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to controls. Overall, we successfully used IBM Watson to 
help identify additional RBPs altered in ALS, highlighting 
the use of artificial intelligence tools to accelerate scientific 
discovery in ALS and possibly other complex neurological 
disorders.
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Introduction

Amyotrophic lateral sclerosis (ALS) is characterized by 
loss of motor neurons in the brain, brainstem and spinal 
cord, with concurrent muscle atrophy and is typically fatal 
within 2–5 years from diagnosis [1, 45]. The worldwide 
incidence of ALS is 1–3 cases per 100,000 individuals per 
year. However, considerable heterogeneity is associated 
with the disease at both the clinical and molecular levels, 
with variable sites of disease onset, variable rates of clinical 
disease progression, complex genetics, and a multitude of 
cell types involved in the disease process. Pathogenic cel-
lular mechanisms are similarly multi-factorial, and include 
mitochondrial dysfunction, excitotoxicity, oxidative stress 
and presence of ubiquitinated neuronal and glial intracellular 
inclusions [52].

Approximately 10% of ALS is familial and genetic altera-
tions in one of over 30 ALS genes have been linked to the 
disease [5, 7, 45, 52]. These familial ALS genes regulate 
a multitude of cellular processes, including cytoskeletal 
dynamics and membrane trafficking (DCTN1, PFN1, VAP), 
cellular proteostasis and autophagy (SQSTM1, UBQLN2, 
OPTN) and RNA metabolism (TARDBP, FUS, MATR3, 
hnRNPA1, hnRNA2B1, TAF15), while the most common 
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genetic factor is the hexanucleotide repeat expansion in the 
C9orf72 gene [20, 56].

Mutations or variants in the genes of 11 RNA-binding 
proteins (RBPs) or proteins that function in RNA process-
ing are associated with ALS, including TARDBP, FUS, 
hnRNPA1, hnRNPA2B1, MATR3, SETX, ELP3, ATXN2, 
ANG, SMN1, and SMN2 [7, 45, 52]. In addition, a num-
ber of other RBPs exhibit altered subcellular distribution 
in neurons and/or glia in ALS patients, but lack any known 
mutations that cause ALS [10, 37], suggesting that RBPs 
even without genetic alterations contribute to a disruption of 
RNA homeostasis in ALS. While mutations in the TARDBP 
gene are associated with only ~ 4% of familial ALS patients, 
TDP-43 protein mislocalization and inclusions are detected 
in 97% of all ALS patients [35]. This indicates that cytoplas-
mic and nuclear inclusions of RBPs are common in ALS, 
even without associated mutations. The number of RBPs 
currently associated with ALS represents a small fraction 
of the total RBPs, as a recent report identified 1542 putative 
RBPs in the human genome [21]. Given the large number 
of RBPs in the human genome and the number of RBPs that 
have already been linked to ALS, we hypothesized that addi-
tional RBPs contribute to and/or are mis-localized in ALS, 
and used IBM Watson to predict new potential candidates. 
IBM Watson was previously used to identify novel kinases 
that phosphorylate p53 and has contributed to the oncology 
field [48]. Since IBM Watson uses text-based information 
from abstract publications for its computational analysis [8], 
we were limited to RBPs that have been reported in the lit-
erature. 1478 RBPs were mentioned in at least one abstract 
published before the end of 2015, and these were included 
in our study.

To test the predictive modeling capability of IBM Wat-
son, we first limited IBM Watson’s knowledge base to pub-
lications prior to 2013, and asked Watson to use this avail-
able information to predict other RBPs associated with ALS. 
Watson highly ranked the four RBPs with disease causing 
mutations identified between 2013 and 2017, demonstrating 
the validity of our approach. We then used IBM Watson to 
screen all known RBPs and predict RBPs likely to be associ-
ated with ALS based on their similarity to all known RBPs 
mutated in ALS. We validated Watson’s top-ten predictions 
by performing immunohistochemistry (IHC), protein and 
RNA expression analyses in brain and spinal cord tissues 
from ALS and non-neurologic disease controls, as well as 
RNA levels in motor neurons derived from induced pluri-
potent stem cells (iPSC-MNs) from ALS and controls. We 
also performed similar experiments for three RBPs near the 
bottom of the list that were predicted to not be altered in 
ALS as negative controls.

Eight of the top-ten RBPs predicted by Watson to be asso-
ciated with ALS were altered in ALS by at least two valida-
tion methods listed above. During the course of this study, 

one of the RBPs predicted to be linked to ALS, Caprin-1, 
was shown to be altered in ALS patients [4]. As anticipated, 
RBPs ranked near the bottom of the list were not altered in 
ALS patients. Our results validate the IBM Watson predic-
tions and identified novel RBPs altered in ALS. These find-
ings further highlight the multitude of RBPs that contribute 
to the disruption of RNA homeostasis during ALS, and the 
strength of computer-based artificial intelligence approaches 
to accelerate wet lab scientific discoveries.

Materials and methods

Tissue samples

ALS and non-neurologic disease control post-mortem tissue 
samples were obtained from the University of Pittsburgh 
ALS Tissue Bank, the Barrow Neurological Institute ALS 
Tissue Bank, and the Target ALS Human Postmortem Tis-
sue Core. All tissues samples were collected after informed 
consent from the subjects or by the subjects’ next of kin, 
complying with all relevant ethical regulations. The proto-
col and consent process were approved by the University of 
Pittsburgh Institutional Review Board (IRB) and the Dignity 
Health Institutional Review Board. Clinical diagnoses were 
made by board certified neuropathologists according to con-
sensus criteria for ALS. Subject demographics are listed in 
Suppl. Table 5.

Immunohistochemistry

Paraffin-embedded post-mortem tissue sections from spi-
nal cords and cerebellum were used for this study. All sec-
tions were deparaffinized, rehydrated and antigen retrieval 
performed using Target Antigen Retrieval Solution, pH 9.0 
(DAKO) or a citrate buffer (pH 6) for 20 min in a steamer. 
After cooling to room temperature, non-specific bind-
ing sites were blocked using Super Block (Scytek), sup-
plemented with Avidin (Vector Labs). Primary antibodies 
used for immunohistochemistry were incubated overnight in 
Super Block with biotin (antibodies listed in Suppl. Table 3). 
Slides were then washed and incubated for 1 h in the appro-
priate biotinylated IgG secondary antibodies (1:200; Vec-
tor Labs) in Super Block. Slides were washed in PBS and 
immunostaining visualized using the Vectastain Elite ABC 
reagent (Vector Labs) and Vector NovaRED peroxidase 
substrate kit (Vector Labs). Slides were counterstained with 
hematoxylin (Sigma Aldrich). Sections were visualized 
using a Leica AperioScope microscope, and analyzed using 
the Aperio eSlide manager image analysis.

For color intensity analysis, regions of interest (ROI) 
were delineated by a blinded user (motor neuron nuclei 
or Purkinje nuclei), slides were deconvolved for RGB of 
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hematoxylin (blue channel) and antibody staining color 
(red channel) using the Leica Aperio ImageScope color 
deconvolution algorithm and the intensity value meas-
ured for each pixel within the ROI. These values were 
used to set intensity scales for each color from 0 to 255 
(0 = black and 255 = white) prior to the analysis, and the 
same intensity thresholds were used across each antibody 
analysis. For hnRNPU, the negative threshold was set to 
be for intensities ranging from 210 to 255; weak positive 
staining intensity ranges were from 145 to 210; medium 
positive staining from 90 to 145 and strong staining was 
set to ranges from 0 to 90. All neurons were selected for 
each spinal cord section (numbers of neurons per section 
ranged from 20 to 50), and ROIs were defined. For Syn-
crip, the negative threshold was set to be for intensities 
ranging from 180 to 255; weak positive staining intensity 
ranges were from 155 to 180; medium positive staining 
from 95 to 155 and strong staining was set to ranges from 
0 to 95. We selected 50 Purkinje cells from different areas 
of each section.

Laser‑capture microscopy, RNA extraction 
and real‑time PCR analysis

Lumbar spinal cord and cerebellum total RNA were pre-
pared from frozen tissue from control and ALS cases. 
Samples were homogenized in Trizol (Invitrogen), and 
RNA was extracted using the Ambion PureLink™ RNA 
Mini Kit. RNA quality was determined by RIN (RNA 
integrity number) using a Tapestation and all samples 
showed RIN values of > 5. cDNA was synthesized using 
Superscript VILO (Invitrogen) and real-time RT-PCR 
was performed using the FastStart Universal SyberGreen 
master mix (Roche). Primer sequences used are listed in 
Suppl. Table 7.

For laser-capture microscopy, fresh-frozen cerebellum 
were sectioned at 20 μm, slides were fixed for 2 min in 
70% ethanol (in nuclease-free water), washed and stained 
for 6 min with the RNA/DNA stain Methyl Green Pyronin 
(Abcam, ab150676) supplemented with SUPERase In 
RNAse inhibitor (AM2694, ThermoFisher). Slides were 
consecutively dipped in nuclease-free water, 100% etha-
nol, and air-dried for 2 min before capture. We used the 
Zeiss Axiovert Zoom, fitted with a PALM system to cap-
ture at least 120 Purkinje cells per slide. Capture time was 
limited to 1 h to minimize RNA degradation. Two slides 
from each sample were used for a total of 250 neurons, 
and the cells were combined for subsequent processing. 
RNA was extracted using the RNAqueous micro total RNA 
isolation kit from Ambion (AM1931), cDNA was synthe-
sized using Superscript VILO and real-time RT-PCR was 
performed.

Statistical analysis

Statistical analysis was performed using Student’s t test, or 
one-way ANOVA with Bonferroni’s multiple comparisons 
testing for comparing multiple groups in GraphPad Prism 5. 
Fisher exact test and Wilcoxon rank sum test were used for 
cross-validation studies.

Data and code availability

All data generated or analyzed during this study are included 
in the published article and its supplementary information 
files (Suppl. Tables 2, 3 and 4). The pseudo-code used to 
generate our analysis by IBM Watson is included in the sup-
plementary information files.

Results

IBM Watson analytics and model generation

A detailed description of the analytical methods used by 
Watson to predict RBPs associated with ALS is provided in 
the Supplemental Materials and Methods section. Briefly, 
IBM Watson extracts domain-specific text features from 
published literature to identify new connections between 
entities of interest, such as genes, proteins, drugs, and dis-
eases. From these annotated documents, Watson creates a 
semantic model of the known set of RBPs previously linked 
to ALS, and then applies that model to a candidate set of all 
other RBPs, in order to rank all the candidates by similar-
ity to the known set using a graph diffusion algorithm [58]. 
To test the model generation by Watson, we first performed 
a leave-one-out (LOO) cross-validation to demonstrate the 
predictive power of Watson using the 11 known ALS-linked 
RBPs. To do so, the graph diffusion algorithm was applied 
11 times based on the same distance matrix, but each time 
a different known RBP was taken out of the positive set and 
placed into the candidate set. If the overall model is accu-
rate, then the positive RBPs placed into the candidate set 
should rank high based on the model built from the other ten 
known positive RBPs. Indeed, in our experiment, the LOO 
cross-validation results were strong, with 5 of the positive 
RBPs ranking in the top-15 out of 1478 RBPs, and 8 in the 
top 4.1% of all RBPs (p = 3.17 × 10−7, one-sided Wilcoxon 
rank sum test to assess whether the scores of the knowns are 
greater than those of the candidates, Table 1).

To measure accuracy of the model based on the LOO 
cross-validation, we used the receiver operating characteris-
tic (ROC) curve. The area under the ROC curve (AUC, com-
puted following the trapezoid rule) is a measure of model 



230	 Acta Neuropathol (2018) 135:227–247

1 3

accuracy, where a value of 0.5 corresponds to a random 
model and a value of 1 corresponds to a perfectly predictive 
model. The AUC for our model was 0.935.

An added value of the LOO cross-validation is that it 
provides a point of reference for where to expect true ALS-
related RBPs from the candidate set to be listed within the 
overall ranking. In the cross-validation performed by Wat-
son, 10 of the 11 positive RBPs (90%) ranked within the 
top 8% of all RBPs. ANG was ranked number 713 by this 
analysis, suggesting that this gene is dissimilar to known 
ALS-associated RBPs. Extrapolating these results to all 
known and yet-to-be discovered RBPs, we can expect that 
approximately 90% of all true positive ALS-linked RBPs 
should fall within the top 8% of the ranked list.

Retrospective analysis validates Watson’s RBP 
prediction model

We next used a retrospective study to test IBM Watson’s ana-
lytics for predicting RBPs in ALS. We restricted the corpus 
of data analyzed by Watson to literature published prior to 
2013, and used as a positive known set the eight RBPs with 
ALS disease causing mutations that were published through 
2012 (Table 2). We used all 1542 RBPs in the genome listed 
in Gertsberger et al. [21], as candidate RBPs. 1439 of these 
RBPs had at least one mention in Medline® abstracts up 
to the end of 2012 and these were thus chosen to be our 
candidate set. IBM Watson built a distance matrix relating 
each RBP with all others and used a graph diffusion algo-
rithm to rank all RBPs based on the known set of eight RBPs 
[58]. The RBPs found to be mutated in familial ALS and 

published between 2013 and 2017 were ARHGEF28, Matrin 
3, GLE1, and TIA1 [16, 27, 28, 36]. We asked if Watson 
could predict these RBPs as high-ranking candidates. The 
results from this retrospective analysis identified Matrin 3 as 
the top candidate, ARHGEF28 and TIA1 ranked within the 
top 5%, and GLE1 ranked within the top 11% of all known 
RBPs (Table 2), thus demonstrating the performance capa-
bilities of the model. Another RBP linked to ALS in 2014 
with no known mutations, hnRNPA3, was also ranked within 
the top ten in this retrospective study.

IBM Watson ranks RBPs by semantic similarity 
to RBPs mutated in ALS

After having established that IBM Watson methodology 
is valid and capable of identifying RBPs involved in ALS, 
we next analyzed all 1478 RBPs from the Gertsberger et al. 
[21] list that had at least one mention in Medline® abstracts 
up to the end of 2015 as our candidate set. The known set 
included all 11 known RBPs mutated in ALS identified prior 
to 2016 (TDP-43, FUS, Ataxin-2, hnRNPA1, hnRNPA2B1, 
Senataxin, Angiogenin, TAF15, GLE1, Matrin-3 and ARH-
GEF28). We excluded from the known set RBPs such as 
RBM45, hnRNPA3, or MTHFSD that have been shown to 
be altered in ALS tissue samples, but without any muta-
tions described to date [6, 10, 37, 40]. IBM Watson rank 
ordered RBPs by similarity to the known set, and assigned a 
score from 0 to 1, corresponding to how closely related each 
RBP is to the overall set of 11 positive RBPs (see “Materi-
als and methods” for more details). Results of the ranked 
proteins along with their graph diffusion (GD) scores are 
shown in Table 3 and Supplemental Table 1. Among the top-
ten-ranked RBPs was RBM45, which our group previously 
reported to localize to cytoplasmic inclusions in ALS cases 
[10]. In addition, MTHFSD, an RBP reported by the Robert-
son group in 2016 to be a novel component of stress granules 
and altered in ALS was ranked at number 10 by Watson 
[37]. Other RBPs previously linked to ALS and ranked in 
the top 5% included hnRNPA3, SMN2 and EWSR1 [13, 14, 
40] (Table 3).

We focused validation studies on the top-ten-ranked 
RBPs and asked whether they were altered in ALS. Valida-
tion methods included protein subcellular distribution using 
IHC, measures of protein levels by immunoblot, RNA levels 
by total tissue extracts and laser-captured microdissection, 
and RNA analysis of motor neurons generated from patient-
derived iPS cells. RBPs had to exhibit statistically signifi-
cant differences between ALS and controls by at least two 
methods to be termed validated in our study. Our top-ten 
proteins included two previously shown to be altered in ALS 
(RBM45, and MTHFSD), so we did not pursue these further. 
Unsurprisingly, many of the IBM Watson top-ten-ranked 

Table 1   Leave-one-out (LOO) cross-validation test

Fisher exact test p value (1469,48,11,7) = 7.62E−09. The rank col-
umn corresponds to the rank of the RBP when removed from the 
known set and placed into the candidate set. The p value corresponds 
to the median p value of individual Fisher’s exact tests done at each 
known RBP rank threshold

Protein Rank

TARDBP 1
FUS 5
SETX 11
MATR3 12
TAF15 13
ATXN2 21
HNRNPA2B1 60
ARHGEF28 61
HNRNPA1 106
GLE1 107
ANG 713
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RBPs are involved in RNA processing and export, and four 
out of the eight proteins we validated were contained within 
supplemental tables of proteins that potentially interact with 
TDP-43 and/or FUS in recent proteomic studies (Table 4). 
It is noteworthy that these interactions were listed in sup-
plemental materials within these publications, not within the 
published abstracts, and as such, the putative protein interac-
tions were not made available to IBM Watson for its analysis. 
The Watson top-ranked RBP, hnRNPU, possesses both RNA 
and DNA binding domains and potentially interacts with 
TDP-43, FUS, ubiquilin2 and the G4C2 repeat of C9orf72 
[4, 19, 23, 24, 34, 49]. In addition, hnRNPU was recently 
shown to modulate nuclear TDP-43 toxicity in cultured cells 
[49], but was not directly linked to ALS. The second-ranked 
protein, Syncrip, is an RBP that resides in the cytoplasm and 
has been identified as an SMN-interacting protein found in 
RNA granules [34, 46, 53]. It was identified by mass spec-
trometry-based proteomics as a potential interacting protein 

with TDP-43, Ataxin-2, FUS, optineurin and ubiquilin, but 
again was never studied in ALS [4]. RBMS3 (ranked 4), 
hnRNPH2 (ranked 6) and RBM6 (ranked 9) all function in 
RNA metabolism or processing and have no prior links to 
ALS. NUPL2 (ranked 7), a nucleoporin-like protein interacts 
with Gle1, functions in CRM1-mediated RNA export and 
is a risk locus for Parkinson’s disease [15, 30, 41]. SRSF2 
(also known as SC-35, ranked 5) is a nuclear speckle com-
ponent that potentially interacts with TDP-43, FUS and the 
G4C2 repeat expansion and has been shown to co-localize 
with 34% of C9 antisense RNA foci in cerebellar Purkinje 
cells of C9-ALS patients [12]. Caprin-1 (ranked 8) is an 
RBP involved in neuronal RNA transport that interacts with 
FMRP and G3BP [17, 47]. Recently, a comprehensive pro-
teomic study investigating common interactors for TDP-43, 
FUS and Ataxin-2 identified Caprin-1 as interacting with all 
3 proteins [4]. In addition, they demonstrated that Caprin-1 
co-localized with TDP43 and FUS inclusions in spinal cord 

Table 2   IBM Watson 
retrospective analysis

All genes are listed using the HGNC database of human gene names and protein coding genes. The known 
set refers to RBPs shown to be mutated in ALS prior to 2013. The candidate set refers to all RBPs with 
at least one published abstract, analyzed and ranked by Watson. GD  =  graph diffusion score assigned 
by Watson to each gene/protein based on semantic similarity of the candidate to the positive known set. 
Genes/proteins in bold have been linked to ALS: MATR3, ARHGEF28, TIA1 and GLE1 were shown to 
be mutated in the past 4 years; RBM45 and hnRNPA3 exhibit alterations in ALS tissues with no described 
mutations

Known Gene set

TARDBP
FUS
ATXN2
ANG
SETX
hnRNPA2B1
hnRNPA1
TAF15

Candidate Gene set Score (GD) Rank

 MATR3 0.00204078 1
 NUPL2 0.00181635 2
 SRSF2 0.0017781 3
 SYNCRIP 0.00175763 4
 hnRNPU 0.00174455 5
 RBM6 0.00161879 6
 IGHMBP2 0.00154716 7
 hnRNPA3 0.00154361 8
 hnRNPC 0.00153549 9
 hnRNPM 0.00151568 10
 –
 RBM45 7.79E−04 43
 TIA1 7.76E−04 50
 ARHGEF28 3.95E−04 89
 GLE1 3.85E−04 165
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motor neurons from 3 patients with TDP-43 inclusions and 
2 patients with FUS-R521C mutations, respectively [4]. 
These results were published after our Watson analysis of 
the literature (Caprin-1 also does not appear in the abstract) 
and confirms our IBM Watson prediction that Caprin-1 is 
altered in ALS.

Localization of top‑ranked IBM Watson RBPs in spinal 
cord and cerebellum confirms their alterations in ALS

We validated the top-ten-ranked RBPs using immunohis-
tochemistry (IHC) of lumbar spinal cord and cerebellum 
from SALS, C9-ALS and non-neurologic disease controls. 
RBM45 and MTHFSD were previously shown to be altered 
in ALS spinal cord using a similar IHC approach [10, 37]. 
The recent discovery of G4C2 repeat foci in the cerebellum 

[2], along with global splicing changes in both SALS and 
C9-ALS cerebellum [44] prompted us to examine potential 
RBP changes in the cerebellum. To test the specificity of 
IBM Watson results, we also performed immunohistochem-
istry for three RBPs from the bottom of the list (QTRT1, 
NARS and WARS). Our IHC results are summarized in 
Table 5.

IHC for hnRNPU was performed and nuclear staining 
pixel intensity was quantified as described in the “Materi-
als and methods”, and reported as negative, weak, medium 
or strong immunoreactivity. hnRNPU exhibited negative or 
weak immunoreactivity in 70–80% of spinal cord motor neu-
ron nuclei of control cases (Figs. 1a, 3a). Conversely, spinal 
motor neurons in SALS cases displayed strong hnRNPU 
nuclear staining in a majority (50–85%) of neurons per case. 
C9-ALS cases exhibited medium hnRNPU signal intensity 

Table 3   IBM Watson 
prospective analysis

All genes are listed using the HGNC database of human gene names and protein coding genes. The known 
set refers to RBPs shown to be mutated in ALS prior to 2016. The candidate set refers to all RBPs with at 
least one published abstract, analyzed and ranked by Watson. GD = graph diffusion score. Genes/proteins 
in bold exhibited prior links to ALS, albeit without any mutations described thus far

Known Gene set

ANG
FUS
TARDBP
ATXN2
HNRNPA1
HNRNPA2B1
SETX
TAF15
GLE1
MATR3
ARHGEF28

Candidate Gene set Score (GD) Rank

 hnRNPU 0.002914 1
 SYNCRIP 0.002747 2
 RBM45 0.00268 3
 RBMS3 0.002494 4
 SRSF2 0.002459 5
 hnRNPH2 0.002255 6
 NUPL2 0.002152 7
 CAPRIN1 0.002109 8
 RBM6 0.001915 9
 MTHFSD 0.00191 10
 –
 hnRNPA3 0.001534 18
 –
 SMN2 7.72E−04 63
 EWSR1 7.71E−04 66
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that was significantly different from SALS neurons but failed 
to show significance when compared to controls, likely 
due to one of the of four C9-ALS cases being negative for 

hnRNPU. In addition, we observed increased glial staining 
in ALS compared to controls (Fig. 1a), and multiple cyto-
plasmic as well as nuclear hnRNPU inclusions in both SALS 

Fig. 1   Immunolocalization of IBM Watson top-ranked RBPs in lum-
bar spinal cord. IHC for hnRNPU, SC-35, Caprin-1 and RBM6 in the 
lumbar spinal cord of 4 C9-ALS, 4 non-neurological disease controls 
and 6–14 SALS cases. Representative images of motor neurons are 
shown, counterstained with hematoxylin. a Control motor neurons 
stained with hnRNPU show weak nuclear staining, while ALS motor 
neurons exhibit either strong nuclear staining, or cytoplasmic thread-
like inclusions. b SRSF2/SC-35 labeled nuclear speckles in control 
motor neurons. ALS neurons exhibit a variety of phenotypes ranging 

from large dark speckles, to strong nuclear staining, and rare cyto-
plasmic inclusions and neuropil staining in one ALS case (SALS 49). 
c Caprin-1 labels cytoplasmic granules in control motor neurons, with 
larger granules and strong immunostaining in ALS neurons. In addi-
tion, most SALS cases but no C9-ALS cases exhibit Caprin-1 stain-
ing in the nucleolus. d RBM6 is negative or weak in control motor 
neurons, while ALS cases exhibit nucleolar staining. All images were 
taken at ×40 magnification. Scale bar: 50 μm
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and C9-ALS motor neurons that co-localized with TDP-43 
(Fig. 4a). In the cerebellum, hnRNPU showed weak immu-
nostaining in nuclei of Purkinje and granule cells of control 
subjects, while three out of five C9-ALS cases displayed 
medium-to-strong IHC patterns (Suppl. Figure 2c). Purkinje 
cells in SALS had variable staining intensities, ranging from 
negative to strong.

Syncrip and RBMS3 both showed variable IHC stain-
ing patterns in spinal motor neurons of control as well as 
SALS and C9-ALS, with no significant differences detected 
between the different subject groups (Suppl. Figure 1a–b). In 
the cerebellum, Syncrip immunoreactivity was significantly 
increased in ALS versus controls (Fig. 2a). Purkinje cells 
displayed weak Syncrip immunostaining in control subjects 
(89% of neurons displayed negative-to-weak immunoreac-
tivity; Fig. 3b), while neuronal staining was significantly 
increased in both the C9-ALS and SALS groups (58 and 
64% of neurons were associated with medium-to-strong Syn-
crip staining in each subject group, respectively). Syncrip 
staining in SALS tend to be nuclear, while many C9-ALS 
cases showed more diffuse cytoplasmic immunoreactivity.

We detected no differences of RBMS3 staining in cer-
ebellar Purkinje or granule cells in ALS (Fig. 2c). How-
ever, there was increased RBMS3 staining in cerebellar 
interneurons in the molecular layer as well as the granular 
and Purkinje layers of ALS cases. RBMS3-positive interneu-
rons were found in SALS and C9-ALS cases co-labeled for 
the interneuron marker calretinin (Fig. 5a). Based on loca-
tion and cellular morphology of these interneurons, these 
were identified as Lugaro cells, characterized by dendrites 
running parallel to the Purkinje cell layer [22], as well as 
unipolar brush cells, (calretinin-positive parvalbumin-neg-
ative, located in the granular layer), Golgi cells (calretinin 
and parvalbumin-positive cells) and basket or stellate cells 
(calretinin negative, parvalbumin positive; Fig. 5a; [18]).

The nuclear speckle protein SRSF2/SC-35 displayed a 
nuclear punctate staining pattern in all subjects, with some 
ALS cases showing strong and larger speckles, while one 
SALS case also exhibited cytoplasmic SC-35 inclusions 
that did not co-localize with TDP-43 (Figs. 1b, 4b, white 
arrowheads). Occasional neuropil staining for SC-35 was 
also observed for ALS, as well as increased glial immunore-
activity. In addition, SC-35 positive cytoplasmic tangle-like 
inclusions and neuropil staining were detected in the frontal 
cortex of C9-ALS and frontotemporal lobar degeneration 
(FTLD) (FTLD-tau and FTLD-TDP) cases, but not SALS or 
controls (Suppl. Figure 3a). SC-35 IHC levels were reduced 
in the frontal cortex of three SALS compared to three con-
trols, though further studies are required to validate these 
findings. In the cerebellum, strong SC-35 immunostaining 
was associated with large nuclear speckles in Purkinje cells 
of ALS versus controls (Suppl. Figure 2b).

No significant differences in hnRNPH2 localization or 
staining intensity were observed in either SALS or C9-ALS 
cerebellum and spinal cords when compared to controls 
(Suppl. Figures 1c and 2a).

The nucleoporin-like protein NUPL2, ranked 7 by Wat-
son, showed variable immunoreactivity in spinal cord 
motor neurons (Suppl. Figure 1d), with cytoplasmic puncta 
detected in most ALS cases and prominent nucleolar stain-
ing in two ALS cases. Strong astrocytic NUPL2 staining was 
also detected in four out of five ALS cases, and one out of 
two C9-ALS cases. However, no consistent neuronal IHC 
pattern was noted that differentiated ALS from controls. In 
the cerebellum, NUPL2 was also localized to astrocytes in 
SALS but not C9-ALS or control cases (Fig. 2d and Suppl. 
Figure 3b). In four out of five SALS cerebellum, but only 
one out of four C9-ALS cases, moderate-to-strong NUPL2 
staining was observed in the granular layer and white matter, 
as well as in fiber tracts of the molecular layer (Suppl. Fig-
ure 3b). NUPL2 co-localized with GFAP in the cerebellum, 
indicating that NUPL2-positive cells were indeed cerebellar 
astrocytes (Fig. 5b). Purkinje, granule neurons and interneu-
rons were typically negative for NUPL2.

Caprin-1 localizes to cytoplasmic granules in control 
motor neurons and Purkinje cells as previously described 
(Figs. 1c, 2b; [47]). ALS motor neurons and Purkinje cells 
exhibited larger and strong Caprin-1-positive cytoplasmic 
granules (Figs.  1c, 2b). These large cytoplasmic gran-
ules occasionally co-localized with p62 (Fig. 4c) indicat-
ing that some of these granules were cytoplasmic inclu-
sions. In addition, most SALS cases displayed Caprin-1 
redistribution to the nucleolus, while none of the control 
or C9-ALS cases had any nuclear or nucleolar Caprin-1 
immunostaining.

We detected weak RBM6 immunoreactivity in spinal 
cord motor neurons, and none in the nucleus of control 
spinal motor neurons or Purkinje cells (Fig. 1d and Suppl. 
Figure 2d). ALS cases displayed increased RBM6 spinal 
cord motor neuron nucleolar immunoreactivity. Similar to 
Caprin-1, this phenotype was exclusive to the SALS group 
and not observed in C9-ALS. No differences across the sub-
ject groups were seen for RBM6 in the cerebellum (Suppl. 
Figure 2d).

We performed a similar IHC analysis in the spinal cord 
and cerebellum with three RBPs from the bottom of the IBM 
Watson-ranked candidate list: QTRT1 (ranked at position 
1467), WARS (position 1463) and NARS (ranked at 1453), 
each chosen for commercial availability of specific antibod-
ies. No differences were seen for these proteins in either the 
cerebellum or spinal cord (Suppl. Figure 4), indicating that 
RBPs near the bottom of the Watson ranking are not altered 
in ALS.
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Fig. 2   Immunolocalization of IBM Watson top-ranked RBPs in the 
cerebellum. IHC for Syncrip, Caprin-1, RBMS3 and NUPL2 in 4 
C9-ALS, 3–5 non-neurological disease controls and 8 SALS cases. 
Representative images are shown, counterstained with hematoxylin. 
a Weak Syncrip-labeled nuclei in control Purkinje cells, as well as 
granule cell nuclei in one out of five control cases. C9-ALS Purkinje 
cells exhibited medium-to-strong diffuse cytoplasmic Syncrip stain-
ing (four out of four), while SALS displayed weak granule cell and 
strong Purkinje cell nuclear staining. b Weak Caprin-1 IHC in four 
out of five control cerebellum; while Purkinje cells in C9-ALS (four 
out of four cases) and SALS (four out of seven) exhibited medium-to-
strong cytoplasmic staining. c Negative-to-weak RBMS3 IHC in con-

trol cerebellum with three out of five cases showing no interneuron 
staining, while three out of five had some granular layer interstitial 
immunostaining. Interneurons in the Purkinje, molecular and granule 
cell layers displayed strong RBMS3 IHC in all C9-ALS and SALS 
cases. In addition, six ALS case showed some strong inter-granule 
cell staining, while three cases had RBMS3 staining in Purkinje cells. 
d NUPL2 was negative to weak in all controls, but labeled astrocytes 
in all SALS and one out of four C9-ALS cases examined. Purkinje 
cells were negative for NUPL2 in all subject groups. All images were 
taken at ×40 magnification. Scale bar: 25 μm for a, b, 50 μm for c 
and 70 μm for d 
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Gene expression analysis of top‑ranked IBM Watson 
RBPs also validates alterations in ALS

To further confirm IBM Watson’s top-ranked RBPs, we 
measured their transcriptional levels in total RNA from spi-
nal cord and cerebellum of ALS patients and non-neurologic 
disease controls (Fig. 6). Of the eight top-ten RBPs exam-
ined, only RBMS3 showed significant decreases in transcrip-
tional levels in ALS spinal cord when compared to controls 
(Fig. 6a). When we performed a similar analysis in cerebel-
lar tissues, four out of these eight RBPs, hnRNPU, Syncrip, 
hnRNPH2 and NUPL2 were significantly downregulated in 
ALS compared to controls (Fig. 6b). None of the bottom-
ranked proteins showed significant changes in gene expres-
sion in spinal cord or cerebellum (Fig. 6a, b).

Since RNA extracted from total spinal cord or cerebel-
lum tissues includes various cell types, we also investigated 
transcriptional levels of these same RBPs in patient-derived 
pluripotent stem cells (iPSC) differentiated into motor 
neurons. We isolated RNA from motor neurons generated 
from five C9-ALS iPSC lines, two SALS iPSC cell lines, 
and three control iPSC lines (Fig. 7a). Both Caprin-1 and 
Syncrip showed significant upregulation in C9-ALS iPSC-
MN compared to controls, while RBMS3 showed decreased 
expression in the two SALS lines compared to controls, 
recapitulating results obtained in total spinal cord, although 
a larger sample size is needed to confirm these findings.

To quantify gene expression alterations in cerebellar 
Purkinje cells, we used laser-capture microscopy (LCM) 
to isolate individual Purkinje cells from frozen cerebellum 
sections of ALS and neurologic disease controls (Fig. 7b). 
Approximately 250 Purkinje cells were isolated per sample 
to examine transcriptional levels for each candidate RBP. 
Syncrip was upregulated in four out of seven SALS cases 
compared to three controls, while hnRNPU was increased 
in three out of seven SALS cases. None of the other RBPs 
examined exhibited statistically significant transcriptional 
changes in ALS-Purkinje cells when compared to controls 
(data not shown).

Protein levels of top‑ranked IBM Watson‑predicted 
RBPs

We next investigated protein levels of IBM Watson-ranked 
RBPs by western blot analysis in cerebellum and spinal cord 
tissues. Protein levels of hnRNPU were increased in many 
ALS samples compared to non-neurologic disease controls 
in both cerebellum and spinal cord, mirroring increases 
observed by IHC in spinal cord (Fig. 8a, b and Table 5). 
However, results failed to reach statistical significance due to 
the large sample-to-sample variability within the ALS group. 
Syncrip levels were significantly increased in ALS cerebel-
lum, but not spinal cord, again reflecting changes seen by 
IHC (Fig. 8a, b and Table 5). RBMS3 had significantly 

Fig. 3   Quantification of hnRNPU and Syncrip staining intensities. a 
hnRNPU motor neuron nuclear staining intensity ranges were meas-
ured using the Aperio ImageScope software in lumbar spinal cord 
sections (see “Materials and methods”). The four intensity ranges 
(negative, weak, medium and strong) were combined into two cat-
egories for ease of viewing, with negative/weak depicted by −/+ 
and medium/strong depicted by ++/+++ and the results were plot-
ted for controls, C9-ALS and SALS. One-way ANOVA with Bonfer-
roni’s multiple comparison testing demonstrated that for the medium/
strong group (++/+++), SALS was significantly different from CON 

(*p  <  0.01), and C9-ALS (**p  <  0.01), while C9-ALS and CON 
were not different from each other. b Syncrip staining intensities of 
Purkinje cells, with categories pooled into negative/weak (−/+) and 
medium/strong (++/+++). One-way ANOVA shows that for the 
negative/weak group, CON was significantly different from SALS 
(*p < 0.01) and from C9-SALS (**p < 0.001); while for the medium/
strong group, CON was statistically different from the C9-ALS 
group (**p < 0.01), and from the SALS group (*p < 0.001). Values 
depicted are means ± SEM (standard error of the mean)
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increased protein expression levels in ALS cerebellum and 
spinal cords compared to non-neurological disease controls, 
recapitulating observed increased cerebellar interneuronal 
staining (Fig. 8a, b and Table 5). NUPL2 was significantly 
decreased in ALS spinal cords, in apparent contradiction to 
its increased IHC in ALS spinal cord and cerebellum. No 
significant changes were seen for negative controls NARS 
or WARS (data not shown).

Discussion

The use of machine learning algorithms and other artifi-
cial intelligence technologies is impacting medical care and 
research, and offers new approaches to analyze complex bio-
logical datasets to provide new insight into human disease. 
We used IBM Watson to screen and rank order RBPs to 
identify additional RBPs involved in ALS. Using a set of 11 
RBPs with known mutations that cause ALS and a candi-
date set comprising 1467 RBPs with at least one published 

abstract up to the end of 2015, IBM Watson text mined pub-
lished abstracts in the literature, and ranked all candidate 
RBPs by their semantic similarity to the known RBPs with 
ALS-causing mutations. We then validated the top-ten can-
didates for potential alterations in ALS using a combina-
tion of immunohistochemistry, RNA and protein analysis 
in tissues from ALS and non-neurologic disease controls, 
and RNA analysis of iPSC-derived motor neurons. These 
results are summarized in Table 5. The top-three ranked 
RBPs (hnRNPU, Syncrip and RBMS3) exhibited alterations 
in ALS by multiple methods, including protein distribution, 
RNA and protein levels in ALS compared to controls. Two 
other RBPs ranked in the top-ten by Watson, NUPL2 and 
Caprin-1, also exhibited alterations by multiple validation 
methods (Table 5). As noted above, Caprin-1, subsequent 
to our Watson analysis, was shown to localize to TDP-43 
and FUS positive inclusions in ALS patients with TDP-43 
or FUS mutations [4]. Our criteria for successful validation 
were significant RBP alterations in more than one assay. 
Therefore, both hnRNPH2 and RBM6 did not pass our 

Fig. 4   Co-localization of top-ranked RBPs with TDP-43 or p62. 
Lumbar spinal cords sections from SALS sections were co-stained 
with a hnRNPU and TDP-43, b SC-35 and TDP-43, or c Caprin-1 

and p62. Nuclei were co-stained with DAPI and images were cap-
tured on a confocal microscope at ×63 magnification. Scale bars rep-
resent 10 μm
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validation criteria; whereas the five other top-ten Watson-
ranked RBPs did pass our validation criteria. This top-ten 
list also included three other RBPs that were previously 
associated with ALS (RBM45, SC-35 and MTHFSD) but 
have no known mutations linked to familial forms of ALS. 
Overall, eight of the top ten ranked RBPs were altered in 
ALS. All RBPs tested from the bottom of the IBM Watson 
list showed no alterations in ALS.

One question is whether Watson could have randomly 
rank ordered all RBPs to generate a top-ten list that would 
fulfill our validation criteria. The actual number of RBPs 
altered in ALS is not known, so we cannot precisely deter-
mine the accuracy of Watson predictions at ranking RBPs 
linked to ALS. Instead, we used Fisher’s exact test to calcu-
late the probability of Watson correctly identifying eight of 
the top ten RBPs as altered in ALS. Using results from the 
LOO analysis, we could assume that 5% of the total RBPs 
used in this study (73 out of 1467 RBPs) are altered in ALS. 
Using this assumption, the Fisher’s exact test generates 
p = 1.07 × 10−9 for Watson correctly predicting eight of the 
top ten to be altered in ALS. If we make a very conservative 
estimate and assume that 20% of all RBPs (293 out of 1467) 
are altered, then the significance of the Watson predictions 
is p = 7.21 × 10−5. Therefore, the probability that Watson 
randomly selected RBPs and correctly predicted eight of the 
top ten by chance is quite low. While we could not perform 
extensive validation of all Watson RBP predictions due to 

time and cost, we focused validation efforts on the top ten 
and selected RBPs at the bottom of the list for which there 
were commercially available antibodies. These negative con-
trols are all involved in tRNA metabolism, which Watson 
semantically ranked as most dissimilar to the known ALS-
RBPs that function predominately in mRNA metabolism. 
Other RBPs that function in tRNA metabolism were also 
ranked near the bottom of the list, suggesting that this path-
way does not significantly contribute to ALS.

Even though hnRNPU, Caprin-1, SRSF2 and Syncrip can 
be found within supplemental tables of unbiased proteomic 
screens for potential interacting proteins of TDP-43, FUS 
and Ataxin2 (Table 4), these supplemental data were not 
available to Watson’s analysis that focused on published 
abstracts. Such global proteomic analyses typically gener-
ate hundreds of potential hits, though without further valida-
tion studies these remain putative protein interactions and 
it is difficult to rank order which candidate proteins should 
be further explored. The use of computer-based approaches 
such as IBM Watson to mine text and/or data can focus sub-
sequent experimental validation efforts to those putative 
interacting proteins highly ranked by Watson.

The top-ranked RBP, hnRNPU co-localized to cytoplas-
mic TDP-43 positive inclusions and showed significant pro-
tein increases in motor neurons, as well as in cerebellum 
and spinal cord protein lysates from ALS compared to non-
neurologic disease controls. Yet, hnRNPU transcript was 

Fig. 5   Cell type determination of RBMS3 and NUPL2 positive cells 
in the cerebellum by confocal microscopy. a Cerebellar sections from 
SALS were co-labeled with RBMS3, parvalbumin or calretinin to 
identify interneurons. b Double-label confocal microscopy of NUPL2 
and GFAP to identify astrocytes. Large arrowheads in a depict cal-

retinin-positive, parvalbumin-negative interneurons (possibly unipo-
lar brush cells), small arrowheads point to calretinin-positive, parval-
bumin-positive (potentially Golgi cells), while small arrows point to 
calretinin-negative, parvalbumin-positive interneurons (possible bas-
ket or stellate cells). Scale bars represent 10 μm
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Fig. 6   Gene expression of IBM Watson RBPs in spinal cord and 
cerebellum. a RNA from 4–5 control and 8 SALS spinal cords were 
extracted, cDNA was made and real-time PCR was performed for the 
IBM Watson top and bottom-ranked RBPs. b Cerebellum tissue from 

4 controls, 7–8 SALS, and 2 C9-ALS (shown in blue) were used for 
real-time PCR. Individual values depicted are average of three experi-
mental replicates, and mean ± SEM are shown. Significance is indi-
cated by stars and p values are listed in each plot
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significantly downregulated in ALS cerebellum. Similarly, 
Syncrip also showed altered subcellular distribution and 
increased protein expression in the cerebellum, along with 
modest increases in protein levels in ALS spinal cord, yet 
its RNA transcript was downregulated in ALS cerebellum. 

However, Syncrip mRNA expression was increased in 
C9-iPSC-derived motor neurons, suggesting the analysis 
of total tissue extracts may mask changes within individual 
cell types. Nevertheless, we did note discordance between 
protein and RNA expression levels of multiple RBPs within 
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the same tissue, similar to prior results described in aging 
human brain [55], and perhaps attributable to pathological 
changes in mRNA translation or microRNA regulation that 
occur in ALS.

While the use of IBM Watson in ALS and the neuro-
sciences was novel and we successfully identified new 
RBPs that exhibit alterations in ALS, there remain limita-
tions to our approach. Watson relies on gene annotations of 
the published literature for its text-based analysis. In our 
study, hnRNPH2, ranked number 6 by Watson, exhibited 
few alterations in ALS (Table 5), but was found to have a 
similar annotation nomenclature within the published lit-
erature as hnRNPH/hnRNPH1, which has been linked to 
ALS [11]. This example of common annotations likely led 
Watson to infer that hnRNPH2 was equivalent to hnRNPH 
and hnRNPH1, generating a false positive in our analysis. 
While we used a rigorous disambiguation of gene annota-
tions for our study (see Supplemental Methods), continued 
work on gene annotations will aid future gene-based studies 
using IBM Watson. Another limitation of Watson’s analysis 
is the fact that it is based on semantic similarity to a known 
set of proteins. For example, DDX58 was identified in 2016 
as an RBP altered in ALS tissue [37]. However, in our study 
Watson ranked DDX58 number 769, making it a false nega-
tive result. Since the most common function of DDX58, a 
cytoplasmic sensor of viral infection, is vastly dissimilar to 
the function of RBPs used in our known training set, Wat-
son assigned DDX58 a low score in its model. The addition 
of neuroscience-specific knowledge and complex biologic 
datasets generated by neuroscience laboratories into the IBM 
Watson system will benefit future Watson-based neurosci-
ence studies.

It is noteworthy that from the transcriptional analysis of 
RBP changes in ALS tissues, more changes were observed 
in cerebellum when compared to spinal cord; four genes 
were significantly altered in ALS vs control in cerebellum, 
while only one gene (RBMS3) was altered in ALS spinal 
cord. Such a trend towards more robust transcriptomic 

changes in cerebellum compared to other brain regions was 
recently reported by Prudencio et al. [44], when comparing 
cerebellum to frontal cortex of C9-ALS and SALS by RNA-
sequencing analysis.

Cerebellar involvement in ALS has recently gained 
acceptance by the field. Cerebellar atrophy, namely loss of 
Purkinje cells in the cerebellar vermis region, was reported 
in ALS cases with ATXN2 gene expansions, but not 
C9-ALS or SALS cases [51]. C9-ALS cases are associated 
with p62-positive, phospho-TDP43 negative cytoplasmic 
inclusions in the granular and molecular layers, as well as 
in Purkinje cells of the cerebellum [2]. Structural changes in 
ALS cerebellar integrity have been demonstrated as white 
and grey matter alterations by 3D-MRI [29]. More recently, 
similar imaging analyses have shown ALS cerebellar atro-
phy in the inferior cerebellum and vermis, areas typically 
associated with motor tasks, while the cerebellum of ALS-
bvFTD subjects show atrophy both in the superior and infe-
rior cerebellum [50]. One RBP identified by Watson and 
validated as significantly altered in ALS cerebellum was 
NUPL2. NUPL2 specifically marked ALS astrocytes in 
the cerebellum and spinal cord. A prior study in transgenic 
SOD1-G93A mice identified phospho-ERK in cerebellar 
astrocytes, highlighting ALS-specific changes within astro-
cytes in the cerebellum [9]. NUPL2 is a nucleoporin-like 
protein that regulates nuclear export of protein and mRNA, 
yet can localize to both the nucleus and the cytoplasm. 
NUPL2 was also contained in the cytoplasm of control spi-
nal motor neurons, but in many ALS cases, NUPL2 was 
redistributed to the nucleolus of motor neurons, although the 
significance of this redistribution is unknown.

A novel ALS phenotype is the increased expression of 
RBMS3 and RBM6 in cerebellar interneurons. Spinal cord 
and cortical interneuron alterations in GABA-A receptor and 
parvalbumin levels have been reported in ALS patients and 
animal models of ALS [38, 42, 43]. In addition, reduced 
GABAergic transmission, hyperexcitability and excitotoxic-
ity of layer 5 pyramidal neurons was observed in TDP43-
A315T mice, while a low copy-number model of SOD1-
G93A mice showed reduced GABAergic and glycinergic 
spinal interneurons, along with interneuron ubiquitinated 
inclusions prior to disease onset [26, 57]. Our results thus 
highlight alterations of interneurons in ALS.

Whole exome sequencing recently identified NEK1 as 
a risk factor for ALS [31], though we were unable to iden-
tify any genetic alterations linked to ALS for our Watson 
top-ten RBPs using publically available exome sequencing 
data. Additional genetic analyses of RBPs ranked in the top 
5–10% of the Watson list is necessary to determine if Wat-
son can use its algorithms to identify new gene mutations 
linked to ALS using only comparisons to the known RBPs 
with mutations that cause ALS. Although Syncrip did show 
a trend for a distinct phenotype in the cerebellum of C9-ALS 

Fig. 7   Gene expression of IBM Watson proteins in iPSC-MN and 
laser-captured Purkinje cells. a iPSC-derived motor neurons were 
differentiated for 45–60  days, RNA extracted and real-time PCR 
was performed for IBM Watson-ranked RBPs. 3 separate control 
iPSC lines, 5 different C9-ALS lines (2 independent differentiations 
of 4 lines C9-ALS 2–5, and one differentiation of line C9-ALS1), 
and two SALS lines were used. The different colors depict the vari-
ous lines used, ran in experimental triplicates, and values shown 
are means  ±  SEM. Asterisks denote significance, with p values of 
0.0495 for Caprin-1 (CON vs. C9-ALS), 0.0052 for RBMS3 (CON 
vs. SALS), and 0.0314 for Syncrip (CON vs. C9-ALS). b Frozen cer-
ebellar sections were stained with methyl green pyronin, and at least 
250 Purkinje cells were captured from each case, RNA extracted and 
real-time PCR was performed on each sample. 3 controls and 7 SALS 
cases were used. Bars represent individual data points calculated 
from experimental replicates

◂



244	 Acta Neuropathol (2018) 135:227–247

1 3



245Acta Neuropathol (2018) 135:227–247	

1 3

compared to SALS patients, further studies are needed to 
expand the group size and include additional familial forms 
of ALS to confirm these findings.

In conclusion, we used IBM Watson to leverage published 
literature and semantic similarity to known ALS-RBPs find 
additional RBPs altered in ALS. This approach is a great 
addition to the usual candidate screening approaches, and 
can be used to sieve through hundreds of potential hits gen-
erated from -omics based experimental approaches and make 
literature-based rank-ordering of targets worthy of further 
validation studies. IBM Watson identified and we vali-
dated alterations in five RBPs out of seven RBPs previously 
unlinked to ALS, including novel alterations of RBMS3 
within cerebellar interneurons. The top-ten list included 
three other RBPs that were previously associated with ALS 
(RBM45, SC-35 and MTHFSD), while RBPs ranked near 
the bottom of the list failed to exhibit changes in ALS. Fur-
ther studies are required to determine if RBPs ranked high 
by Watson contain any genetic alterations that can be linked 
to ALS. The continued and future use of IBM Watson and 
other machine learning computing tools will likely acceler-
ate scientific discovery in ALS and other complex neurologi-
cal disorders.
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