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Abstract

Background:Posttraumatic stress disorder (PTSD) is associatedwithmarkers of accel-

erated aging. Estimates of brain age, compared to chronological age, may clarify the

effects of PTSD on the brain and may inform treatment approaches targeting the neu-

robiology of aging in the context of PTSD.

Method: Adult subjects (N = 2229; 56.2% male) aged 18–69 years (mean = 35.6,

SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain struc-

tural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previ-

ously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON)

machine learning pipelines were compared in a subset of control subjects (n = 386).

Linear mixed effects models were conducted in the full sample (those with and with-

out PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD;

brain age− chronological age) controlling for chronological age, sex, and scan site.

Results: BrainageR most accurately predicted brain age in a subset (n = 386) of con-

trols (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62,

MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-

way interaction revealed that youngmales with PTSD exhibited higher brain PAD rela-

tive tomale controls in young and old age groups; oldmaleswith PTSD exhibited lower

brain PAD compared tomale controls of all ages.

Discussion: Differential impact of PTSD on brain PAD in younger versus older males

may indicate a criticalwindowwhenPTSD impacts brain aging, followedby age-related

brain changes that are consonant with individuals without PTSD. Future longitudinal

research iswarranted to understandhowPTSD impacts brain aging across the lifespan.
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aging, machine learning, mega-analysis, neuroimaging, posttraumatic stress disorder, trauma
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1 INTRODUCTION

Exposure to stress plays an important role in the development of med-

ical conditions (Cohen & Manuck, 1995). A prime example is the rela-

tionship between posttraumatic stress disorder (PTSD) and increased

risk for developing cardiovascular (Edmondson & von Känel, 2017)

and cardiometabolic (Edmondson & von Känel, 2017) disease. Crit-

ically, PTSD has been linked with increased mortality (Edmondson

& von Känel, 2017), underscoring the relationships between mental

and physical health. A number of behavioral and biological media-

tors have been examined including sleep dysregulation, cigarette use,

decreased physical activity, autonomic reactivity, and inflammation,

whichmayall contribute toaccelerated cellular aging and subsequently

increased rates of medical morbidity (Wolf & Schnurr, 2016). Identi-

fication of accelerated aging processes may aid in detecting elevated

risk for developing disease and provide opportunities for a personal-

izedmedicine approach to treatment.

Specific to PTSD, biomarkers of accelerated aging have been identi-

fied in the epigenome, and immune and inflammatory systems (Wolf &

Morrison, 2017). Telomere length and DNA “methylation age” are two

biomarkers that have shown mixed results (Wolf & Morrison, 2017),

and may be more or less sensitive depending on the type of outcome

measure (e.g., current vs. lifetime PTSD or specific symptom clusters).

In a recent meta-analysis, lifetime PTSD symptom severity and child-

hood trauma were associated with accelerated DNA methylation age

(Katrinli et al., 2020; Wolf et al., 2018; Yang et al., 2020). PTSD has

also been linkedwith diminished immune response (Aiello et al., 2016),

and a heightened inflammatory response based on C-reactive protein

(Spitzer et al., 2010), TNF-alpha (von Kanel et al., 2007), IL-6, and IL-

1β (Newton et al., 2014), which may impact aging processes. While

peripheral biomarkers provide initial evidence for a link between PTSD

and accelerated aging, identification of neural biomarkers is critical to

understanding the complex relationships between PTSD, aging, and

the brain. Given the known deleterious effects of aging on the brain

(Schmitz et al., 2018), coupled with functional and structural brain

changes associated with PTSD (Clausen et al., 2020; Logue et al., 2018;

Morey et al., 2020), neural markers of accelerated aging in PTSD may

help to stratify disease risk, clarify the pathology of psychiatric dis-

ease on the brain, and aid in the development of tailored treatments

for PTSD.

Machine learning algorithms have been applied to metrics derived

from T1-weighted structural MRI to predict biological brain age (Cole

& Franke, 2017), which can be compared with chronological age to

calculate a difference score, referred to as brain predicted age dif-

ference (PAD). Brain PAD has been optimized by training algorithms

using chronological age in large samples of healthy individuals (Cole

& Franke, 2017) and has been tested in aging (J. H. Cole et al., 2018),

schizophrenia, bipolar disorder, and depression (Besteher et al., 2019;

Han et al., 2021; Schnack et al., 2016). In aging, higher brain PAD,which

is indicative of an "older appearing" brain, has been linked with weaker

grip strength, diminished lung function, slower walking speed, lower

fluid intelligence, higher allostatic load, and critically, increased mor-

tality risk (Cole et al., 2018). Patients with schizophrenia and bipolar

disorder exhibit, on average, higher brain PAD, suggesting that these

disorders may be associated with accelerated brain aging (Hajek et al.,

2019; Schnack et al., 2016). By contrast, findings with brain PAD in

patients with depression have been inconsistent (Besteher et al., 2019;

Han et al., 2021), but suggest a small effect of depression on brain

PAD. Research examining brain PAD in PTSD is in its infancy, but ini-

tial evidence suggests PTSD is associated with accelerated brain aging.

In a relatively large sample (N = 804) of individuals aged 8–21, sub-

jects with PTSD exhibited higher brain PAD relative to controls (Liang

et al., 2019). However, the study was conducted in children, adoles-

cents, and very young adults, and group sample sizeswere highly imbal-

anced (PTSD, n = 70; control, n = 734); the control group also lacked

trauma exposure.

The primary aim of the present study was to examine the relation-

ship between PTSD and brain PAD in adults with and without PTSD

whowere aggregated from21 sites in the ENIGMA-PTSDConsortium.

As PTSD has been linked with other markers of accelerated aging (Li

et al., 2017; Wolf et al., 2018), we hypothesized that the PTSD group

would show, on average, higher brain PAD. A wide range of different

brain age prediction techniques are available (Cole et al., 2019). There-

fore, prior to embarkingonourprimary goal of investigatingbrain aging

in PTSD, a test set of controls was used to evaluate the performance

of three machine learning-based pipelines including one voxel-based

algorithm and two algorithms that rely on region-of-interest (ROI) cor-

tical and subcortical measures from the FreeSurfer 5.3 segmentation.

We hypothesized the voxel-based method, which uses greater struc-

tural detail than the ROI approaches, would provide more accurate

estimates of brain age.

2 METHOD

2.1 Subjects

Subjects included 2315 adults from 21 sites participating in the

ENIGMA-PGC PTSD Consortium (see Table 1 for demographic and

clinical characteristics). Each site had unique inclusion and exclusion

criteria. Common exclusion criteria included meeting current diag-

nostic criteria for a substance use disorder, neurological disorder,

active psychosis, and moderate-to-severe head injuries. Subjects were

included in the present analysis if they completed a 3D T1-weighted

brain scan with magnetic resonance imaging (MRI), and assessment

of PTSD, as well as reported age and sex. Eighty-six subjects were

removed from the analysis due to missing data (see Supporting Infor-

mation for subject exclusion). Therefore, a total of 2229 subjects with

(n = 882) and without (n = 1347) PTSD were included in the final

analysis. Control subjects included trauma-exposed (n = 1226) and

unexposed (n = 118) individuals. Three control subjects were miss-

ing trauma-exposure data. Analyses were conducted with and without

unexposed controls and thosemissing traumaexposure data.No signif-

icant differences were identified in themain or supplemental analyses;

thus, unexposed controls, and those missing trauma-exposure data,

were included in the analyses.
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2.2 Clinical assessment

A breakdown of clinical assessments by site is included in Tables S1

and S2. Clinical assessments were conducted for PTSD, depression,

and childhood trauma using either self-report measures or clinician-

administered interviews.When available, severity scores were used to

estimate PTSD and depression diagnosis using previously established

cut-off scores (Table S1).

2.2.1 PTSD

Current PTSD diagnosis was assessed with one of the following instru-

ments: Clinician Administered PTSD Scale for DSM-IV (Pfohl et al.,

1997) or DSM-5 (Weathers et al., 2018), the PTSD Symptom Checklist

forDSM-IVCivilian (Weathers et al., 2015),Military (Yarvis et al., 2012)

versions, or for DSM-5 (Weathers et al., 2015), Davidson Trauma Scale

(Davidson, 1996), the structured clinical interview for DSM-IV (Spitzer

et al., 1992) or DSM-5 (First et al., 2014) disorders (SCID), or the Mini

InternationalNeuropsychiatric Inventory (MINI) 6.0 (Sheehan&Lecru-

bier, 2010) or 7.0 (Sheehan et al., 2014).

2.2.2 Childhood trauma

Thirteen of the 21 participating sites collected information on child-

hood trauma. Themajority of sites (n= 11) used the Childhood Trauma

Questionnaire (Bernstein et al., 2003). One site used the Early Trauma

Inventory (Bremner et al., 2000), and one site used the Stressful Life

Events Screening Questionnaire—Revised (Green et al., 2006). Child-

hood trauma measures were harmonized to yield a score of 0 (no

trauma exposure), 1 (exposure to one type [e.g., physical vs. emotional

abuse] of trauma), or 2 (exposure to two ormore types of traumas).

2.2.3 Depression

Twenty of the 21 participating sites diagnosed depression and/or its

severity with one of the following instruments: the Beck Depression

Inventory–II (Beck et al., 1996) and 1A (Steer et al., 1999), the Hamil-

ton Rating Scale for Depression (Bremner et al., 2000), the Hospital

Anxiety and Depression Scale (Snaith & Zigmond, 2000), the Physical

HealthQuestionnaire−9 (Kroenke&Spitzer, 2002), theCenter for Epi-

demiology Studies – Depression (Orme et al., 1986), the Depression

and Anxiety Stress Scale – depression subscale (Lovibond & Lovibond,

1995), theMINI, or the SCID.

2.3 MRI acquisition and preprocessing

A high resolution T1-weighted brain MRI scan, optimized for tissue

contrast, was acquired at each site and was analyzed locally (Table
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S2). Raw T1-weighted images were then sent to Duke University for

preprocessing and quality assurance using standardized ENIGMA

protocols to harmonize image analyses across multiple sites. Raw

and preprocessed images (for FreeSurfer 5.3) were visually inspected

for pathology, image quality, and quality of automated segmentation

(http://enigma.ini.usc.edu/protocols/imaging-protocols/). All scans

were preprocessed using the same version of FreeSurfer to minimize

the variability between segmentation results. Version 5.3 was chosen

based on previously established preprocessing procedures for a

previously trained brain age algorithm.

2.4 Machine learning pipelines

We examined three pre-trained machine learning pipelines to esti-

mate brain age in a subset of controls (n = 386). One algorithm used

voxel-based data, referred to as brainageR and two algorithms, PHO-

TON Brain Age (PHOTON-BA; https://www.photon-ai.com/enigma_

brainage) and Brain-Age Regression Analysis and Computation Utility

Software (BARACUS), and used cortical and subcortical segmentation

results from FreeSurfer 5.3. Descriptions of each model are included

in the Supporting Information. Briefly, brainageR applies a Gaussian

process regression model to T1-weighted scans, parcellating gray and

white matter, to predict chronological age (Cole et al., 2018) (https:

//github.com/james-cole/brainageR; https://doi.org/10.5281/zenodo.

3476365).While both PHOTON-BA and BARACUS rely on FreeSurfer

segmented data, PHOTON-BA estimates brain age by applying a ridge

regression model (Schmaal et al., 2020) whereas BARACUS uses a lin-

ear support vector regressionmodel (Liem et al., 2017).

2.5 Statistical analysis

All analyses were conducted in R Statistical Software Package (freely

available at https://cran.r-project.org). To assess model performance,

we calculated intraclass correlations (ICC) between chronological and

predicted age, proportion of the variance explained by the model

(R2), Pearson’s R between predicted brain age and chronological age,

mean absolute error (MAE), and root mean square error (RMSE)

for each machine learning algorithm in a subset of control subjects.

This subset was a convenience sample from three participating sites

which had previously processed MRI data and calculated estimates

for brain age using the three machine learning models (Minneapo-

lis VA, Duke University, University of South Dakota). The algorithm

with the highest R, R2, and ICC values, and lowest RMSE and MAE

for control subjects, was applied to the full sample from 21 partic-

ipating sites to examine relationships between brain age estimates

and PTSD.

Brain PAD (predicted brain age− chronological age) was calculated

for each subject, using the algorithm with the best fit, and was used as

the primary outcome measure. Brain PAD is typically overestimated

for children and young adults and underestimated in older individu-

als, which is explained by the well-known statistical phenomenon of

regression to the mean (Le et al., 2018; Liang et al., 2019). Two meth-

odshavebeenproposed toadjust for this phenomenon, including incor-

porating age as a covariate in the main analysis (Le et al., 2018; Liang

et al., 2019) and developing residualized brain PAD scores by regress-

ing chronological age onto brain PAD (Le et al., 2018). Because we

aimed to examine main and interaction effects of age, we incorpo-

rated chronological age as a covariate, as opposed to developing a

residualized brain PAD score. To ensure age did not significantly dif-

fer between groups with and without PTSD, we examined differences

in age between control and PTSD groups. Tomega-analyze differences

in brain PAD between subjects with and without PTSD, we used linear

mixed effects (LME) modeling (R Library lme4; R command lmer). PTSD

diagnosis, age, age2, and sex were then entered into the LME as fixed

effects. Age and age2 were centered prior to performing the analysis.

As subjectswere nestedwithin each site, the sitewas included as a ran-

dom effect in all models to adjust for differences in scanners and sys-

tematic differences between sites. We explored main and interaction

effects of all covariates and PTSD diagnosis.

Model 1Main Effects: brain PAD∼ age+ age2 + sex+ PTSD diagnosis

+ (1 | site)

Model 2 Interaction Effects: brain PAD ∼ age * age2 * sex * PTSD diag-

nosis+ (1 | site)

We conducted supplemental analyses to explore the effects of race,

childhood trauma,MDDdiagnosis, andmilitary statusbyadding covari-

ates that related to brain PAD at or below the trend level (p < .10) to

LME Model 2 as a fixed main effect. In a subsample of subjects with

PTSDwho completed the CAPS-IV (n= 515), LMEmodeling analogous

to the main analysis was conducted to explore effects of PTSD sever-

ity in relation to brain PAD. Findings were considered significant with

a critical p-value < .05. AIC and BIC indices were used to assess model

fit.

Model 3Additive Effects: brain PAD∼ age * age2 * sex * PTSDdiagnosis

+ covariate+ (1 | site)

3 RESULTS

3.1 Brain age prediction performance

We examined the predictive ability of the brainageR, PHOTON-BA,

and BARACUS machine learning pipelines to estimate brain age in a

subsample of control subjects (n = 386) from three sites. Results of

pipeline comparisons are presented in the Supporting Information and

Figures S1–S3. Briefly, brainageR demonstrated a stronger relation-

ship between chronological and predicted age (R = 0.72) and lower

error (MAE = 5.68) compared to BARACUS (R= 0.64; MAE= 8.8) and

PHOTON-BA (R= 0.62; MAE= 6.38) models. Model validation for the

brainageR pipeline is displayed in Figure 1.

http://enigma.ini.usc.edu/protocols/imaging-protocols/
https://www.photon-ai.com/enigma_brainage
https://www.photon-ai.com/enigma_brainage
https://github.com/james-cole/brainageR
https://github.com/james-cole/brainageR
https://doi.org/10.5281/zenodo.3476365
https://doi.org/10.5281/zenodo.3476365
https://cran.r-project.org
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F IGURE 1 Model validation in control subjects. (a) A significant, positive relationship was identified between chronological age and predicated
age in control subjects (R= 0.70, R2 = 0.49, p> .0001). (b) A significant negative relationship was observed between chronological age and
predicated age difference (predicted age− chronological age) in control subjects (R=−0.33, R2 = 0.18, p> .0001). (c)While the effect was small,
we continued to observe a significant relationship when plotting the residual effects of the linear relationship between predicted age difference
and chronological age (shown in Figure 1b) with chronological age in controls (R= 0.04, R2 = 0.002, p= .05)

F IGURE 2 Potential covariates. (a) Predicted age difference by sex. (b) Predicted age difference bymilitary status. (c) Predicted age difference
by each racial or ethnic group (driven solely by differences in the Beijing data). Sex was included as a covariate in themain analysis. Bothmilitary
status and race were examined in supplementary analyses

3.2 Covariates

For the main analysis, we examined linear and nonlinear effects

of age, and sex, with brainageR brain PAD. Age (r(2227) = −0.45,

p < .001), age2 (r(2227) = −0.45, p < .001), and sex (t(2227) = −1.84,

p = .06), when examined separately, were related (p < .1) to brain

PAD. For the supplementary analyses, we examined other potentially

contributing factors including race, military status, depression, and

childhood trauma. Both race (F[1,2227] = 4.768, p = .029), and mil-

itary status (t(2104) = −3.0858, p = .002) when examined sepa-

rately, significantly related to brain PAD. Neither childhood trauma

(F(1,1350) = 1.78, p = .182) nor depression (t(1876) = −0.99,

p = .321) related to brain PAD. See Figure 2 for visualization of

covariates. We also examined the relationship between age and

PTSD diagnosis. Age did not significantly differ between groups

(t(2227) = −0.897, p = .370), and there was a high degree of over-

lap across distributions in age for the PTSD and control groups

(Figure 3).
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F IGURE 3 Age density for diagnostic groups. The probability
density as a function of subjects’ age in the PTSD and control groups

3.3 Impact of PTSD diagnosis on brain age

Results for each LME model are presented in Table 2. Model 1 exam-

ined the main effects of age, age2, sex, and PTSD on brain PAD. Age

(β = −0.38, p < .001) and sex (β = 0.84, p = .027) significantly related

to brain PAD. There was no main effect of age2 (β< 0.001, p= .520) or

PTSD diagnosis (β=−0.280, p= .420).

Next, we explored interaction effects of age, sex, and PTSD diagno-

sis on brain PAD (Model 2, Figure 4). We identified a three-way inter-

action between age, sex, and PTSD diagnosis (β=−0.14, p= .019). This

model exhibited lower AIC, but higher BIC relative toModel 1 Revised

(Model 1: AIC = 15,344.3, BIC = 15,384.3; Model 2: AIC = 15,336.9,

BIC = 15,399.7). BIC penalizes model complexity more heavily than

AIC. Thus, it is expected that the interaction model has a higher BIC

relative to examination of only main effects. Model 2 was selected as

themodel of best fit.

To visually characterize the three-way interaction, we divided the

sample by sex (Figure 4) and plotted the relationship between age

and predicted brain age by PTSD status. Males with PTSD exhibited

a steeper relationship between chronological age and brain PAD com-

pared to males without PTSD. Males with PTSD exhibited higher brain

PAD at a younger age, and lower brain PAD at an older age compared

to males without PTSD. Whereas females with PTSD tended to have

higher brain PAD relative to females without PTSD with the exception

of younger control subjects and old subjects with PTSD.

In order to further explore the three-way interaction, we con-

ducted pairwise comparisons of the relationship between chrono-

logical age and brain PAD in males and females with and without

PTSD using the package cocor in R (Diedenhofen & Musch, 2015).

Females with (Fischer’s z = 3.54, p < .001) and without PTSD (Fis-

cher’s z = 5.15, p < .001) exhibited a stronger negative correlation

between chronological age and brain PAD relative to males without

PTSD. No differences were observed in the relationship of chronolog-

ical age and brain PAD between males with and without PTSD (Fis-

cher’s z = 1.43, p = .154), females without PTSD and males with PTSD

(Fischer’s z = −1.79, p = .074), females with and without PTSD (Fis-

cher’s z=−1.04, p= .300), normales and females with PTSD (Fischer’s

z= 0.65, p= .517).

Next, we conducted supplementary analyses to examine the poten-

tial effects of race and military status. Race and military status were

added as fixed effects to Model 2 separately. When added as a fixed

effect to Model 2, race did not significantly contribute to brain PAD

(Model 3; race β = −0.03, p = .664). Compared to Model 2 AIC and

BIC, the inclusion of race as a main effect resulted in higher AIC and

BIC (Model 3 AIC = 15,338.7, BIC = 15,407.3). Classification of mili-

tary status was available for 2102 subjects. When added to Model 2,

there was no main effect of military status (Model 4; military status

β= 1.06, p= .114) on brain PAD. AsModel 4was completed in a subset

of subjects, we are unable to directly compare AIC and BIC to previous

models.

3.4 Influence of PTSD symptom severity on brain
age

We repeated the above analyses in a subsample of subjects with a

PTSDdiagnosis basedon theCAPS-IV (N=515) toexplorePTSDsymp-

tom severity. We chose to restrict our analyses to subjects with a diag-

nosis of PTSD because PTSD severity was not consistently assessed

across sites in trauma-exposed controls.Weused theCAPS-IV as itwas

used most widely across sites to assess PTSD severity. Age, age2, sex,

depression, childhood trauma, race, and military status were tested as

covariates in this subsample.

Age (R(515)=−0.50, p< .001), and age2 (R(515)=−0.49, p< .001)

were significantly related to brain PAD in these PTSD subjects. Sex

(t(513)=−1.10, p= .270), depression (t(374)=−0.09, p= .925), child-

hood trauma (F(1,267)=0.25, p= .612), race (F(1,513)=0.09, p= .765)

andmilitary status (t(513)=−0.69, p= .490) were not related to brain

PAD. Age, age2, and PTSD severity were entered as fixed effects. Site

was again included as a random effect.

Age significantly predicted brain PAD (β = −0.47, p < .001); how-

ever, neither PTSD severity (β = −0.01, p = .504) nor age2 (β = 0.004,

p = .183) was significantly related to brain PAD. The interaction

between age and PTSD was also not significant (β < 0.001, p = .125).

See Table S3 for PTSD severity LMEmodel results.

4 DISCUSSION

In this study, we investigated the difference between chronological

age and MRI-predicted brain age. The role of other potentially rel-

evant contributors to brain age such as sex, race, childhood trauma

exposure, military service, depression, and chronological agewere also

investigated. To apply the most accurate method for estimating brain

age from structural MRI, we first compared three leading machine

learningmodels.Wedetermined that thevoxel-basedmachine learning

method based onGaussian Process Regression (brainageR) (Cole et al.,

2018) outperformed two competing ROI methods (PHOTON-BA and

BARACUS) that rely on regional mean cortical thickness, surface area,
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TABLE 2 Linear mixed effects (LME) results for PTSD diagnosis

Beta CI t-value p

Model 1 AIC= 15,344.3, BIC= 15,384.3, N= 2229, Marginal R2 / Conditional R2 = 0.220 / 0.266

Intercept —1.13 −2.18 to−0.08 −2.12 .040

PTSD 0.28 −0.40 – 0.96 0.81 .420

Age −0.38 −0.41 to−0.34 −22.38 <.001*

Age2 0.00 −0.00 – 0.00 0.644 .520

Sex (M) 0.84 0.10 – 1.58 2.21 .027*

**Model 2 AIC= 15,336.9, BIC= 15,399.7, N= 2229, Marginal R2 / Conditional R2 = 0.226 / 0.270

Intercept −1.36 −2.45 to−0.28 −2.46 .017

PTSD 0.75 −0.29 – 1.80 1.43 .153

Age −0.40 −0.45 to−0.34 −13.94 <.001*

Age2 0−0 −0.00 – 0.00 0.69 .493

Sex (M) 1.15 0.26 – 2.04 2.53 .017*

PTSD*Age −0.00 −0.09 – 0.08 −0.14 .890

PTSD*Sex (M) −0.76 −2.09 – 0.57 −1.11 .265

Age*Sex (M) 0.09 0.02 – 0.16 2.39 .017*

PTSD*Age*Sex (M) −0.14 −0.26 to−0.02 −2.34 .019*

Model 3 AIC= 15,338.7, BIC= 15,407.3, N= 2229, Marginal R2 / Conditional R2 = 0.227 / 0.270

Intercept −1.23 −2.46 to−0.01 −1.97 .053

PTSD 0.76 −0.28 – 1.80 1.43 .150

Age −0.40 −0.45 to−0.34 −13.93 <.001*

Age2 0.00 −0.00 – 0.00 0.69 .488

Sex (M) 1.14 0.25 – 2.04 2.50 .012*

Race −0.03 −0.18 – 0.11 −0.44 .664

PTSD*Age −0.01 −0.09 – 0.08 −0.15 .883

PTSD*Sex (M) −0.76 −2.09 – 0.58 −1.11 .267

Age*Sex (M) 0.09 0.02 – 0.16 2.38 .018*

PTSD*Age*Sex (M) −0.14 −0.26 to−0.02 −2.33 .020*

Model 4 AIC= 14,472.6, BIC= 14,540.4, N= 2102, Marginal R2 / Conditional R2 = 0.247 / 0.292

Intercept –1.75 −2.93 to−0.57 −2.91 .005

PTSD 0.79 −0.26 – 1.85 1.48 .140

Age −0.42 −0.48 to−0.37 −14.00 <.001*

Age2 0.00 −0.00 – 0.00 0.64 .524

Sex (M) 1.11 0.14 – 2.08 2.25 .025

Military status 1.06 −0.25 – 2.36 1.59 .114

PTSD*Age 0.02 −0.07 – 0.10 0.40 .689

PTSD*Sex (M) −0.88 −2.25 – 0.48 −1.27 .206

Age*Sex (M) 0.09 0.01 – 0.16 2.17 .030

PTSD*Age*Sex (M) −0.15 −0.27 to−0.03 −2.4 .017

Abbreviations: LME, linear mixed effects; PTSD, posttraumatic stress disorder; AIC, Akaike’s information criteria; BIC, Bayesian information criteria.

**Indicates best model fit.

and volume generated by FreeSurfer automated segmentation. Lever-

aging a large, multi-site mega-analysis of 2229 PTSD cases and con-

trols, we identified that brain PADwas negatively related with chrono-

logical age in control subjects, such that increasing age significantly

related to lower brain PAD. Furthermore, an interaction between sex

and age demonstrated females had a stronger negative correlation

between brain PAD and chronological age than males. In other words,

males showed greater brain aging than females and this sex difference

increased with age (Figure 4). We also found an interaction of PTSD,

age, and sex which showed youngmales with PTSD had a greater brain
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F IGURE 4 Relationships between PTSD, chronological age, age2 and sex with predicted brain age difference (PAD). Brain PAD scores were
calculated using the brainageR pipeline. Main and interaction effects of PTSD, age (centered), and sex withmain fixed effects of age2 (centered)
and site included as a random effect are displayed. (a) Linear plot of age by PTSD diagnosis interaction inmale subjects. Males with PTSD exhibited
a steeper, negative relationship between age and brain PAD relative tomales without PTSD. (b) Linear plot of age by PTSD diagnosis in female
subjects. No interaction was observed between PTSD diagnosis and age in female subjects. Females with PTSD exhibited qualitatively higher brain
PAD relative to females without PTSD

PAD than young male controls, young females with PTSD, and young

females without PTSD. A similar pattern was present in middle-aged

males, but the effect of PTSD was weaker than in the younger sub-

group. Male controls in the older subgroup exhibited higher brain PAD

than older males with PTSD, older females with PTSD, and old females

without PTSD.

Surprisingly, brain PAD was higher in younger subjects with PTSD

than in older subjects with PTSD. Some possible interpretations are

that brain age in the context of PTSD may vary across lifespan and

on the basis of sex and thus may not reflect a consistent biomarker

of aging in PTSD such that the younger brain is more vulnerable to

aging effects of PTSD (i.e., representing a critical window for PTSD’s

impact on brain age) or there may be additional factors such as cardio-

vascular or cerebrovascular disease thatmay influence the relationship

between age and brain PAD particularly in older individuals. It is possi-

ble the brain aging process undergoes some remediation in the chronic

stage of PTSD developing greater resilience over time. This assumes

that onset of PTSD in the present sample generally occurred during

early or early-mid adulthood as reported in the National Comorbid-

ity Survey Replication, which found 23 years to be the median age of

onset (Kessler et al., 2005). However, such a hypothesis can only be

tested with longitudinal assessments initiated soon after initial trauma

exposure. Indeed, symptoms in a subset of patients with PTSD tend to

remit as the trauma becomes more distant in time (Magruder et al.,

2016; Sun et al., 2018). This trajectory is consistent with the natural

history of the posttraumatic period wheremost individuals experience

acute symptoms in the hours and days following exposure to a trau-

matic event (Cahill & Pontoski, 2005). This acute stress response gen-

erally resolves, but may persist for more than 1 month in a smaller or

larger subset of individuals, dependingon thenatureof the trauma; this

subset is deemed to have PTSD (Kolassa et al., 2010). The relationship

of brain PAD to chronological age in our results may be amethodologi-

cal limitation of a one-size-fits-all approachwe took thatmaybias brain

age prediction in either the youngest or oldest subgroups (Elliott et al.,

2019). Other approaches may include use of classification as opposed

to regression to approximate ordinal effects, or use of auxiliary loss

functions in deepneural networks. Analternate, perhapsunlikely inter-

pretation is that the usual neurobiological processes that operate in

senescence are mitigated by PTSD, but this hypothesis lacks empiri-

cal support from epigenetic and inflammatory research (Katrinli et al.,

2020;Miller et al., 2018).Unfortunately, there is a lackof publishedevi-

dence on brain aging across the lifespan in PTSD, particularly studies

on neurobiological mechanisms of action. Thus, meaningful interpreta-

tion of the present results is rather challengingwithout comparisons to

empirical evidence.

In previous research, PTSD has been associated with higher brain

PAD in relatively small sample of PTSD patients (n = 70) who exhib-

ited higher brain PAD relative to control subjects (Liang et al., 2019).

Relatedly, “negative fateful life events” such as death in the family or

financial hardship were associated with higher predicted brain age rel-

ative to chronological age in Vietnam era twin veterans, but unfortu-

nately associations with PTSDwere not reported (Hatton et al., 2018).

Consistent with the present results, higher brain PAD diminished with

advancing chronological age, which was attributed to negative fateful

life events being more commonplace in the early-mid stage of life or

before. Importantly, the former studywas conducted in a PTSD sample

thatwasmostly female (71%) and focusedon children and young adults

(ages 8–21), and the latter studywas conducted in all oldermale adults

(mean age= 62 years). The present analysis included bothmales (56%)

and females (44%) ranging in age from 18 to 69 and thus demonstrates

the differential relationship of age and brain age across age groups

and sex. The present results also align with reports in schizophrenia

and bipolar disorder that are characterized by a so-called “early-hit

non-progressive” phenomenon, where accelerated brain aging occurs
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at younger ages followed by age-related brain changes that are conso-

nant with unaffected individuals (Shahab et al., 2019).

PTSD and trauma impart prolonged stress which is associated with

neurodegenerative cellular processes as a result of altered immune

system gene expression, elevated gene expression of inflammatory

mediators, diminished expression of antiviral processes, and synthesis

of antibodies (Cole, 2014; Miller & Sadeh, 2014). The accumulation of

damage to DNA within neurons triggers repair processes to be acti-

vated. However, impaired repair processes cascade to accumulation of

DNA damage that produces cellular senescence, apoptosis, neurode-

generation, and premature brain aging (Coppedè & Migliore, 2010).

The prolonged burden of lifetime stress has been shown to accelerate

epigenetic aging via glucocorticoid signaling (Gassen et al., 2017). The

foregoing evidence provides some possibilities for mechanisms oper-

ating in PTSD at the molecular level to impact accelerated brain aging,

particularly in youngmales.

The methodology for predicting brain age from neuroimaging is rel-

atively new and represents a nonspecific biomarker of brain develop-

ment and brain health (Franke & Gaser, 2019). It captures informa-

tion about a large number of variables from many brain locations (or

regions) into a single compositemetric. Thus, patients in the clinical set-

ting may find this to be a readily accessible and interpretable indicator

of brain health,which is adjusted for chronological age. It is conceivable

that brain PAD screening could facilitate clinical trial recruitment. Sub-

jects could be stratified by brain PAD for investigating various clinical

phenomenon such asmild cognitive impairment (Liem et al., 2017), ele-

vated risk for psychosis (Gaser et al., 2013; Koutsouleris et al., 2014),

progression toAlzheimerdisease, borderlinepersonality disorder (Han

et al., 2021; Koutsouleris et al., 2014), major depression, bipolar dis-

order (Shahab et al., 2019), schizophrenia (Koutsouleris et al., 2014;

Shahab et al., 2019), and brain development more generally (Brown

et al., 2012; Dosenbach et al., 2010; Smyser et al., 2016). Many of the

strengths of brain PAD as a biomarker also pose significant shortcom-

ings, which include the lack of direct information about the most pre-

dictive features of brain age, which could differ in each person. In prin-

ciple, direct information about the relative importance of features used

in making predictions can be extracted from most machine learning

algorithms (Domingos, 2015). Knowledge of these critical featuresmay

be of little interest in some machine learning applications such as face

recognition, whereas such a knowledge map is vital in neuroscience

and research applications more broadly. A map of the most predic-

tive brain features may guide future research on causal mechanisms

of brain aging, but was outside the scope of the present study. Future

studies with deep clinical phenotyping and longitudinal assessments of

mental and somatic health—along with comorbidities, illness duration,

inflammatory markers, health behaviors, and multi-omics panels (e.g.,

genomics) (Amoroso et al., 2019)—will help further refine and evaluate

the value of brain PAD estimates, or be used in conjunction with brain

PAD estimates (Han et al., 2021). Recent application of deep learning

methods such as convolutional neural networks hold the promise of

enhanced performance (R2= 0.87) and lower MAE (Cole et al., 2017;

Jónssonet al., 2019)while alsoofferingmore specificity about themost

predictive features (Cole et al., 2017).

4.1 Limitations and conclusion

A key strength of our study is the large sample size that allowed us to

test interactions with and associations within subgroups such as sex,

chronological age, military status, and other variables. This large sam-

ple also constitutes a limitation, as combining data from many differ-

ent sites and scanners may introduce confounds, particularly if there

is a stratification of variables of interest by site/scanner. A second lim-

itation is the use of a single imaging modality, as multi-modal imag-

ing inputs such diffusion imaging and resting-state functional connec-

tivity have been successfully employed in brain age estimation (Cole,

2020). Lastly, a number of factors, some of which covary with PTSD,

that influence the aging process such as socioeconomic status, car-

diometabolic function, diet, environmental pollutants, head trauma,

and substance use, could not be accounted for in our study (Dowl-

ing et al., 2008; Fotenos et al., 2008; Griesbach et al., 2018; Joseph

et al., 2009;Mehta et al., 2015). Future research iswarranted to further

understand how these factorsmay contribute to aging processes in the

context of PTSD. Our results provide evidence of a link between PTSD

diagnosis and accelerated brain aging processes, influenced by sex and

chronological age. We offer a framework for exploring neurobiologi-

cal markers of accelerated aging and potential underlying processes in

PTSD.
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