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Abstract
Spike (S) proteins are an attractive target as it mediates the binding of the SARS-CoV-2 to the host through ACE-2 receptors. 
We hypothesize that the screening of the S protein sequences of all the seven known HCoVs would result in the identification 
of potential multi-epitope vaccine candidates capable of conferring immunity against various HCoVs. In the present study, 
several machine learning-based in-silico tools were employed to design a broad-spectrum multi-epitope vaccine candidate 
targeting the S protein of seven known strains of human coronaviruses. Herein, multiple B-cell epitopes and T-cell epitopes 
(CTL and HTL) were predicted from the S protein sequences of all seven known HCoVs. Post-prediction they were linked 
together with an adjuvant to construct a potential broad-spectrum vaccine candidate. Secondary and tertiary structures 
were predicted and validated, and the refined 3D-model was docked with an immune receptor. The vaccine candidate was 
evaluated for antigenicity, allergenicity, solubility, and its ability to achieve high-level expression in bacterial hosts. Finally, 
the immune simulation was carried out to evaluate the immune response after three vaccine doses. The designed vaccine 
is antigenic (with or without the adjuvant), non-allergenic, binds well with TLR-3 receptor and might elicit a diverse and 
strong immune response.
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Abbreviations
ACE-2  Angiotensin-converting enzyme 2
CTL  Cytotoxic T lymphocytes
HCoVs  Human coronaviruses
HTL  Helper T lymphocyte
RBD  Receptor binding domain
SARS-CoV-2  Severe acute respiratory syndrome corona-

virus 2
TLR-3  Toll-like receptor

Introduction

A recent study suggests that coronaviruses (CoVs) and bats 
have co-evolved for millions of years but CoVs seldom 
jumped across to infect humans (Joffrin et al. 2020). They 
were considered a comparatively harmless pathogen causing 
mild respiratory illness in humans (Song et al. 2019). But 
in the last two decades after the incidences of SARS infec-
tion in 2003 and MERS infection in 2013, the understand-
ing regarding CoVs has changed. SARS-CoV-2 has been 
reported to target pneumocytes which cause severe respira-
tory distress characterized by bronchiolitis, bronchitis and 
pneumonia (Peele et al. 2020)

SARS-CoV-2 like SARS and MERS belongs to the Coro-
naviridae family. The presence of spikes on the outer sur-
face of CoVs has a resemblance to the crown and hence 
the name corona (in Latin corona means crown) (Pandey 
et al. 2020). SARS-CoV-2 is an enveloped, positive-sense, 
single-stranded RNA beta-coronavirus with 26–32 thousand 
base pairs (de Wilde et al. 2018). Its genome encodes both 
structural like E (envelop) protein, N (nucleocapsid) protein, 
M (membrane) protein, S (spike) protein and non-structural 
proteins (nsp) like proteases (Mousavizadeh and Ghasemi 
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2020). Out of all the four structural proteins, the S protein 
plays a prominent role in the binding of the SARS-CoV-2 
to the host target receptors, especially through the ACE-2 
(angiotensin-converting enzyme 2) receptor (Wrapp et al. 
2020; Zhou et al. 2020). Cleavage of S protein by furin or 
other proteases has been reported in many of the avian and 
mammalian CoVs. The cleavage of S results in S1 which 
bears the receptor-binding domain (RBD) and S2 responsi-
ble for fusion (Wrapp et al. 2020).

Epitope-based vaccine approach has been employed 
to combat several diseases like a solid tumours (Knutson 
et al. 2001), malaria (Wang et al. 2004) and multiple scle-
rosis (Bourdette et al. 2005). Recently, many authors have 
reported epitope-based vaccine candidates for the mitiga-
tion of Covid-19 (Oany et al. 2014; Abdelmageed et al. 
2020; Enayatkhani et al. 2020; Mukherjee et al. 2020; Naz 
et al. 2020; Abraham et al. 2020). Yang et al. have com-
bined immunoinformatic methods with the deep learning 
algorithm to directly predict potential vaccine subunits from 
the S protein sequence of SARS-CoV-2 and constructed a 
multi-epitope vaccine for the SARS-CoV-2 virus (Yang 
et al. 2020b). Similarly, Singh et al. have designed multi-
epitope vaccine peptides by targeting four different struc-
tural proteins (Spike, Envelop, Membrane and Nucleocap-
sid) of SARS-CoV-2 (Singh et al. 2020). Lin et al. have 
also employed several immunoinformatic tools to design a 
multi-epitope vaccine by targeting three different structural 
proteins of SARS-CoV-2 (Lin et al. 2020).

Employing modern computational tools, several com-
pounds inhibiting different targets of SARS-CoV-2 have also 
been reported. Singh et al. have reported some 1,2,3-tria-
zole scaffolds as potential main-protease  (Mpro) inhibitors 
by using steered MD simulation studies (Singh et al. 2022). 
Employing in-silico studies, dicaffeoylquinic acid has also 
been reported as a potential S-protein and human ACE2 

fusion inhibitor (Singh et al. 2021). Although several com-
pounds have been identified and biologically evaluated for 
potential anti-SARS-CoV-2 activity, still it will take a long 
time for a new anti-COVID drug to come into the market. 
Computational studies help to reduce the initial timeline of 
drug discovery i.e., during discovery and pre-clinical stages 
but the clinical trials are still a lengthy stage. But in a short 
span of 2–3 years, several anti-COVID vaccines have been 
developed using various platforms and they have proved to 
be quite successful in containing the spread and severity 
associated with SARS-CoV-2. Moreover, the lesson learnt 
to develop a vaccine against this strain of the virus might 
come in handy in developing vaccines for different strains 
or different viruses in future.

In a short span of 2 years from the onset of Covid-19, 
several vaccines have been developed and used worldwide. 
Till now, ten vaccines have been approved for emergency 
usage by WHO (world health organization). For the first time 
novel vaccine platforms like RNA-based vaccines have been 
developed against a virus. A list of all the approved vaccines, 
their manufacturer and platform employed has been sum-
marised in Table 1.

In the present study, we have targeted the S protein of 
SARS-CoV-2 along with all the seven known strains of 
human coronaviruses (HCoVs) i.e., both alpha (HCoV-NL63 
and HCoV-229E) and beta coronaviruses (HCoV-OC43, 
HCoV-HKU1, MERS, SARS-CoV and SARS-CoV-2). As 
S protein is a common structural protein among the HCoVs, 
hence, we have taken up the S protein sequence to screen for 
potential epitopes. The objective of this study was to develop 
a broad-spectrum vaccine candidate capable of conferring 
immunity against all the seven known strains of HCoVs. 
Our hypothesis of identifying an epitope capable of provid-
ing immunity against various CoVs is also supported by 
the recent work of Mateus et al., where they have identified 

Table 1  Vaccines that have 
been approved by WHO for 
emergency use

Sr. no Vaccine Type of vaccine/vaccine platform used Manufacturer/developer

1 CoronaVac Inactivated virus SinoVac
2 Covilo Inactivated virus Sinopharm
3 Covaxin Inactivated virus Bharat Biotech
4 Covishield 

(Oxford/ Astra-
Zeneca formula-
tion)

Non-replicating viral vector Serum Institute of India

5 Vaxzevria Non-replicating viral vector Oxford/AstraZeneca
6 Ad26.COV2.S Non-replicating viral vector Janssen (Johnson & Johnson)
7 Comirnaty RNA Pfizer/BioNTech
8 Spikevax RNA Moderna
9 COVOVAX 

(Novavax formu-
lation)

Protein subunit Serum Institute of India

10 Nuvaxovid Protein subunit Novavax
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cross-reactive T-cell epitopes of SARS-CoV-2 in unexposed 
humans. They have concluded that pre-existing immunity 
could be derived from exposure to other HCoVs like HCoV-
OC43, HCoV-229E, HCoV-NL63, or HCoV-HKU1, which 
cause the common cold (Mateus et al. 2020). Yang et al. 
have reported that a vaccine candidate targeted towards the 
RBD of the S protein of SARS-CoV-2 led to the induction of 
protective immunity (Yang et al. 2020a). A flowchart sum-
marizing the methodology and tools employed for the cur-
rent work has been depicted in Fig. S2.

Materials and methods

Computational configuration of the in‑silico studies

All the immunoinformatic exercises were carried out using 
free web-based tools. For cheminformatics experiments 
like molecular docking and molecular dynamics simula-
tions were carried out by using Maestro (Release 2018–3) 
which is a commercial small-molecule drug discovery suite 
from Schrodinger Inc. (USA) on an HP computer with Linux 
Ubuntu 18.04.1 LTS operating system.

Retrieval of S protein sequences

For the present study, we have taken the sequences of S pro-
tein from seven strains of coronaviruses (CoVs): (i) NL63 
(ii) 229E (iii) OC43 (iv) HKU1 (v) MERS (vi) SARS-CoV 
and (vii) SARS-CoV-2. The sequences were retrieved in the 
FASTA format from the UniProtKB database (Apweiler 
et al.).

Prediction of T‑cell epitopes

Herein, we have predicted 9-mer CTL epitopes for each of 
the HCoV strains employing the NetMHCpan4.1 web server 
which is also recommended by IEDB (Immune Epitope 
Database) (Reynisson et al. 2020). The NetMHCpan-4.1 
server employs artificial neural networks (ANNs) to predict 
the binding of epitopes to any MHC (major histocompat-
ibility complex) molecule of known sequence. Its predic-
tion method has been developed using a combined train-
ing set of > 850,000 quantitative BA (Binding Affinity) and 
Mass-Spectrometry EL (Eluted Ligands) peptides (Reynis-
son et al. 2020). In the present study, the HLA-A*24:02 
supertype of the human leukocyte antigen (HLA) allele 
has been employed for all the predictions. The rationale 
behind selecting this supertype allele was the availability 
of a high-resolution X-ray crystal structure (PDB ID 3I6L) 
of HLA-A*24:02 in a complex with an epitope N1 derived 
from SARS-CoV N protein. The other reason behind the 
selection of this supertype was that according to Lu et al., 

one of the most common HLA-A alleles found in the Asian 
population is HLA-A*24:02 (Lu et al. 2005).

The best two 9-mer peptides from each HCoV strain were 
selected based on their binding affinity (nM) and percen-
tile rank. Thus, a total of 14 CTL epitopes were selected 
for further study. But we wanted to refine our selection of 
CTL epitopes further and hence these epitopes were put 
for epitope conservancy analysis by employing the IEDB 
tool for the epitope conservancy analysis (Bui et al. 2007). 
For the present work, linear epitope conservancy analysis 
was done with a sequence identity threshold of 100%. The 
epitopes which were conserved in all the strains (reflected 
by their minimum sequence identity) were taken up for fur-
ther analysis. The higher the value of minimum percent-
age identity, the higher the chances of those epitopes being 
conserved among all the strains. Further, these 14 epitopes 
were put for molecular docking studies using peptide dock-
ing under the Biologics suite of Maestro (Release 2018–3). 
The X-ray crystal structure of HLA-A*24:02 protein (PDB 
ID 3I6L) was retrieved from the protein data bank (PDB) 
(Berman et al. 2000; Liu et al. 2010). The retrieved pro-
tein structure was prepared using the protein preparation 
wizard of Maestro and the optimised protein structure was 
energetically minimized by employing the OPLS3e force 
field (Sastry et al. 2013; Kumar et al. 2019). The epitope 
sequences were imported into the workspace and using pep-
tide builder peptides were generated. The generated pep-
tides were energetically minimized and docked against the 
receptor grid generated at the binding site of epitope N1 
derived from SARS-CoV N protein on the HLA-A*24:02 
protein. The number of poses to return for each docking run 
was fixed at 10 as peptides are very flexible hence, several 
docking runs were used for each peptide. Each docking run 
employed a different conformation of the epitope to enhance 
the sampling (Tubert-Brohman et al. 2013). The MM-GBSA 
(molecular mechanics generalized Born model and solvent 
accessibility) was used as the scoring method which is more 
accurate than the Glide score method but less fast (Li et al. 
2011).

The epitopes were ranked based on the docking score 
and the highest-ranked CTL epitope was further put for 
molecular dynamics (MD) simulations analysis by using 
the Desmond module of the Maestro suite (Bowers et al. 
2006). The docked complex of the selected epitopes with 
the HLA-A*24:02 protein (PDB ID 3I6L) was first put for 
the system builder where the  Na+ and  Cl− were added to 
neutralize the charges. A total of 9  Na+ ions were added. 
SPC (simple point charge) was used as the solvent system 
in an orthorhombic boundary box shape. The solvated sys-
tem of epitope and the HLA-A*24:02 protein was put for 
minimization by using the SD (steepest descent) method. 
The convergence threshold was fixed at 1 kcal/mol/Å with 
a maximum iteration of 2000. A slow relaxation protocol 
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was followed for equilibration at a temperature of 300 K and 
pressure of 1.01325 bar. Nose–Hoover thermostat was used 
to maintain the temperature while Martina–Tobias–Klein 
was the barostat employed. The minimized protein-epitope 
complex was simulated for 50 ns to analyse the stability 
of the epitope-protein complex under biological conditions. 
Based on the above methodologies i.e., percentile rank, 
binding affinity, minimum percentage conservancy and 
docking score, a total of ten CTL epitopes were selected for 
the design of vaccine candidate.

Prediction of linear B‑cell epitope and helper T‑cell 
(HTL) epitopes

B-cell epitopes are a specific part of the antigen recognized 
by the B lymphocytes of our immune system. For the pre-
sent work, the BepiPred-2.0 webserver has been employed 
to predict linear B-cell epitopes of 14 sequence lengths for 
all seven HCoV strains. BepiPred-2.0 is superior to other 
sequence-based linear epitope prediction tools and employs 
RF (random forest) algorithm trained on peptides annotated 
from antigen–antibody protein complexes (Jespersen et al. 
2017). HTL epitopes of 15 sequence lengths were predicted 
using the NetMHCII 2.2 Server for all seven strains (Rey-
nisson et al. 2020). The NetMHCII 2.2 server employs arti-
ficial neuron networks to predict the binding of epitopes to 
HLA-DQ, HLA-DP, and HLA-DR alleles (Nielsen and Lund 
2009).

Multi‑epitope vaccine candidate construction 
and its conservancy analysis

The multi-epitope vaccine candidate was designed by link-
ing different epitopes and adjuvants. CTLs epitopes were 
linked through an AAY linker while HTL and B-cell epitope 
was linked using a GPGPG linker. At the N-terminal, a 50 
S ribosomal protein L7/L12 (Locus RL7_MYCTU) was 
added as an adjuvant (Accession no. P9WHE3) through an 
EAAAK linker. The adjuvant sequence was retrieved from 
the UniProt database (Bateman et al. 2017). At the carboxy-
terminal end, a 6x-His tail was also added to generate a final 
vaccine construct. The final designed vaccine peptide was 
put for conservancy analysis without the adjuvant across 
the seven strains of the selected S-protein sequences of the 
HCoVs (Bui et al. 2007).

Prediction of IFN‑gamma‑inducing epitope

Cytokines like Interferon-gamma (IFN-γ) play a crucial 
role in the immune responses by stimulating NK (natural 
killer) cells and macrophages and providing an enhanced 
response to MHC antigen. Herein we have employed the 
IFNepitope server to predict 15-mer IFN-γ epitopes for the 

designed vaccine candidate. IFN- γ epitopes were predicted 
separately for the adjuvant and the main vaccine peptide due 
to the limitation on the number of sequences that can be used 
as input in the server. The server employs a support vector 
machine (SVM) hybrid approach for the prediction of IFN-γ 
epitopes (Dhanda et al. 2013).

Antigenicity, allergenicity and assessment 
of physicochemical properties of the vaccine 
construct

Antigenicity prediction for the vaccine construct was carried 
out using ANTIGENpro (Magnan et al. 2010) and the Vaxi-
Jen2.0 server. Like ANTIGENpro the antigenicity prediction 
by VaxiJen v2.0 is alignment-free and employs the physio-
chemical parameters of the protein (Doytchinova and Flower 
2007). Allergenicity of the designed vaccine construct was 
predicted using AllerCatPro and AllergenFP servers. Aller-
CatPro predicts the allergenicity of the query proteins by 
comparing their 3D structure along with their amino acid 
sequence with a dataset of 4180 unique protein sequences 
which have been reported to be allergenic (Maurer-Stroh 
et al. 2019). To predict the allergenicity of proteins, Aller-
genFP employs a descriptor-based fingerprint approach and 
thus is an alignment-free tool (Dimitrov et al. 2014). The 
physiochemical parameters like theoretical pI, in vitro and 
in vivo half-life, amino acid composition, instability index, 
molecular weight, aliphatic index and GRAVY (grand aver-
age of hydropathicity) of the vaccine construct were ana-
lysed by the ProtParam web server (Gasteiger et al. 2005). 
The solubility of the vaccine construct was analysed by the 
Protein-Sol web server (Hebditch et al. 2017).

Secondary and tertiary structure prediction 
of the vaccine construct

The secondary structure of the designed vaccine construct 
was predicted by employing PSIPRED and RaptorX Prop-
erty web servers. PSIPRED 4.0 performed Position-spe-
cific iterated BLAST (Psi-Blast), for the identification of 
sequences that showed considerable homology to the vac-
cine peptide (McGuffin et al. 2000). These sequences were 
selected to build a position-specific scoring matrix. The Rap-
torX Property web server employs a template-free approach 
to predict the secondary structure properties of the query 
protein. Its algorithm is based on DeepCNF (Deep Convo-
lutional Neural Fields) to simultaneously predict secondary 
structure (SS), disorder regions (DISO) and solvent acces-
sibility (ACC) (Wang et al. 2016). The tertiary structure of 
the designed multi-epitope vaccine candidate was predicted 
by the I-TASSER server webserver (Yang and Zhang 2015). 
The I-TASSER (Iterative Threading Assembly Refinement) 
server is an integrated platform to predict 3D structure from 
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a peptide sequence. It generates 3D atomic models from 
multiple threading alignments and iterative structural assem-
bly simulations and has been recognized as the best server 
for the prediction of protein structure (Roy et al. 2010). The 
best 3D-model for the vaccine construct obtained from the 
I-TASSER webserver was refined first by the ModRefiner 
and then by using the GalaxyRefine server. The refinement 
of protein structures by the ModRefiner server is based on 
a two-step, atomic-level energy minimization which leads 
to improvements in both local and global structures (Xu 
and Zhang 2011). GalaxyRefine method first rebuilds side 
chains and then carries out side-chain repacking and finally 
employs MD simulation for overall structural relaxation 
(Heo et al. 2013). Finally, the refined 3D model of the vac-
cine construct was validated using ProSA-web (Wiederstein 
and Sippl 2007) and ERRAT server (Colovos and Yeates 
1993). Ramachandran plot was obtained from the protein 
structure quality tool of the Prime module in Maestro11.4.

Protein–protein docking studies

Molecular docking was carried out to understand the bind-
ing of the vaccine candidate with the TLR-3 receptor as the 
immune response depends upon the interaction between an 
antigenic molecule (here the designed vaccine candidate) 
and an immune receptor (in this case TLR-3). The first step 
in this milieu was the prediction of the binding sites of the 
proteins which was carried out using the CASTp server 
(Binkowski et al. 2003). Molecular docking of the vaccine 
candidate with the TLR3 (PDB ID: 1ZIW) (Choe et al. 2005) 
receptor was carried out using the HADDOCK 2.4 web-
server (Van Zundert et al. 2016) and GRAMM-X Simulation 
webserver (Tovchigrechko and Vakser 2006). The interac-
tions were visualized using LIGPLOT v.4.5.3 (Wallace et al. 
1995). Finally, the binding energy of the top-ranked docking 
pose of the vaccine candidate-TLR4 complex was predicted 
using the PRODIGY webserver (Xue et al. 2016).

Prediction of discontinuous B‑cell epitopes

It has been reported that more than 90% of B-cell epitopes 
are discontinuous, i.e. they comprise distantly separated seg-
ments in the pathogen protein sequence which are brought 
close by the folding of the protein (Barlow et al. 1986). 
Herein, we employed ElliPro for the prediction of discon-
tinuous B-cell epitopes of the validated 3D structure of the 
vaccine candidate (Ponomarenko et al. 2008).

In‑silico cloning and codon optimization 
of the vaccine construct

Java Codon Adaptation Tool (JCat) server was employed 
for reverse translation and codon optimization so that the 

designed multi-epitope vaccine candidate could be expressed 
in a selected expression vector (Grote et al. 2005). Codon 
optimization was carried out to express the final vaccine can-
didate in the E. coli (strain K12) host. The output of the JCat 
server comprises the codon adaptation index (CAI) and per-
centage GC content. CAI score reflects codon usage biases 
and ideally, the value of CAI should be 1.0 but a score above 
0.8 is a good score (Grote et al. 2005). The gene sequences 
of the designed vaccine candidate were optimized, and two 
restriction sites (Nde I and Xho) were introduced at the C 
and N-terminals of the sequence. In the last step, the opti-
mized gene sequence of the vaccine construct along with the 
inserted restriction sites was inserted into the pET-28a ( +) 
vector using the SnapGene programme.

Immune simulation

In-silico immune simulations were carried out for fur-
ther characterization of the immunogenicity and immune 
response profile of the designed multi-epitope vaccine 
candidate. Herein, we employed the C-ImmSim server for 
immune simulation studies which is an agent-based model 
that employs a position-specific scoring matrix (PSSM) 
(Rapin et al. 2010). Three injections were given at four 
weeks intervals by keeping all simulation parameters at the 
default setting with time steps set at 1, 84, and 168 (each 
time step is 8 h and time step 1 is injection at time = 0).

Results and discussion

Prediction of T‑cell epitopes

The goal of T-cell epitope prediction is to identify peptides 
with the shortest sequence length within an antigen that is 
capable of stimulating either CD4 or CD8 T-cells (Ahmed 
and Maeurer 2009). Antigen-presenting cells (APCs) present 
T-cell epitopes on the surface where they bind to either MHC 
class I protein or MHC-II proteins. It has been reported that 
MHC-I protein presents T-cell epitopes of 8–11 amino acid 
residue length while MHC-II presents longer peptides in 
the range of 13–17 amino acid residues (Steers et al. 2014). 
T-cell epitopes bound to MHC I protein are recognized by 
CD8 T-cells which become CTL (cytotoxic T lymphocytes), 
while those presented by MHC-II are recognized by CD4 
T-cells and become helper T-cells (Sanchez-Trincado et al. 
2017). Many authors have reported these tools for CTL 
epitope prediction not only against SARS-CoV-2 but also 
against SARS-CoV (Oany et al. 2014; Enayatkhani et al. 
2020; Naz et al. 2020; Abraham et al. 2020; Panda et al. 
2020). But this is the first such analysis involving seven 
strains of the HCoVs. Our present hypothesis to screen the 
S protein sequences of all the seven reported HCoVs for 
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identifying CTL epitopes as a potential vaccine candidate 
against SARS-CoV-2 is also supported by the recent find-
ings of Barun et al., who have demonstrated the presence of 
S-cross-reactive T cells in unexposed healthy individuals 
probably because of previous exposure to endemic corona-
viruses like 229E or OC43 (Braun et al. 2020).

A total of 142 CTL (9-mer) epitopes were predicted 
to be strong binders for the seven selected S proteins of 
different HCoVs using the NetMHCpan4.1 server with 
default settings. We selected the best two epitopes based 
on their percentile rank, binding affinity (nM) and binding 
level for each of the HCoV strains. Thus, a total of four-
teen 9-mer CTL epitopes were selected for further study. 
The conservancy analysis of these fourteen CTL epitopes 
showed that the QYIKWPWYI epitope from the SARS-
CoV-2 strain had a minimum conservancy of 66.67% 
across all the strains. Another epitope with sequence 
YYNKWPWYI from the MERS strain showed a mini-
mum conservancy of 55.56% across all the strains. Hence, 
these two CTL epitopes were selected for the final vaccine 
design. Peptide docking analysis of these epitopes with 
HLA-A*24:02 protein showed that these peptides showed 
favourable binding with the protein. But we selected only 
one CTL epitope (NYNYLYRLF) which showed the high-
est docking score of -12.759 kcal/mol. MD simulations 
study for this epitope showed that the epitope-protein 
complex was stable throughout the simulations period as 
reflected by their RMSD (root mean square deviation) plot 
in Fig. 1. A histogram representing the interaction of the 
epitopes with the amino acid residues of the protein was 
also plotted as shown in Fig. 2. The non-bonding interac-
tions were similar to the ones observed during peptide 

docking studies, but water bridges were formed with 
LYS66, HIS70, ASP74, TYR84, THR143 and GLN155 
residues. A 2D interaction diagram (Fig. 3) suggested that 
apart from intermolecular H-bond interactions, there were 
quite several intramolecular H-bond interactions that could 
make the epitope-protein complex more stable. The impor-
tance of intramolecular H-bonding for the epitopes binding 
to HLA-A*24:02 protein has also been highlighted by Liu 
et al. (Liu et al. 2010). Several other authors like Abra-
ham et al. and Enayatkhani et al. have also employed MD 
simulation studies to analyse the stability of the designed 
epitopes and protein complex (Enayatkhani et al. 2020; 
Abraham et al. 2020). Hence, for the final vaccine design, 
a total of ten CTL epitopes (Table 2) were selected out 
of which seven were the best-ranked epitope from each 
strain, and two were the best-conserved epitope across all 
the strains and one was the best-docked epitope with HLA-
A*24:02 protein.

Prediction of linear B‑cell epitope and Helper T‑cell 
(HTL) epitopes

A total of seven 14-mer B-cell epitopes (Table 2) were 
selected based on the epitope threshold and relative sur-
face accessibility as predicted by the BepiPred2.0 server. 
A total of seven 15-mer high-binding MHC-II epitopes 
(Table 2) for human alleles HLA-DR, HLA-DQ and HLA-
DP as predicted by the NetMHCII 2.2 webserver was 
selected. Some of the B-cell epitopes and HTL epitopes 
overlapped.

Fig. 1  RMSD plot of CTL-
epitope 2 in complex with HLA-
A*24:02 protein, where blue 
colour shows protein RMSD 
while red colour shows ligand 
RMSD
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Fig. 2  Histogram of the CTL-epitope contact with HLA-A*24:02 protein where green colour shows hydrogen bonding, grey colour shows 
hydrophobic interactions, blue colour shows water bridges, and pink colour shows ionic interactions

Fig. 3  A schematic of detailed ligand atom interaction of CTL-
epitope with HLA-A*24:02 protein (PDB ID 3I6L) in 2D where 
green colour shows hydrophobic interactions, blue colour shows polar 
interactions, pink arrows H-bond. Note: Interactions that occur more 

than 30.0% of the simulation time in the selected trajectory (0.00 
through 50.02 ns), are shown. The percentage indicates the percent of 
simulation time for which contact was observed between the epitope 
and the receptor
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Multi‑epitope vaccine candidate construction 
and its conservancy analysis

The final multi-epitope vaccine constructs comprised 10 
CTL epitopes, 7 linear B-cell epitopes, and 7 HTL epitopes. 
The predicted CTL epitopes were joined by using an AAY 
linker while B-cell epitope and TL epitopes were fused 
with GPGPG linkers. The 50S ribosomal L7/L12 (Locus 
RL7_MYCTU) was selected as the adjuvant to accentuate 
antigen-specific immune responses and fused at the N-ter-
minal by using the EAAAK linker. Finally, to help in pro-
tein identification and purification a 6xHis tail was inserted 
at the carboxy-terminal end of the vaccine peptide. Thus, 
the final multi-epitope vaccine candidate was constructed 
with a total of 532 amino acid residues derived from 24 
merged multi-epitopes. The final designed vaccine pep-
tide was put for conservancy analysis without the adjuvant 
across the seven strains of the selected S-protein sequences 
of the HCoV strains. The sequences of the vaccine can-
didate showed a minimum and maximum conservancy of 
73.97% across all the strains of the HCoVs. A higher degree 
of conservation across all the HCoV strains might confer 
broader protection across multiple strains by recognition 
of the conserved epitopes by our immune system. Hence, 
we hypothesize that this vaccine construct which has more 
than 73% of sequences conserved across the seven HCoV 
strains might be a potential broad-spectrum vaccine candi-
date against HCoVs.

Prediction of IFN‑gamma‑inducing epitope

Due to the restriction on the number of residues that can 
be used as input in the IFNepitope server, IFN-γ inducing 
epitopes were predicted separately for the adjuvant and main 
vaccine peptide. For the adjuvant, a total of 127 potential 
IFN-γ inducing epitopes (15-mer) were predicted. For the 
main vaccine peptide, 389 potential 15-mer epitopes were 
predicted out of which 82 had a positive prediction score.

Antigenicity, allergenicity and assessment 
of physicochemical properties of the vaccine 
construct

As per the predictions of the VaxiJen 2.0 server, the anti-
genicity of the vaccine constructs along with the adjuvant 
sequence was found to be 0.7106 in a bacteria model at a 
threshold of 0.5 while the main vaccine sequence without the 
adjuvant showed a score of 0.8135. As per the predictions 
of the ANTIGENpro server the probable antigenicity of the 
vaccine candidate with the adjuvant was 0.829721 while 
without the adjuvant was 0.869507. This result indicates 
that the designed vaccine candidates are antigenic (with 
or without adjuvant) in nature. The main vaccine sequence 
seems to be more antigenic without the adjuvants as per the 
predicted scores. The allergenicity of the vaccine candidate 
was predicted by the AllerCatPro and AllergenFP servers 
and both predicted it to be non-allergenic. The molecular 
weight (MW) of the final vaccine candidate was predicted 
to be 56.5 kDa. The theoretical isoelectric point (pI) value 
was predicted to be 7.11. The half-life was predicted to be 
30 h in mammalian reticulocytes (in vitro), > 10 h in E. coli 
and > 20 h in yeast (in vivo). The instability index (II) was 
computed to be 22.81 which classifies the vaccine candidate 
to be stable. It had an aliphatic index of 79.29 which sug-
gests it to be thermostable (Ikai 1980). The GRAVY score 
for the vaccine candidate was computed to be − 0.407 which 
indicates that it could be hydrophilic (Ali et al. 2017). The 
predicted scaled solubility value was computed to be 0.432 
which indicates that the vaccine construct would have an 
acceptable solubility profile.

Secondary and tertiary structure prediction 
of the vaccine construct

The secondary structure of the final multi-epitope vaccine 
peptide was computed, and it was predicted to have 20% 
alpha-helix, 20% beta-sheet and 59% coil (Fig. 4). The 

Table 2  List of the selected 
CTL, HTL and linear B-cell 
epitopes from S protein 
sequences of different HCoV 
strains for constructing the 
multi-epitope vaccine candidate

*CTL epitopes selected based on the epitope conservancy analysis
# CTL epitope selected based on the docking score

HCoV strains CTL epitopes (9-mer) B-cell epitopes (14-mer) HTL epitopes (15-mer)

229E FYINGYRYF PDGFYSTSPIQPVE VQVEYLQITSTPIVV
NL63 FYINGFKYF ITGVPYPVSGIREF VSTFVGILPPTVREI
OC43 TYYNSWQNL KNRRSRRAITTGYR QSYKGIKVLPPLLSE
HKU1 VYLNTTLLF LGINEEKCGTQLNH, QSFNGIKVLPPILSE
MERS LYGGNMFQF

YYNKWPWYI*
IADPGYMQGYDDCM TIKYYSIIPHSIRSI

SARS VYSTGVNVF NVSKGIYQTSNFRV IVAYTMSLGAENSIA
SARS-CoV-2 VYSTGSNVF

QYIKWPWYI*
NYNYLYRLF#

APATVCGPKKSTNL IVAYTMSLGAENSIA
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Fig. 4  Representation of the secondary structure of the vaccine sequence (showing strand, helix and coil) as predicted by the PSIPRED
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solvent accessibility of amino acid residues as predicted 
by the RaptorX property server showed that 49% of the 
total residues were exposed, 24% were medium exposed 
and 26% was buried. A total of 42 residues i.e., 7% of resi-
dues were computed to be in the disordered region. Five 
tertiary structure models of the final vaccine construct were 
predicted by the I-TASSER server based on 10 threading 
templates, of which PDB hits 1dd4A, 5tsjN, 1rquA, 2nbiA, 
1dd3A, 2ocwA and 2ftc were the best hits. All of the 10 
selected templates showed good alignment which was evi-
dent from their Z-score values which ranged from 1.02 to 
5.35. The first model (Fig. 5a) was selected for further refin-
ing which had an estimated C-score of 0.77, TM score of 
0.62 ± 0.14 and RMSD value of 9.2 ± 4.6 Å. The C-score 
range is between − 5 and 2, where higher values towards 

2 indicate higher confidence. The TM-score is an indica-
tion of the structural similarity between two structures and 
unlike RMSD, it is not sensitive to local error (Zhang and 
Skolnick 2004). From the TM value of the selected model, 
we can infer that the model has the correct topology. This 
selected model was further put for refining first by ModRe-
finer and then by GalaxyRefine server which generated five 
models (Table 3). According to the model quality scores 
(Table 2) for all the five refined models, model 3 (Fig. 5b) 
was found to be the best model. It had a GDT-HA score of 
0.9408, RMSD value of 0.443, MolProbity score of 2.072, 
clash score of 11.3 and a poor rotamers score was 0.2. The 
Ramachandran plot score for model 3 was predicted to be 
91.5% which was less when it was put for validation by the 
Ramachandran plot analysis. The Ramachandran plot of the 

Fig. 5  Tertiary structure modelling, refining and validation. a The 
final homology 3D model of the vaccine construct as computed by 
the I-TASSER. b Refinement of the selected I-TASSER 3D model by 
GalaxyRefine where the refined 3D model (coloured) has been super-

imposed on the initial crude model (grey). c Ramachandran plot of 
the refined 3D model of the vaccine candidate d Plot by ProSA-web 
showing the Z-score

Table 3  Detailed result of 
the five models refined by the 
GalaxyRefine server

Model GDT-HA RMSD MolProbity Clash score Poor rotamers Rama favoured

Initial 1.0000 0.000 3.083 61.4 2.0 88.1
MODEL 1 0.9314 0.467 2.126 12.6 0.5 91.1
MODEL 2 0.9305 0.476 2.111 11.6 0.5 90.6
MODEL 3 0.9408 0.443 2.072 11.3 0.2 91.5
MODEL 4 0.9375 0.465 2.180 14.2 0.5 90.9
MODEL 5 0.9337 0.457 2.122 12.1 0.5 90.8
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selected model 3 (Fig. 5c) suggests that it's 94.528% of the 
residues are in the favourable region with 2.64% of residues 
in the allowed region. The overall quality factor was com-
puted by the ERRAT server and for the selected model 3, it 
was predicted to be 86.235. The ProSA-web computed the 
Z-score for model 3 and it was found to be − 2.41 (Fig. 5d).

Protein–protein docking studies

The CASTp 3.0 server was employed to compute the 
protein binding and hydrophobic interaction sites on the 
surface of the TLR-3 receptor and the final refined 3D 
model of the vaccine construct. A total of 105 binding 
pockets were predicted for the vaccine candidate with dif-
ferent molecular surface areas and volumes. Similarly, for 
the TLR-3 protein (PDB ID 1ZIW), a total of 77 binding 
pockets were predicted. For the present work, a pocket 
(Fig. 6a) with a molecular surface area of 2125.000 Å2 
and volume of 13,438.169 Å3 was selected for the TLR-3 
receptor. For the vaccine candidate, the selected pocket 
(Fig. 6b) had a molecular surface area of 917.628 Å2 and 
a volume of 2414.204 Å3. Both the proteins were put for 
molecular docking simulations first using the GRAMM-
X server which led to the generation of ten binding 
poses. The poses were visualised using the DIMPLOT 
of LIGPLUS version 4.5.3 and the best-docked pose of 
the vaccine-TLR-3 complex in 3D has been depicted in 
Fig. 7a and b. The non-bonding interactions between the 
docked protein complex were also visualized in 2D and 
have been shown in Fig. 8. It was observed that ARG306, 
TYR526, ANS521 and GLY46 residues of the vac-
cine construct showed hydrogen bonding with TRP273, 
ANS247, LEU243 and HIS432 residues of the TLR-3 

protein respectively. The 2D interaction plot also showed 
a possible salt bridge between GLU307 and GLY46 of the 
vaccine construct with the LYS272 and SER481 of the 
TLR-3 protein. Further, the best-docked pose was put for 
the prediction of binding affinity (ΔG) and dissociation 
constant  (Kd). The binding energy (ΔG) for the vaccine-
TLR-3 complex was computed to be − 20.8 kcal/mol with 
a Kd value of 5.9 ×  1016 M at 25.0 ℃. The Prodigy server 
also calculated the number of interfacial contacts (ICs) per 
property within the threshold distance of 5.5 Å and its ICs 
charged-charged, ICs polar-polar, and ICs apolar-apolar 
were computed to be 14, 7 and 64 respectively. It suggests 
that most of the interfacial contacts were hydrophobic.

The HADDOCK2.4 server clustered 103 structures 
in 14 clusters, which represent 51% of the water-refined 
model generated by the HADDOCK. The clusters were 
ranked on several parameters and out of the 14 clusters, 
cluster 3 (cluster size 10) was reported to be the best clus-
ter. It had a HADDOCK score of − 79.4 ± 7.1, RMSD 
from the overall lowest-energy structure was 43.8 ± 0.4, 
Van der Waals energy − 100.6 ± 15.7 kcal/mol, Electro-
static energy − 415.7 ± 78.8 kcal/mol, Desolvation energy 
− 27.2 ± 4.0 kcal/mol and Z-Score − 1.5. The detailed 
result for all the clusters has been depicted in Figs.  9 
and 10. The best pose from cluster 3 was also put for the 
prediction of binding affinity (ΔG) and dissociation con-
stant  (Kd). The binding energy (ΔG) was computed to be 
− 20.3 kcal/mol with a Kd value of 1.3 ×  1015 M at 25.0 ℃ 
which was similar to that of the best docked pose gener-
ated by the GRAMM-X server. The ICs charged-charged, 
ICs polar-polar, and ICs apolar-apolar were computed to 
be 16, 7 and 25 respectively.

Fig. 6  The selected binding pocket of the proteins as predicted by the CASTp3.0 server. a The predicted binding pocket of the TLR-3 protein. b 
The predicted binding pocket of the vaccine candidate
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Prediction of discontinuous B‑cell epitopes

The ElliPro server predicted a total of 7 discontinuous B-cell 
epitopes of the validated 3D structure of the vaccine candidate 
comprising 270 residues. The conformational B-cell epitopes 
had scores ranging from 0.598 to 0.875 where the best epitope 
had only three residues while the last ranked epitope com-
prised of 8 residues. This study suggests that the designed 

multi-epitope vaccine might lead to heightened immune 
response through the conformational B-cell epitopes also.

In‑silico cloning and codon optimization 
of the vaccine construct

Immunoreactivity through serological assays is needed to 
validate a designed vaccine candidate and the first step for it 

Fig. 7  Visualization of the best-docked poses for the vaccine-TLR-3 
receptor complex. a 3D-interaction diagram of the protein–protein 
complex generated by the GRAMM-X server where blue mesh struc-
ture represents the vaccine candidate while coloured ribbon shows 

the TLR-3 receptor. b 3D-interaction diagram of the protein–protein 
complex generated by the HADDOCK2.4 server where the blue rib-
bon represents the vaccine candidate while the orange ribbon shows 
the TLR-3 receptor

Fig. 8  2D-interaction diagram of the protein–protein complex generated by the GRAMM-X server where chain A is from the TLR-3 receptor 
and chain B is the vaccine construct
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is the expression of the multi-epitope vaccine candidate in a 
suitable host (Gori et al. 2013). Escherichia coli expression 
systems have been widely used to produce recombinant pro-
teins and hence to achieve maximal protein expression, we 
selected the E. coli (strain K12) system for the codon opti-
mization by the Java Codon Adaptation Tool (JCat) (Chen 
2012; Rosano and Ceccarelli 2014). The optimized codon 
sequence for the final vaccine candidate was 1596 with a 
CAI value of 0.9237 and 53.57% of GC content. Ideally, 
the GC content should be in the range of 30% to 70% and 
hence, our vaccine candidate might show high-level expres-
sion in the bacterial host system. Finally, the optimized 
gene sequences of the designed vaccine candidate with two 
restriction sites (Nde I and Xho) at the C and N-terminals 
of the sequence were inserted into the pET-28a ( +) vector 
using SnapGene software to generate the sequences of the 
recombinant plasmid (6892 bp) as shown in the supplemen-
tary file (Fig. S1).

Immune simulation

The immune stimulation by the C-ImmSim server showed 
results that are consistent with actual immune responses. 
The primary response after the first dose of the vaccine 
was characterized by increased levels of IgM as shown 
in Fig. 11a. After the second and third doses of the vac-
cine, there was a remarkable increase in the levels of IgG1, 
IgG1 + IgG2, IgM, and IgG + IgM antibodies (Fig. 11a). 
The level of IgM + IgG peaked after the third dose to 
around 2,30,000 and IL-2 level (after 2nd dose) was around 
9,00,000 which suggests a strong humoral immune response 
which is better than reported by Abraham et al. (around 
2,00,000 for IgM + IgG after 3rd dose and IL-2 level was 
around 7,50,000 ng/ml after 2nd dose) for multi-epitope vac-
cine design against SARS-CoV-2 (Abraham et al. 2020). 
Similarly, when compared to Shey et al. for multi-epitope 
vaccine candidates (the level of IgM + IgG was around 

Fig. 9  Bokeh plot showing the result of various parameters for all the clusters by the HADDCOK2.4 server. a Plot between HADDOCK score 
and FCC (fraction of common contacts). b Plot depicting HADDCOK score vs interface-RMSD

Fig. 10  Bokeh plot depicting the analysis of various energy parameters for all the clusters as predicted by the HADDOCK2.4 server. a Van der 
Waals energy b Electrostatic energy c Restraints energy
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6,50,000) against onchocerciasis our designed vaccine-elic-
ited stronger immune response (Shey et al. 2019). It was also 
observed that after the second exposure the population of 
the antigen was also falling which indicates increased clear-
ance by the immune system. B-cell population (Fig. 11b) 
and especially the B-memory cell population (> 800 cells 
per  mm3) also increased and peaked after the third dose. 
Similarly, a greater response was observed in the cytotoxic 
T-cells (Fig. 11c) and helper-T cell populations (Fig. 11d) 
with corresponding memory development which lasted for 
many months. It was also observed that the levels of IFN-γ 
and IL-2 (Fig. 11e) increased significantly after the first dose 
of the vaccine and maintained their peak levels after multiple 
exposures to the antigen. The Simpson index, D which indi-
cates a measure of diversity, predicted this vaccine candidate 
to have a diverse immune response. This diverse immune 
response might be possible as the vaccine comprises differ-
ent epitopes.

Conclusions

In the present study, several machine learning-based in-silico 
tools were used to design a potential broad-spectrum multi-
epitope vaccine candidate against spike protein of human 
coronaviruses. To the best of our knowledge, it is one of 
the first studies, where multiple B-cell epitopes and T-cell 
epitopes (CTL and HTL) were predicted from the spike pro-
tein sequences of all the seven known human coronaviruses. 
The final vaccine candidate was found to have a minimum 
conservancy of 73.97% across all the seven HCoV strains 
and it might protect from SARS-CoV-2 as well as other 
HCoVs. The designed vaccine is predicted to be antigenic 
and non-allergenic. Its physicochemical properties are also 
in the acceptable range. Molecular docking of the refined 
tertiary structure of the vaccine candidate with the TLR-3 
protein also indicated its favourable binding with the TLR-3 
receptor. In-silico cloning study indicated that the designed 
vaccine candidate might show high-level expression in the 
bacterial host system. The immune simulation analysis sug-
gests that the vaccine might elicit a strong immune response 
and when compared to other similar publications which have 
reported immune simulation for the designed vaccines, our 

designed vaccine candidate induced a higher level of immu-
noglobins (IgM + IgG), immunocomplexes and interleukins 
(IL-2). The Simpson index, D which indicates a measure of 
diversity, predicted this vaccine candidate to have a diverse 
immune response. The major limitation of this study is that 
it’s a computational study. MD simulation could have been 
done for 100 ns for more epitopes rather than one epitope 
that we selected based on the docking analysis. A popula-
tion-wise study can also be done to understand the immune 
response elicited by the vaccine construct among different 
races. The predictions made by different in-silico tools need 
to be validated through various immunological assays.
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