plot-rou-

tines can use them.

4.5 Toolbox data structure

Recordings are often repeated with similar conditions to create a set of trials. We took this into

account and built the toolbox on the assumption that we always have a trial structure, even if

there is only a single recording.

The trial structure is incorporated in a two dimensional NumPy array [20–22], where the

first index (i) labels the trial. The second index (t) specifies the time step of the trials activity

recording Ai,t, where time is discretized and each time step has size Δt. All trials must have the

same length and the same Δt (or in other words, should be recorded with the same sampling

rate).

Because all further processing steps rely on this particular format, we provide the

input_handler() that attempts convert data structures into the right one. The

input_handler() works with nested lists, NumPy arrays or strings containing file paths.

Wildcards in the file path will be expanded and all matching files are imported. If a file has

multiple columns, each column is taken to be a trial. To select which of the columns to import,

specify for example usecols=(0,1,2) which would import the first three columns.

4.6 Error estimation

The toolbox provides confidence intervals based on bootstrap resampling [41]. Resampling

usually requires the original data to be cut into chunks (bins) that are recombined (drawing

with replacement) to create new realizations, the so called bootstrap samples. Because the

toolbox works on the trial structure, the input data usually does not need to be modified: each

trial becomes a bin that can then be drawn with replacement to contribute to the bootstrap

sample. While this is a good choice if sufficient (*100) trials are provided, using trials directly

for resampling means that no error estimates are possible with a single trial. If no trial structure

is available, such as for resting-state data, an easy workaround is to manually cut long time

# specify the created steps,

# step size dt and unit of the time-step

rks = mre.coefficients(src, method = ‘stationarymean’,
steps = my steps, dt = 1, dtunit = ‘bp steps’)
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series into shorter chunks to artificially create the trial structure [19]. The error estimation via

bootstrapping is implemented in the coefficients(), fit() and full_analysis()
functions. All three take the numboot argument to specify how many bootstrap samples are

created.

4.7 Getting help

Please visit the project on GitHub [42] and see our growing online documentation [43]. You

can also call help() on every part of the toolbox:

5 Discussion

Our toolbox reliably estimates the intrinsic timescale from vastly different time series, from

electrophysiologal recordings to case numbers of epidemic spreading to any system that can be

represented by an autoregressive process. Most importantly, it relies on the multi-step regres-

sion estimator so that unbiased timescales are found even for heavily subsampled systems [5].

In this work, we also took a careful look at how a limited duration of the recordings—a

common problem in all data-driven approaches—can bias our estimator [23, 24]. With exten-

sive numeric simulations we showed that the estimator is robust if conservatively formulated

guidelines are followed. We can also bolster our previous claim [5] that the estimator is very

data efficient. Moreover, short time series (trials) can be compensated by increasing the num-

ber of trials.

The toolbox thereby enables a systematic study of intrinsic timescales, which are important

for a variety of questions in neuroscience [44]. Using the branching process as a simple model

of neuronal activity, it is intuitive to think of the intrinsic timescale as the duration over which

any perturbation reverberates (or persists) within the network [13, 45]. According to this intui-

tion, different timescales should benefit different functional aspects of cortical networks [12,

46, 47].

Experimental evidence indeed shows different timescales for different cortical networks [5,

48]. It even suggests a temporal hierarchy of brain areas [1, 2, 49]; areas responsible for sensory

integration feature short timescales, while areas responsible for higher-level cognitive pro-

cesses feature longer timescales. For cognitive processes (for example during task-solving), the

# as an example, create variables.

bp = mre.simulate branching(m = 0.98, a = 10)

# try pressing tab e.g. after typing mre.c

rks = mre.coefficients(bp)

# help() prints the documentation,

# and works for variables and functions alike

help(rks)

help(mre.full analysis)
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intrinsic timescale was further linked to working memory. In particular, working memory

might be implemented through neurons with long timescales [3, 4, 50].

In general, recordings could exhibit multiple timescales simultaneously [51–53]. This can

be readily realized with the toolbox by using a custom fit function (e.g. a sum of exponential

functions, see Sec. 3). However, it is important to be aware of the possible pitfalls of fitting

elaborate functions to empirical data [53, 54]. In our experience, most recordings exhibit a sin-

gle dominant timescale.

Lastly, it was theorized that biological recurrent networks can adapt their timescale in order

to optimize their processing for a particular task [46, 55, 56]. For artificial recurrent networks,

such a tuning capability was already shown to be attainable by operating around the critical

point (of a dynamic second order phase transition) [15, 32, 47, 57]. For instance, reducing the

distance to criticality increases the information storage in these networks [10, 12]. At the same

time, the observed intrinsic timescale increases. It is plausible that the mechanisms of near-

critical, artificial systems also apply to cortical networks [58–60]. This and other hypothesis

can now be reliably tested with our toolbox and properly designed experiments [8]. For appli-

cations of our approach and the MR. Estimator toolbox see e.g. Refs. [48, 61, 62] and Ref. [7,

36, 63], respectively.

6 Appendix

6.1 A Real-world Example

Listing 2. Minimal script that shows how to prepare real-world data [30, 64], and produces Fig

2 from the main text. Characteristic for this dataset are theta oscillations (5–10 Hz) that carry

over to the autocorrelation function. We first create a time series of activity by time-binning

the spike times. Then, we create an artificial trial structure to demonstrate error estimation

and apply the built-in fit functions. Last, we print the frequency ν = 6.13 Hz of the theta oscilla-

tions as an example to show how to access the different parameters of the complex fit. The

full script is available on GitHub [19], and for further details, also see the online documenta-

tion [43].

# helper function to convert a list of time stamps

# into a (binned) time series of activity

def bin_spike_times_unitless (spike_times, bin_size):
last_spike = spike_times [−1]

num_bins = int (np. ceil (last_spike / bin_size))

res = np. zeros (num_bins)

for spike_time in spike_times:

target_bin = int (np. floor (spike_time / bin_size))

res [target_bin] = res [target_bin] + 1

return res

# load the spiketimes

res = np. loadtxt (‘./crcns/hc2/ec013.527/ec013.527.res.1’)
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# the .res.x files contain the time-stamps of spikes
detected

# by electrode x sampled at 20 kHz, i.e. 0.05 ms per time
steps.

# we want ‘spiking activity’: spikes added up during a given

# time. usually, *4ms time bins (windows) is a good first
guess

act = bin_spike_times_unitless (res, bin_size = 80)

# to get error estimates, we create 25 artifical trials by

# splitting the data. not recommended for non-stationary
data

triallen = int (np.floor (len (act)/25))

trials = np.zeros (shape = (25, triallen))

for i in range (0, 25):

trials [i] = act [i � triallen: (i + 1) � triallen]

# now we could run the analysis and will get error estimates

# out = mre.full_analysis (trials, dt = 4, dtunit = ‘ms’,
kmax = 800,

# method = ‘trialseparated’)

# however, in this dataset we will find theta oscillations.

# let’s try the other fit functions, too.

out = mre.full_analysis (trials, dt = 4, dtunit = ‘ms’,
kmax = 800, method = ‘trialseparated’, fitfuncs = [‘exponen-
tial’, ‘exponential_offset’, ‘complex’], targetdir = ‘./’,
saveoverview = True)

# by assigning the result of mre.full_analysis (. . .) to a

# variable, we can use fit results for further processing:

# the oscillation frequency nu is fitted by the complex fit

# function as the 7th parameter (see online documentation).

# it is in units of 1/ dtunit and we used ‘ms’.

print (f “theta frequency: {out.fits [2]. popt [6] � 1000}
[Hz]”)
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The spiking data from rats were recorded by Mizuseki et al. [30] with experimental proto-

cols approved by the Institutional Animal Care and Use Committee of Rutgers University. The

data were obtained from theNSF-founded CRCNS data sharing website [64].

6.2 B short trials cause bias

The data shown in Fig 5 was created with the simulation_branching() function

included in the toolbox. Every measurement was repeated 100 times, featured 50 trials, target

activity 1000 and no subsampling (the bias investigated here is independent from subsam-

pling). The colored lines correspond to the median across 100 independent simulations. Error

estimates were calculated but not plotted for clarity—in the red shaded area of Fig 5, the very

short trials lead to low statistics (and large error bars). Error bars represent the standard devia-

tion across the 100 simulations. The included steps k covered [1 : 20τ], if available, which cor-

responds to the fit range of the exponential with offset.

To further illustrate the bias we observed in Fig 5, we plot the correlation coefficients rk that

were found by the toolbox with the two different methods in Fig 6. When trials are short, the

coefficients found by the trialseparated method are offset and skewed. The statio-
narymean method finds the correct coefficients because the estimation could profit from the

trial structure. Since neither the true timescale nor the stationarity assumption are known in

experiments, we suggest to compare results from both methods: if they agree, this is a good

indication that the trials are long enough.

The black dashed line in Fig 5 is derived from the analytic solution Eq. 4.07 in Ref. [23] that

gives the expectation value of the biased correlation coefficient in dependence of the trial

length T. For simplicity, we focus on the leading-order estimated branching paramter m̂ via

the one-step autocorrelation function. Starting from Eq. 4.07 in Ref. [23],

m̂ � CðAtþ1;AtÞ ¼ r1

� m1 �
1

T
ð1þmÞð1Þ þ 2m1½ � þ O

1

T2

� �

ð18Þ

� m 1 �
1

T
3þ

1

m

� �� �

ð19Þ

Fig 6. Correlation coefficients rk for τ = 102 (orange in Fig 5). Individual background lines stem from the 100 independent

repetitions.Left: Coefficients are shifted and skewed for short trial length T/τ when using the trialseparated method. The solid

foreground lines are obtained from Eq. 4.07 of [23]. Right: With 50 trials and the stationarymean method, even very short (green)

time series yield unbiased coefficients and, ultimately, precise estimates of the intrinsic timescale.

https://doi.org/10.1371/journal.pone.0249447.g006
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cf. Eqs (4) and (11). Inserted into Eq (13) t̂ ¼ � Dt= ln ðm̂Þ and withm = exp(−Δt/τ), we find

t̂ �
� Dt

ln ðmÞ þ ln 1 � 1

T 3þ 1

m

� �� � ð20Þ

�
� Dt

ln ðmÞ � 1

T 3þ 1

m

� � ð21Þ

¼
� Dt

� Dt
t
� 1

T
3þ eDt=t
� � ð22Þ

¼
t

1þ t

TDt 3þ eDt=t½ �
: ð23Þ

For sufficiently large τ> Δt, we obtain to leading order

t̂

t
�

1

1þ t

T
4

Dt

: ð24Þ

For Fig 5—where Δt = 1, x = T/τ and y ¼ t̂

t
—this means that

y ¼ 1=ð1þ 4=xÞ : ð25Þ
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