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Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation
of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These
processes have been extensively studied in the developing visual cortex, where critical period opening and closure are
orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes
points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane
proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development
and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal
roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion
molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions
in amblyopia and other neurodevelopmental disorders.

1. Introduction

Sensitive periods for the development of brain function have
been described in different species and brain areas, but it was
the work of Hubel and Wiesel in cat and primate visual
cortexes during the 1970s and 1980s that first shed light on
the underlying circuit principles [1–4]. This enabled studies
of cellular mechanisms, leading to the recognition of synap-
ses in the visual cortex as cellular substrates for critical period
plasticity [5–9]. These studies showed that balanced visual
input is accompanied by stereotypic developmental remodel-
ing and pruning of synapses in the primary visual cortex,
whereas visual deprivation results in synapse loss and shrink-
age of axonal and dendritic arbors [5, 10–17]. The applica-
tion of genetic, chemo-, and optogenetic tools in mice later
revealed how vision shapes cortical connectivity during
development and how the establishment of cortical connec-
tivity instructs visual function [18–23]. These approaches
have also shed light on synaptic mechanisms that control
critical periods and actively restrict plasticity in the adult

brain [18, 19]. This review is focused on the recently discov-
ered roles of molecules that specify and assemble synaptic
connectivity in the onset and closure of plasticity in the visual
cortex, a model of cortical plasticity.

2. Synaptic Control of Critical Period Timing

Circuit functions emerge early in development and are
shaped by the environment and patterns of activity during
critical periods [24–27]. Heightened plasticity and adapt-
ability of circuits during critical periods enable sensory
input, vision included, to guide selective strengthening
and refinement of different synapse types [22, 28]. This
experience-dependent synaptic remodeling stabilizes the
synaptic connectivity patterns that underlie mature circuit
function. Notably, in the visual cortex, GABA(gamma-ami-
nobutyric acid)-releasing inhibitory neurons are considered
key for critical period timing [29–31]. The onset of synaptic
integration of inhibitory neurons into local networks coin-
cides with a rise in inhibitory synapse density and overall
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levels of inhibitory neurotransmitters in the brain [13, 22,
32–35]. A threshold level of cortical inhibition is necessary
for the visual critical period to open, and manipulating
GABAergic transmission with pharmacologic or genetic
tools can either advance or prevent critical period opening
[29–31]. As levels of cortical inhibition further rise in the
maturing brain, the critical period closes and the potential
for plasticity and remodeling wanes (Figure 1). In parallel,
glutamatergic synapses onto both excitatory pyramidal
and inhibitory neurons undergo vision-driven remodeling
[22, 36]. The heightened circuit plasticity that is character-
istic of critical periods is no longer present once mature
circuit functions are established, and active stabilization
and maintenance of function take over in the adult brain
[18, 24, 26, 27] (Figure 1).

High levels of inhibition in adults are thought to contrib-
ute to the stabilization of mature brain function by limiting
circuit plasticity (Figure 1) [24]. Indeed, acute reduction in
levels of inhibitory neurotransmitters in the mature visual
cortex can reinstate visual plasticity [37, 38]. On a cellular
level, manipulation of activity of soma-targeting, fast-
spiking Parvalbumin (PV) and dendrite-targeting, regular-
spiking Somatostatin (SST) circuitry results in robust
changes in visual plasticity [18, 39–47]. These interneuron
classes exert powerful control over critical period onset:
transplantation of embryonic PV and SST interneurons
derived from medial ganglionic eminence into the adult
visual cortex can trigger another visual critical period, with
remarkably preserved timing of onset and closure [40, 48].
These precise developmental sequences indicate tight genetic
control of interneuron maturation, which is well described
for PV interneurons [49–52]. PV interneuron maturation is
directed, at least in part, by the complex interplay of Ortho-
denticle Homeobox 2 (Otx2), a non-cell-autonomous tran-
scription factor secreted from the retina and choroid
plexus, and the extracellular matrix (ECM) deposited around
interneurons [50, 51, 53–57]. The capture of Otx2 by the

ECM that surrounds PV interneurons is essential for the
onset of their maturation [57, 58], and misregulated Otx2
expression and localization lead to deficits in critical period
plasticity [50, 51, 53, 57–60]. The stereotypic circuit integra-
tion of transplanted PV interneurons supports the additional
involvement of cell-autonomous factors that control the
development of synaptic connectivity of these cells [48].
Activity-driven assembly of local excitatory inputs onto PV
interneurons prior to critical period opening in mice is piv-
otal for its onset [19]. The parallel increase in interneuron
expression of synapse-organizing adhesion proteins such as
Neuroligins and SynCAMs (see below) further supports
that synaptogenesis is an important factor in PV cell mat-
uration [61]. A recent study demonstrated that PV
interneuron-expressed Synaptic Cell Adhesion Molecule 1
(SynCAM 1) is required for critical period closure, which
involves the SynCAM 1-dependent formation of long-range
excitatory inputs from the thalamus [18]. In the following
sections, we describe known molecular regulators of synaptic
connectivity in the visual cortex.

3. Roles of Synapse-Organizing Proteins in
Visual Cortex Synaptogenesis and Plasticity

Cell adhesion proteins that instruct synapse assembly and
their maintenance are expressed in diverse neuron types
and in glial cells [62–66]. These proteins were initially
identified as potent drivers of presynaptic differentiation
in an in vitro heterologous system, and they form complexes
in trans (for adhesion) and in cis (for lateral assembly) [66–
70]. After instructing the assembly of pre- and postsynaptic
specializations into functional synapses, these proteins can
maintain synapses in the maturing brain [71–73]. Recent
research suggests that distinct pairs of synaptic organizers
impact different synapse types in the cortex [74, 75] as sum-
marized below.

3.1. Neuroligins and Hevin. Neuroligins are prototypical
postsynaptic synapse organizers and type 1 transmembrane
proteins that interact with presynaptic Neurexins [67, 76,
77]. Neuroligins 1-4 are redundant for synapse assembly
in vivo but are key for synapse maturation and function
[65, 77]. Their interactions with α- and β-Neurexins affect
both inhibitory and excitatory presynaptic functions, as well
as recruitment of synapse scaffolding components and
neurotransmitter receptors to the postsynapse [78–83]. Dif-
ferent combinations of Neuroligin/Neurexin complexes can
potentially specify different synapse types, and the reper-
toire of these interactions is expanded by splicing isoforms
[84] and accessory extracellular linker proteins, such as glia-
expressed Hevin [85] (Figure 2). While cell-surface expres-
sion levels of Neuroligins can be regulated by visual activity
[86], it is the removal of Hevin in the visual cortex that
impairs Neuroligin 1/Neurexin interaction and reduces the
density of thalamic inputs (Figure 2) [85, 87]. Mice that lack
Hevin show impaired ocular dominance and critical period
opening, suggesting that the assembly of thalamocortical
synapses by Neuroligin 1/Neurexin/Hevin interactions con-
trols the opening of the visual critical period [85]. Hevin
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Figure 1: Circuit plasticity, stability, and levels of inhibition as
functions of age. Circuit functions are shaped by external
experiences during the critical period, when plasticity is high.
Levels of cortical inhibitory neurotransmission rise through the
critical period and, once optimal function is reached, contribute to
the waning of plasticity and stabilization of circuit function in
adults.
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knockout mice display a compensatory increase in local,
intracortical excitatory synapses that is insufficient to open
the critical period, indicating that specific synapse types are
key for different circuit functions [85].

3.2. SynCAMs. Similar to Neuroligins, SynCAM cell adhesion
complexes are prominently expressed in the visual cortex and
recent research highlighted their role in timing the onset and
offset of cortical critical periods [18, 88, 89]. SynCAMs are
potent inducers of synapse differentiation in vitro [68, 90]
that contribute to excitatory synapse formation and mainte-
nance in vivo across different brain regions [18, 72, 91, 92].
SynCAMs 1-4 are immunoglobulin domain type-1 trans-
membrane proteins, whose homo- and heterophilic interac-
tions across the synaptic cleft organize excitatory synapses
[90, 93]. The most studied family member is SynCAM 1 that
interacts with itself and SynCAMs 2 and 3 in cis and trans
[90, 93–95]. SynCAM 1 controls both pre- and postsynaptic
properties through its interactions across the synaptic cleft
and affects cytoskeletal remodeling and receptor recruitment
at the synapse through its intracellular partners [72, 88, 96,
97]. In the cortex, SynCAM 1 recruits large and potent
long-range thalamocortical excitatory inputs onto PV inter-
neurons (Figure 2) [18, 91]. Further, PV-expressed SynCAM
1 is regulated by visual activity [18]. In agreement with its
role in PV maturation, SynCAM 1 is a regulatory target of
Otx2 [52] and is essential for maturation of PV interneurons
in the visual cortex. Similar to Hevin knockout mice, mice
that lack SynCAM 1 have fewer thalamocortical synapses

(Figure 2) [18]. This results in poorly developed binocular
vision and an extended visual critical period [18]. SynCAM
1 is actively required to control plasticity and even a brief
cell-specific removal of SynCAM 1 from PV interneurons
results in increased levels of visual plasticity in the adult
brain, pointing to a key role for thalamic inputs onto PV
interneurons in the regulation of plasticity in mature circuits
[18]. This cell-autonomous, postsynaptic requirement for
SynCAM 1 in PV interneurons suggests that postsynaptic
SynCAM 1 engages currently unknown transsynaptic part-
ners in thalamic axons to assemble thalamocortical synapses
(Figure 2) [18, 90].

3.3. Distinct Roles of Neuroligin/Hevin and SynCAM 1. As
reviewed above, both Neuroligin/Neurexin interaction
(through Hevin) and SynCAM 1 play a role in the
formation of thalamocortical synapses but with opposing
effects on visual plasticity [18, 85]. Lack of Hevin pre-
vents the critical period from opening, whereas lack of
SynCAM 1 prevents it from closure [18, 85]. However,
Hevin appears to affect most, if not all, excitatory thala-
mocortical synapses formed across neuron types, while
SynCAM 1 shows a PV-specific action on thalamocortical
inputs [18, 85, 87]. It is possible that gross development
of thalamocortical synapses mediated by Neuroligin
1/Neurexin-1α/Hevin interaction is a prerequisite for the
critical period to open, and PV-specific recruitment and
maintenance of thalamic inputs by SynCAM 1 is neces-
sary for subsequent critical period closure. Future studies
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Figure 2: Synaptic connectivity of the visual thalamocortical circuit. (a) Excitatory inputs carrying visual information from the dorsal lateral
geniculate nucleus (dLGN, green) in the thalamus innervate pyramidal (PYR, blue box) neurons and Parvalbumin (PV, red box) interneurons
in thalamorecipient layers of the visual cortex (red box). PV interneurons receive inputs from neighbouring PYR neurons across cortical
layers. Astrocytes (AST) express molecules that can act as synaptic bridges between thalamocortical axons and their postsynaptic targets
(Hevin, blue box). (b) Red box: the synaptic immunoglobulin SynCAM 1 organizes thalamic inputs onto PV interneurons. Presynaptic
interacting partners of SynCAM 1 at thalamocortical synapses are currently unknown, but other SynCAMs (2 and 3) are candidates. Blue
box: Neuroligin 1 on PYR cells interacts with Neurexin-1α via the astrocytic Hevin (brown) to organize thalamic inputs onto PYR cells.
Astrocytic process is depicted in orange. Presynapse (Pre) and postsynapse (Post) are indicated.
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can address whether any cross-talk between the two path-
ways exists in PV interneurons, as well as whether these
molecules control plasticity through thalamocortical syn-
apses in other sensory or association areas [98, 99].

3.4. Extracellular Matrix, LRRTMs, and NCAM. So far, only
SynCAMs and Neuroligins (through Hevin) have dem-
onstrated roles in visual plasticity, but recent research
demonstrated that members of the leucine-rich repeat trans-
membrane (LRRTM) family of molecules can interact at
synapses with the extracellular matrix (ECM), a powerful
regulator of visual plasticity [34, 100]. LRRTMs 1-4 are
another group of type 1 transmembrane proteins that bind
Neurexins, potently induce excitatory presynaptic differen-
tiation and regulate receptor composition at the synapse
[70, 101, 102]. LRRTM-deficient mice show defects in both
pre- and postsynaptic functions, and their repertoire of
interactions with Neurexins can impact diverse synapse
types [70, 74, 103, 104]. LRRTMs bind Neurexins across
the synaptic cleft similar to Neuroligins, but they can also
instruct differential synapse formation through interactions
with components of the ECM [100–102, 105]. As the ECM
in the form of perineuronal nets exerts powerful control
over the maturation of PV interneurons and critical period
timing [34, 58, 106–111], the role of LRRTMs in visual
plasticity warrants future investigation. An ECM-related
protein modification, the polysialylation of neural cell
adhesion molecule (NCAM), guides the development of
inhibitory connections in the visual cortex [112]. NCAM
is an immunoglobulin superfamily protein that regulates
early synapse development and is mostly found in a
glycan-bound state [113]. Visual activity-dependent poly-
sialylation of NCAM affects its homophilic interactions
across the synapse, and removal of PSA from NCAM
can shift the critical period to an earlier time point
through modulation of PV connectivity [112]. SynCAM
1 can also be found in the polysialylated state, pointing
to yet another way to diversify the function and interac-
tions of synapse organizers [114, 115].

4. Therapeutic Potential of Synapse-Organizing
Molecules in Amblyopia and
Neurodevelopmental Disorders

The diminished plasticity of mature circuits is thought to
preclude recovery from early visual insults such as ambly-
opia. Patching or visual stimulation can provide therapeutic
interventions before the critical period closes, but the
reduced capacity of visual synapses for activity-driven
remodeling likely interferes with the success of interventions
later in life [116–118]. The reduced potential of the adult
brain to rewire itself may also impede treatments for other
neurodevelopmental disorders, such as autism-spectrum
disorders (ASD) and schizophrenia [55, 119–122]. Studies
of amblyopia and visual plasticity have identified promising
interventions for recovering the potential for plasticity in
the entire brain, such as neuromodulation of inhibitory
connections [46, 123], systemic regulation of inhibitory neu-
rotransmission [124], and sensory manipulations that may

target the activity of thalamocortical synapses [125–127].
On a more specific level, recent research has demonstrated
that the cell-specific manipulation of thalamocortical syn-
apses reinstates plastic features to the adult visual cortex
[18]. As distinct circuits regulate plasticity of binocularity
and improvements in visual acuity in amblyopia models
[128, 129], targeting synapses that organize different circuits
may hence represent a way to precisely manipulate different
brain functions.

How do we target specific synapse types? Transient
genetic silencing tools in combination with cell-specific ade-
noviral vectors could allow manipulating synapse organizers
in a cell type-and-region-specific manner [130–132]. Fur-
ther, peptide fragments of extracellular domains of synapse
organizers can impair their interactions in vitro and may
have a similar effect in vivo [86, 93]. Indeed, a recent
study using a combination of these approaches to manip-
ulate signaling by a secreted molecule, semaphorin 3A,
demonstrated its feasibility in rat models of amblyopia
[133]. Such approaches may increase plasticity to a level
sufficient for visual therapy to have effects in adult ambly-
opic patients [116–118, 133–136]. These tools could pro-
vide a localized therapy that can be restricted to the
visual cortex alone, thus precluding systemic side-effects.
A transient elevation of cortical plasticity may even
improve therapeutic outcomes for other neurodevelop-
mental disorders [137–140]. Approaches that result in
the elevated potential for plasticity in the mature brain
could additionally enhance recovery after brain injury,
including traumatic brain injury (TBI) and stroke [120,
141–147]. In combination with targeting mechanisms that
control neuronal specification [148–152], tools that target
specific synapse types hence offer highly specific therapeu-
tic interventions for developmental brain disorders. Future
studies on mechanisms of synapse specification within dis-
tinct circuits are likely to provide an avenue for progress
in this area.
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