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Purpose: Investigation of the community-level symptomatic onset risk

regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

variants of concern, is crucial to the pandemic control in the new normal.

Methods: Investigated in this study is the spatiotemporal symptom onset risk

with Omicron BA.1, BA.2, and hamster-related Delta AY.127 by a joint analysis

of community-based human mobility, virus genomes, and vaccinations in

Hong Kong.

Results: The spatial spread of Omicron BA.2 was found to be 2.91 times

and 2.56 times faster than that of Omicron BA.1 and Delta AY.127. Identified

has been an early spatial invasion process in which spatiotemporal symptom

onset risk was associated with intercommunity and cross-community human

mobility of a dominant source location, especially regarding enhancement of

the e�ects of the increased intrinsic transmissibility of Omicron BA.2. Further

explored is the spread of Omicron BA.1, BA.2, and Delta AY.127 under di�erent

full and booster vaccination rate levels. An increase in full vaccination rates

has primarily contributed to the reduction in areas within lower onset risk. An

increase in the booster vaccination rate can promote a reduction in those areas

within higher onset risk.

Conclusions: This study has provided a comprehensive investigation

concerning the spatiotemporal symptom onset risk of Omicron BA.1, BA.2,

and hamster-related Delta AY.127, and as such can contribute some help to

countries and regions regarding the prevention of the emergence of such as

these variants, on a strategic basis. Moreover, this study provides scientifically

derived findings on the impact of full and booster vaccination campaigns

working in the area of the reduction of symptomatic infections.
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Introduction

Designated as a variant of concern by the World Health

Organization (WHO) on November 26th 2021 (1), the Omicron

variant has become the dominant variant circulating globally (2).

Currently, the sub-variants of Omicron are mainly divided into

five groups: BA.1, BA.2, BA.3, BA.4, and BA.5 (3, 4). Of these,

the BA.1 subvariant was initially the predominant of the global

Omicron lineage, but the global proportion of COVID-19 cases,

associated with the BA.2 variant had been increasing rapidly

(5–8). Hong Kong had generally well controlled the attack of

all former prominent COVID-19 variants, but resultantly the

people had acquired little immunity from infections. During the

global Omicron wave, Hong Kong became one of the global

cities that suffered the most from BA.1 and BA.2 variants

one after another (9). The BA.2 sub-group in Hong Kong, in

particular, is unique when compared to variants, seen in the rest

of the world due to unique mutations found in ORF1a: A2909V

and ORF3a: L140F (10). It is also of note that, at the same

time, an unusual cluster of probable hamster-to-human SARS-

CoV-2 transmission due to the SARS-CoV-2 AY.127 variant

has appeared in Hong Kong (11). Hong Kong’s COVID-19

case fatality rate was one of the highest in the world (12),

at the peak of the previous wave of outbreaks. Faced with a

surge in cases during the previous epidemic wave, Hong Kong

and other regions, fearing a more severe development of the

disease, focused on prevention, and the early investigation of

symptomatic cases (13). This is, now, currently the aim and

practice of other countries and regions of the world, which now

have likewise, rapidly aimed to prevent the worsening cases and

deaths regarding the latest epidemic wave of COVID-19 (14, 15).

To achieve early detection and treatment of symptomatic cases,

it is necessary to effectively monitor and predict the risk level

of symptomatic cases at the community level, the latter now

becoming the focus of current epidemic prevention work in

various countries (16–18).

Thus, in order to support more effective control of the

spread of SARS-CoV-2 sub-lineages in such as Hong Kong

and other countries, it is worthwhile to effectively predict

and understand the spatiotemporal symptom onset risk

for Omicron BA.1, BA.2, and hamster-related Delta

AY.127 during the early spread stages. More importantly,

the impact of COVID-19 vaccination, at the time of

spatiotemporal symptom onset risk with Omicron BA.1,

BA.2, and Delta AY.127 would provide benefits, if further

explored (19).

Omicron BA.1 was detected for the first time, in virus gene

sequencing samples from local airline pilots in Hong Kong

as early as December 28th, 2021 (20). After that, BA.1

spread rapidly within the territory and, in fact, became a

dominant variant until mid-January 2022. On January 16th,

2022, BA.2 was first detected in a virus sample from a local case

entering the community after being infected during quarantine.

It replaced BA.1 as the current dominant virus strain in

Hong Kong, for a very short period, as the current dominant

virus strain in Hong Kong. During this period, beginning on

January 17th, 2022, the Delta SARS-CoV-2 AY.127 variants

were continuously detected in virus samples from a cohort

of employees and customers of a hamster pet store (21).

During the early stages of the spread of these variants in

Hong Kong, multipronged measures were taken to increase

the uptake and pace of the vaccination, in terms of the

inactivated (Sinovac) or mRNA (BioNTech) COVID-19 vaccine

(22). From mid-December 2021 to early February 2022, the

full vaccination rate in Hong Kong was increased from 61.3 to

64.3%, and the booster vaccination rate was increased from 3.7

to 12.8% (23).

Thus, in order to understand the spatiotemporal spread of

Omicron BA.1, BA.2, and Delta AY.127 in Hong Kong, firstly

determined will be the SARS-CoV-2 sequences in these cases

by whole-genome sequencing of respiratory specimens or deep

throat saliva from the above cases, to determine the possible

transmission linkage based on their phylogenetic relatedness

(24–27). By the identified sequences and epidemiological link

of these cases, the enhanced urban-community-level weighted

kernel density estimation (WKDE) model (28–31) will then, be

proposed to predict the spatiotemporal COVID-19 symptom

onset risk of Omicron BA.1, BA.2, and Delta AY.127 in 291

Tertiary Planning Units (TPUs) of Hong Kong (Figure 1).

(i) Locations with symptomatic cases resided/visited, (ii)

locations with positive sewage testing results, (iii) time-varying

vaccination rate and vaccination efficiency (6, 32–36) were

incorporated to enhance the WKDE model. Based on the onset

risk prediction results during the first 20 days, simulated were

the early spatiotemporal spread of Omicron BA.1, BA.2, and

Delta AY.127 under different scenarios and with different full

and booster vaccination rate levels. The spatiotemporal data

of the daily symptom onset cases in 291 TPUs of Hong Kong

from December 26th, 2021, to February 4th, 2022, are utilized

regarding the development of this study.

Methods

Data sources

This current study, involved the full genome sequencing

and thereby concerned respiratory specimens or deep throat

saliva from laboratory-confirmed COVID-19 patients admitted

to both the main hospital, and the temporary hospital

adjacent to the community treatment facility in Hong Kong.

To enable the whole viral genome sequencing of patients’

specimens to be conducted, the PCR tiling of the SARS-CoV-

2 virus with rapid barcoding protocol was used (Version:
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FIGURE 1

The daily full and booster variation rates of Sinovac and BioNTech vaccine in Hong Kong from February 22nd, 2021 to February 4th, 2022.

mrt_9127_v110_revH_14Jul2021) on Nanopore GridION MK1

(Oxford Nanopore Technologies) (37). Between Dec 2021 and

Feb 2022, a total of 652 cases were reported in Hong Kong.

Because of a high number of reported cases, only the

symptomatic cases were admitted to hospitals for treatment,

whereas asymptomatic cases were mostly quarantined at home.

We recruited all the positive cases from five public hospitals

during that period for whole viral genome analysis. A total

of 573 cases was collected and sequenced, which account for

87.9% of the total cases during the study period. Throughout

the whole-genome sequencing process, data on i) 34 local cases

with Omicron BA.1, ii) 231 local cases with Omicron BA.2, and

iii) 16 local cases with Delta AY.127 during the period from

December 2021 to February 2022, along with spatiotemporal

information, were used in this study. Transmission clusters

were defined by clear epidemiological linkage and onset-time

relationship (27). The detail of local cases and transmission

clusters used in this study have been made public in the

Next Strain dataset (38). In addition, location data collected

from sewage sample(s) tested positive during the period from

December 2021 to February 2022 has also been used in this

study (39).

To quantify the daily humanmobility effects on the COVID-

19 epidemic in all 219 TPUs, daily traffic flow data covering all

Hong Kong’s strategic routes between and including the entirety

of December 2021 to February 2022, were used in this study

(40). The COVID-19 vaccines used in Hong Kong were the

Sinovac Vaccines and BioNTech Vaccines. In order to measure

the impact of full and booster vaccinations on the COVID-

19 epidemic, Hong Kong’s daily vaccination rates were used

from February 22nd, 2021, to February 4th, 2022 (23) (Figure 1).

The vaccination effectiveness of BioNTech and Sinovac against

symptomatic diseases for Omicron and Delta was determined,

based on previous studies (33, 41–43) (Supplementary Table 1).

In addition, the daily COVID-19 effective reproductive number

R was obtained from December 2021 to February 2022 from

reports by The University of Hong Kong (44).

An enhanced urban-community-level
WKDE model for predicting the onset risk
of COVID-19 symptoms

The SARS-CoV-2 has been found to have a high viral load

and levels of transmissibility around the date of symptom onset

(45, 46). Hence, it is necessary to adopt appropriate data-driven

spatiotemporal models to dynamically and individually assess

onset risk levels. Shi et al. developed an extended weighted

kernel density estimation (WKDE) model (28–31). This model

presents a retrospective analysis based on spatiotemporal

information regarding onset cases, and presents an inference of

the infection date of each onset case, and further infers the spatial

distribution (i.e, the kernel density surface) of the infection risk

to people by the onset cases at past dates, and finally to predict

the distribution of onset risk at future dates (28–31). In addition,

according to the transmission law of COVID-19 (i.e., mainly

through direct, indirect, and close contact between people), data

on the dynamic flow of people was introduced into the model to

improve prediction accuracy (28–31). The improvedmodel is an

extended WKDE model (28–31).

As a further development of the original extended WKDE

model, the urban-community-level WKDE model, proposed in

this study, includes the following three steps (28–31):

a) Conducting a retrospective analysis of the historical existence

likelihood of the infection in each community location in

which an onset case had remained at the location and an

onset case suffered by a visitor to the location;

b) Making inferences on the historical existence likelihood of

the infection in the entire city;

c) Making predictions about the epidemic onset risk in the

entire city on a given day in the near future.

The main difference between the urban-community-level

WKDE model and the original extended WKDE model was

that at step (b) of the model, the historical existence likelihood

of an infection in a random location in the entire region was
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formulated as

PInfection(S, ti) = n(ti)−1
n(ti)∑

j=1

R(S, ti)×(1− VE(S, ti)× Vp(S, ti))

× MInter − TPU(S, ti)×MInter − TPU(S, ti)

× PInfection(Lj, ti)× Kh(S− Lj) (1)

where PInfection(S, ti) is the probability of any individual infected

with COVID-19 infecting others in a random location, S, in

the city on day ti; R(S, ti) denotes the COVID-19 effective

reproductive number in the city on day ti; VE(S, ti) denotes the

vaccine effectiveness against symptomatic diseases in the city on

day ti (6, 32–36); VP(S, ti) is the proportion of the population

who have been fully vaccinated in the city on day ti; Lj is the

j-th location among the province places where the onset cases

resided; PInfection(L, ti) denotes the probability that one onset

case was infected on day ti in a location L; andKh(S – Lj) denotes

a Gaussian kernel between locations S and Lj(28–31). The values

of PInfection (Lj, ti), Kh (S – Lj), and h were determined in earlier

model procedures (28–31).

Mintra_TPU (S, ti) denotes a human mobility factor within a

TPU containing location S on day ti, calculated as follows (28–

31):

M int ra_TPU(S,ti)=i−1
∑i

k=1
Xk (2)

where Xk denotes the daily traffic flow within the TPU

containing location S on day tk prior to ti.

MinterTPU (S, ti) denotes a human mobility factor from

other TPUs to the TPU containing location S, calculated as

follows (28–31):

M int er_TPU(S,ti)=i−1
∑i

k=1
Yk (3)

where Yk denotes the daily traffic flow from other TPUs to the

TPU containing location S on day tk prior to ti.

Finally, the predicted risk in each location was divided by the

maximum predicted risk among all locations on a specific date

and thereby standardized to a value between 0 and 1. Different

levels of onset risk have been defined as follows: low onset risk

(0–0.2), low-medium onset risk (0.2–0.4), medium onset risk

(0.4–0.6), medium-high onset risk (0.6–0.8), and high onset risk

(0.8–1). The reliability of the predicted COVID-19 onset risk

was evaluated using its spatial significance, i.e., the percentage of

symptom onset cases on a future date to be predicted that would

occur in the areas with a predicted onset risk >0.8 (identified as

onset hotspots) (28–31).

Results

Whole genome phylogenetic analysis

The whole genome sequencing results from, and including

December 2021 to February 2022 have been used in this study.

A total of 225 cases were identified as Omicron BA.1 from

the period: December 2021 to January 2022. Of these cases,

the majority (n = 191, 84.89%) were identified as imported

cases and did not leak into the local community. Based on the

phylogenetic analysis of the local cases, in late December 2021,

two Omicron BA.1 strains were introduced to this community

via aircrews exempt from quarantine. Each strain established

discrete transmission chains: 8 local cases belonged to the Moon

Palace cluster; 26 local cases belonged to the North Point cluster

(Figure 2A). The locations of 34 local cases in these two clusters,

are shown separately in Figure 2B.

A total of 329 cases was identified as Omicron BA.2, in

which 231 were local cases. The source was thought to be

a Pakistan housewife infected by another returnee living in

an adjacent room of the quarantine hotel. This particular

woman further infected nine family members, following her

completion of the compulsory quarantine period. The family

cluster eventually sparked the largest scale of COVID-19

epidemic in Hong Kong (Figure 2C). The locations of the

premises which suffered clusters of 329 cases are shown in

Figure 2D.

In addition to the Omicron variant, a total of 16 local cases

was genotyped as Delta AY.127 (Figure 2E). These cases were

attributed as hamster-to-human transmission and occurred

owing to evidence of the variant within pet shops (10). The

locations of the premises visited by the 16 local cases are shown

in Figure 2F.

How Omicron BA.1, BA.2, and Delta
AY.127 spread spatiotemporally

The COVID-19 symptom onset risk in 291 TPUs in

Hong Kong, during the early 20 days of the emergence and

spread of Omicron BA.1, BA.2, Delta AY.127, was first predicted

and further analyzed using the urban-community-level WKDE

model. (i) 34 local Omicron BA.1 cases, (ii) 231 local Omicron

BA.2 cases, and (iii) 16 local Delta AY.127 cases, with

spatiotemporal information from Hong Kong during the period

from December 26th, 2021, to February 4th, 2022, were used in

the model. The prediction accuracy of the urban-community-

level WKDEmodel was over 85% for symptom onset risk during

the following seven days (28–31) (Figure 3). Such an ‘outlier-

performance’ should be attributed to the incorporation of (i)

Locations with case resided/visited, (ii) locations with positive

sewage testing results, (iii) time-varying vaccination rates, and

vaccination efficiency.

The emergence and spread of Omicron BA.1, BA.2, and

Delta AY.127 during the first 20 days after these sub-

linages entered the community could be described by the

spatiotemporal variation of the predicted risk of COVID-

19 symptom onset and the intensity of intra-TPU mobility
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FIGURE 2

The Phylogeny trees and geographic locations of cases with Omicron BA.1, BA.2, and Delta AY.127. (A,B) indicates the Phylogeny trees and

geographic locations of cases with Omicron BA.1. (C,D) indicates the Phylogeny trees and geographic locations of cases with Omicron BA.2.

(E,F) indicates the Phylogeny trees and geographic locations of cases with Delta AY.127. (A) Phylogeny tree of Omicron BA.1. (B) The geographic

locations of clusters of Omicron BA.1. (C) Phylogeny tree of Omicron BA.2. (D) The geographic locations of clusters of Omicron BA.2. (E)

Phylogeny tree of Delta AY.127. (F) The geographic locations of clusters of Delta AY.127.

(i.e., the traffic flow within the community) and inter-TPU

mobility (i.e., the traffic flow across communities) as follows

(Figure 4). Starting fromOmicron BA.1 entering the community

in Hong Kong, it can be seen that the TPUs in Tuen

Mun, in which the related cases first appeared, started to

reach high and medium-high onset risk level. Since then,
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FIGURE 3

The accuracy of the predicted risk of COVID-19 symptom onset by urban-community-level WKDE models, and 95% confidence interval of

prediction accuracy (28–31). (A) Accuracy of the predicted risk of COVID-19 symptom onset by urban-community-level WKDE models. The

predicted onset risk is a normalized value of between 0 and 1, hence, indicating risk relative to the highest predicted risk among all locations, on

the date for which the risk of symptom onset is predicted, hereafter termed “the prediction date”. The prediction accuracy is defined as the

percentage of onset cases in those areas for which the predicted onset risk was higher than 0.8 on the prediction date. The time interval denotes

the period between the base date (The base date refers to the date on which the onset risk for the next 14 days is predicted) and the date of

prediction. The horizontal line in the box denotes the median, while the lower and upper edges of the box represent the respective first and third

quartiles. The lines emanating from the box upwards and downwards represent the respective maximum and minimum values. (B) 95%

confidence interval of the mean accuracy of the predicted risk of COVID-19 symptom onset by urban-community-level WKDE models.

due to the high intra-TPU human mobility in Tuen Mun,

the number of high-risk TPUs in Tuen Mun continued to

expand (Figures 4, 5A). At the same time, Omicron BA.1

spread to other distant TPUs with a similar high human

mobility to that in Tuen Mun, such as TPUs in North

Point, Sham Shui Po, Tai Po, and Sha Tin (Figures 4, 5B,C).

These TPUs also became or at high or medium-high onset

risk (Figures 5B,C). By the 20th day after Omicron BA.1

entered the community, there were 53 TPUs at high onset

risk (Figure 5D), and involving 2,191,586 people (Table 1). In

addition, the areas around the above, with high population

mobility were also at medium or medium-low onset risk

(Figures 4, 5D).

Omicron BA.2 also spread from the TPUs in Kwai Chung

to TPUs with high population mobility within the human

mobility network (Figures 4, 5E–H). The speed of spatial spread

of Omicron BA.2 was obviously faster than that of BA.1.

When Omicron BA.2 entered the community on the 10th day,

almost all TPUs of high human mobility were at high onset

risk, such areas included Sham Shui Po, Tuen Mun, Shatin,

Causeway Bay, Tai Po, Yuen Long, Sheung Shui (Figures 4,

5G). TPUs in high-risk areas were 7.83 times more likely than

in the period of the BA.1 spread. In fact, 3,043,894 more

people were at high-onset-risk TPUs (Table 1). By the 20th

day after Omicron BA.2 entered the community, other TPUs

around these high-mobility TPUs were founded to be also

at high onset risk (Figure 5H), making a final total of 154

(Figure 5H). There were 3,782,243 more people in the high-risk

area relative to the same period of the Omicron BA.1 spread

(Table 1).

The spread speed of the hamster-related Delta AY.127,

was slower than that of both Omicron BA.1 and BA.2,

despite its spread throughout the human mobility network

(Figures 5I–K). On the 20th day when Delta AY.127 entered

the community, only 43 TPUs of high population mobility

in Wong Tai Sin, Shatin, Kwun Tong, Causeway Bay were at

high onset risk (Figure 5L). On the 20th day of the spread

of Omicron BA.1 and BA.2, TPUs at high-onset-risk were

respectively, 1.23 times and 3.55 times greater than that

of Delta AY.127 during the same period. There were also

3,808,802 and 26,559 more people in high-onset-risk TPUs

with the spread of Omicron BA.1 and BA.2 than with that

with Delta AY.127 in the same period (Table 1). The impact

of Delta AY.127 on those TPUs which surrounded these

particular TPUs with high humanmobility, appears to have been

relatively limited.

In addition, during the 20 days of the spread of Omicron

BA.1, BA.2, Delta AY.127, and according to the exploration

of the correlation between the intensity of intra-TPU/inter-

TPU mobility and the symptom onset risk (Table 2), it can

be found that the intensity of population mobility within

the community promotes spread of these variants to adjacent

areas. For example, on the 20th day after the start of the

Omicron BA.2 spread, the R2 between the intensity of intra-

TPU mobility and the symptom onset risk reached 0.87, this

being 0.0344 and 0.0967 higher than that of Omicron BA.1,

Delta AY.127 (Table 2). Similarly, the intensity of population

mobility across communities promotes the spread of variants to

other communities with closely-connected traffic. For example,

on the 20th day after the start of Omicron BA.2 spread, the R2
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FIGURE 4

The intensity of intra-TPU and inter-TPU mobility of Hong Kong from December 2021 to February 2022. (A) The intensity of intra-TPU mobility

of Hong Kong. (B) The intensity of inter-TPU mobility of Hong Kong.

between the intensity of inter-TPU mobility and the symptom

onset was 0.0394 and 0.1188 higher than that for Omicron

BA.1, Delta AY.127 (Table 2). The effect of intra-TPU/inter-

TPU human mobility on the spatial spread of Omicron BA.1,

BA.2, and Delta AY.127 became more and more significant

over time.

We further compared the variations in the overall symptom

onset risk of 291 TPUs within 20 days of Omicron BA.1, BA.2,

and Delta AY.127 entering the community. The overall onset

risk increased from 0.06 to 0.58 within 20 days of Omicron

BA.1 spread (Figure 6). The overall risk of disease increased

from 0.25 to 0.86 within 20 days of the spread of Omicron

BA.2, which was a 1.16-fold increase over the risk of spread of

Omicron BA.1 (Figure 6). By the 20th day of Omicron BA.2

entering the community, the overall symptom onset risk in

Hong Kong was already at the high-onset-risk level. In contrast,

the overall risk increases in the first 20 days of Delta AY.127

spread decreased by 58 and 78% relative to the Omicron BA.1

and BA.2 periods, respectively (Figure 6). By the 20th day of

Delta AY.127 entering the community, the overall symptom
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FIGURE 5

Predicted risk of COVID-19 symptom onset across 291 TPUs in Hong Kong within 20 days after Omicron BA.1, BA.2, and Delta AY.127 (A–L). The

predicted COVID-19 symptoms onset risk was generated using the urban-community-level WKDE model. (A) 5th day after Omicron BA.1

entered the community. (B) 10th day after Omicron BA.1 entered the community. (C) 15th day after Omicron BA.1 entered the community. (D)

20th day after Omicron BA.1 entered the community. (E) 20th day after Omicron BA.2 entered the community. (F) 10th day after Omicron BA.2

entered the community. (G) 15th day after Omicron BA.2 entered the community. (H) 20th day after Omicron BA.2 entered the community. (I)

5th day after Delta AY.127 entered the community. (J) 10th day after Delta AY.127 entered the community. (K) 15th day after Delta AY.127

entered the community. (L) 20th day after Delta AY.127 entered the community.

onset risk in Hong Kong was still at low-medium onset risk level

(Figure 6).

The spatiotemporal symptom onset risk
with Omicron BA.1, BA.2, and Delta
AY.127 under di�erent vaccination
scenarios

According to the variation of the overall onset risk in 291

TPUs in Hong Kong, the overall symptom onset risk (the mean

value of the symptom onset risk in 291 TPUs) increased by

0.53, 0.62, and 0.28 within 20 days of Omicron BA.1, BA.2, and

Delta AY.127 entering the community (Figure 6). The overall

onset risk of Omicron BA.1 and BA.2 on the 20th day after

entering the community even reached the medium onset risk

level and the high-onset-risk level, respectively. Previous studies

have found that vaccination, especially booster vaccination,

has significantly improved protection against the symptomatic

infection of Omicron and Delta. However, only limited full

and booster vaccine occurred increased in Hong Kong because

Sinovac and BioNTech vaccination appears to have limited effect
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TABLE 1 Number of people living in high-onset-risk communities

during the spread of Omicron BA.1, BA.2 and Delta AY.127 in

Hong Kong.

5th day 10th day 15th day 20th day

Omicron BA.1 385,242 666,544 1,579,093 2,191,586

Omicron BA.2 2,165,027 3,710,438 4,871,710 5,973,829

Delta AY.127 47,441 384,156 597,313 2,165,027

in reducing overall onset risk. Thus, simulations were made

on how to strengthen vaccination so as to further decrease the

symptom onset risk of Omicron BA.1, BA.2, and Delta AY.127

in Hong Kong, in particular, the booster vaccination rates. The

simulation was conducted in (i) the current full and booster

vaccination rate, (ii) 5 times the full vaccination rate and the

current booster vaccination rate, (iii) 5 times the full and booster

vaccination rate, (iv) 10 times the full vaccination rate and the

current booster vaccination rate, and (v) 10 times the full and

booster vaccination rate. During the simulation process, the

vaccine effectiveness of Sinovac and BioNTech Vaccine, which

decreases over time, were also taken into account.

The temporal variation of the daily overall onset risk values

within 20 days of Omicron BA.1, BA.2, and Delta AY.127

entering the community in Hong Kong under the above five

scenarios, were explored to reflect the effects of improved full

and booster vaccination rate (Figure 7). Within 20 days of

Omicron BA.1 entering the community, the full vaccination

rate was increased by 5 times (an increase of 175,000 people

receiving the Sinovac vaccine, 170,000 people receiving the

BioNTech vaccine) or 10 times (an increase of 394,000 people

receiving the Sinovac vaccine, 383,000 people receiving the

BioNTech vaccine), the overall symptom onset risk decreased

by an average of 7.89 and 24.22% respectively (Figure 7A). On

this basis, when the booster vaccination rate was increased, by

5 times (an increase of 323,000 people receiving the Sinovac

vaccine, 444,000 people receiving the BioNTech vaccine) and

10 times (an increase of 726,000 people receiving the Sinovac

vaccine, 1,000,000 people receiving the BioNTech vaccine), the

overall symptom onset risk was further reduced by an average

of 12.25 and 16.90% (Figure 7A). Compared with Omicron

BA.1, the effect of increased vaccination rate on the reduction

of overall symptom onset risk was relatively less within 20

days of Omicron BA.2 entering the community. When the

full vaccination rate was increased by 5 times (an increase of

165,000 people receiving the Sinovac vaccine, 278,000 people

receiving the BioNTech vaccine) and 10 times (an increase of

371,000 people receiving the Sinovac vaccine, 627,000 people

receiving the BioNTech vaccine), the overall onset risk was

reduced by 4.16 and 21.01% respectively (Figure 7B). When

the booster vaccination rate was also increased by 5 times

(an increase of 429,000 people receiving the Sinovac vaccine,

967,000 people receiving the BioNTech vaccine) and 10 times

(an increase of 965,000 people receiving the Sinovac vaccine,

2176,000 people receiving the BioNTech vaccine), the overall

onset risk was further reduced by 7.36 and 11.49% (Figure 7B).

An increased vaccination rate was also effective in reducing

the risk of symptom onset due to the hamster-related Delta

AY.127. When the full vaccination rate was increased by 5

times (an increase of 148,000 people receiving the Sinovac

vaccine, 266,000 people receiving the BioNTech vaccine) and

10 times (an increase of 334,000 people receiving the Sinovac

vaccine, 600,000 people receiving the BioNTech vaccine), the

overall onset risk was reduced by 25.30 and 58.54% (Figure 7C).

When the booster vaccination rate was also increased by 5

times (an increase of 539,000 people receiving the Sinovac

vaccine, 1,080,000 people receiving the BioNTech vaccine) and

10 times (an increase of 1,210,000 people receiving the Sinovac

vaccine, 2,450,000 people receiving the BioNTech vaccine), the

overall onset risk was further reduced by 32.37 and 23.63%

(Figure 7C).

Furthermore, the onset risk in all 291 TPUs which had 5

to 10 times the current daily full and booster vaccination rate,

on the same date, was obviously lower than the risk with the

current daily full and booster vaccination rate (Figure 8). When

full vaccination rate was increased by 5 times and 10 times,

the symptom onset risk in each TPU caused by Omicron BA.1

transmission decreased by 21.83 and 32.76% (Figures 8A–C),

respectively, especially for medium and medium-low onset risk

TPUs around areas of high human mobility. Over 91.79% of

medium and medium-low onset risk TPUs had a maximum

90.15% reduction regarding symptom onset risk. When the

booster vaccination rate increased by 5 or 10 times, the

symptom onset risk would decrease by 32.45 and 43.12%,

especially for these medium-high onset risk TPUs around areas

of high human mobility (Figures 8B–D). Over 97.82% of the

medium and medium-high onset risk TPUs had a maximum

56.48% reduction in symptom onset risk. Likewise, the increased

vaccination rate had a clear effect on reducing the risk of

Omicron BA.2 (Figures 8E–H). When the full and booster

vaccination rate was increased 10 times, the symptom onset risk

in each TPU was reduced by an average of 25.86% (Figure 8G).

However, compared with Omicron BA.1, the effect of increasing

the full and booster vaccination rate on the reduction of the

symptom onset risk of Omicron BA.2 appears to be mainly

for TPUs of medium-low and medium onset risk, respectively.

The symptom onset risk in these TPUs was reduced by up

to 82.34% (Figures 8B–D). In addition, increasing vaccination

rates had the most significant effect on reducing the risk

of hamster-associated Delta AY.127 (Figures 8I-L). When the

full and booster vaccination rate was increased by 10, the

symptom onset risk in each TPU was reduced by an average

of 92.13% (Figure 8L). in fact, more than 80.97% of TPUs
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TABLE 2 The correlation between the symptom onset risk and the intensity of intra-TPU and inter-TPU mobility during the spread of Omicron BA.1,

BA.2 and Delta AY.127 in Hong Kong.

Sublineages Human mobility R
2 (5th day) R

2 (10th day) R
2 (15th day) R

2 (20th day)

Omicron BA.1 With the intensity of intra-TPU mobility 0.7254 0.7601 0.7979 0.8370

With the intensity of inter-TPU mobility 0.6756 0.7424 0.7758 0.7957

Omicron BA.2 With the intensity of intra-TPU mobility 0.7649 0.8068 0.8397 0.8714

With the intensity of inter-TPU mobility 0.7154 0.7791 0.8118 0.8351

Delta AY.127 With the intensity of intra-TPU mobility 0.6427 0.7093 0.7486 0.7747

With the intensity of inter-TPU mobility 0.5815 0.6566 0.6744 0.7163

FIGURE 6

Daily overall risk of COVID-19 symptom onset in Hong Kong within 20 days after Omicron BA.1, BA.2, and Delta AY.127.

at high onset risk had an average of 83.21% lower symptom

onset risk.

Discussion

Currently, with the widespread vaccination (47, 48) and the

results of previous infections (49, 50), the COVID-19 immunity

barrier in some regions was gradually established. Even for

the Omicron variant, previous studies have shown that the

COVID-19 vaccine is effective in preventing serious illness

and death caused by Omicron (51–53). The pandemic, hence,

entered another phase. As regards the advent of medically

critical illnesses, one of the results is the necessity to minimize

and prevent undue stress on the health care sector and thereby

produce adequate care for patients, has become one of the keys

to the development of epidemic prevention efforts (54). As a

result, major countries in the world have begun to focus on

symptomatic cases, especially severe cases, in epidemiological

surveillance (17, 55). For example, the US CDC requires that

case investigation should focus on symptomatic cases and

assessing COVID-19 community levels (16). In Hong Kong,

which when at the peak of the epidemic in March of 2022, due

to the surge in cases, in order to avoid the overuse of medical

resources, the focus of epidemic prevention and control has also

been on the monitoring and treatment of symptomatic cases,

especially severe cases. Hence, this study provides an analysis

and comparison of the spatiotemporal symptom onset risks

associated with Omicron BA.1, BA.2, and hamster-related Delta

AY.127 during their early spread at 291 TPUs in Hong Kong,

to support Hong Kong and the world to better deal with these

new variants. Of importance, in this respect, is that, based on

the SARS-CoV-2 sequences and the epidemiological link of

symptomatic cases determined by whole-genome sequencing,

this study used the enhanced urban-community-level WKDE

model to enable the prediction of the symptom onset risk with

SARS-CoV-2 variants. Furthermore, the spatiotemporal spread

of Omicron BA.1, BA.2, and hamster-related Delta AY.127

under different full and booster vaccination scenarios have also

been analyzed.
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FIGURE 7

Daily overall symptom onset risk with the full and booster vaccination rate increased by 5 or 10 times during the 20 days when Omicron BA.1,

BA.2, and Delta AY.127 entered the community. (A) indicates daily overall symptom onset risk of Omicron BA.1. (B) indicates daily overall

symptom onset risk of Omicron BA.2. (C) indicates daily overall symptom onset risk of Delta AY.127.
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FIGURE 8

The average daily percentage reduction in the symptom onset risk in 291 TPUs of Hong Kong with 5 times or 10 times the current daily full and

booster vaccination rate, compared with the current daily full and booster vaccination rate. (A-D) indicates the average daily percentage

reduction in the symptom onset risk of Omicron BA.1 in 291 TPUs. (E-H) indicates the average daily percentage reduction in the symptom onset

risk of Omicron BA.2 in 291 TPUs. (I-L) indicates the average daily percentage reduction in the symptom onset risk of Delta AY.127 in 291 TPUs.

(A) Average daily percentage reduction in the onset risk in 291 TPUs with 5 times current daily full vaccination rate—Omicron BA.1. (B) Average

daily percentage reduction in the onset risk in 291 TPUs with 5 times current daily full and booster vaccination rate—Omicron BA.1. (C) Average

daily percentage reduction in the onset risk in 291 TPUs with 10 times current daily full vaccination rate—Omicron BA.1. (D) Average daily

percentage reduction in the onset risk in 291 TPUs with 10 times current daily full and booster vaccination rate—Omicron BA.1. (E) Average daily

percentage reduction in the onset risk in 291 TPUs with 5 times current daily full vaccination rate—Omicron BA.2. (F) Average daily percentage

reduction in the onset risk in 291 TPUs with 5 times current daily full and booster vaccination rate—Omicron BA.2. (G) Average daily percentage

reduction in the onset risk in 291 TPUs with 10 times current daily full vaccination rate—Omicron BA.2. (H) Average daily percentage reduction

in the onset risk in 291 TPUs with 10 times current daily full and booster vaccination rate—Omicron BA.2. (I) Average daily percentage reduction

in the onset risk in 291 TPUs with 5 times current daily full vaccination rate—Delta AY.127. (J) Average daily percentage reduction in the onset

risk in 291 TPUs with 5 times current daily full and booster vaccination rate—Delta AY.127. (K) Average daily percentage reduction in the onset

risk in 291 TPUs with 10 times current daily full vaccination rate—Delta AY.127. (L) Average daily percentage reduction in the onset risk in 291

TPUs with 10 times current daily full and booster vaccination rate—Delta AY.127.

With the use of whole genome sequencing technology, the

SARS-CoV-2 sequences and related cluster of symptomatic

cases, within 20 days after Omicron BA.1, BA.2, and Delta

AY.127 entered the community, were identified. Timely

use of whole genome sequencing can greatly facilitate

outbreak investigation and understanding of the cryptic

chain of transmission, to further help to explore the

spatiotemporal symptom onset risk. Based on i) locations

with symptomatic cases, ii) locations with positive sewage

testing results, and iii) time-varying vaccination rate and

vaccination efficiency to strengthen the urban-community-

level WKDE model, the model achieved a high accuracy

with more than 85% in the onset risk prediction of

future 7 days.
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Thus, the spatiotemporal variation of the symptom onset

risk with Omicron BA.1, BA.2, Delta AY.127 during the

associated first 20 days of transmission in Hong Kong could be

analyzed. The results are shown in this study:

i) The spatial transmissibility ability of Omicron BA.2 is

obviously stronger than that of Omicron BA.1 and Delta

AY.127. By the 20th day after Omicron BA.2 entered the

community, a total of 154 TPUs were at high onset risk,

which were 2.91 and 3.56 times faster than the spread of

Omicron BA.1 and Delta AY.127. There were 3,782,243 and

3,808,802 more people in the high-risk area communities

than during the same period of spread of Omicron BA.1

and Delta AY.127. Conversely, the spatiotemporal spread

of hamster-relate Delta AY.127 was weaker than that of

Omicron BA.1 and BA.2. On the 20th day when Delta

AY.127 entered the community, only 43 TPUs of high

population mobility were at high-onset-risk, which were

0.28 and 0.81 times of that in the same period as Omicron

BA.2, BA.1 spread. There were also 3,808,802 and 26,559

fewer people in high-onset-risk TPUs than that with

Omicron BA.2, BA.1 in the same period.

ii) Omicron BA.1, BA.2, and Delta AY.127 all started to

emerge at the high human mobility community level linked

with the traffic flow network. Afterwards, the intensity

of human mobility within the community continued to

promote the spread of the above SARS-CoV-2 variants

to adjacent areas. The intensity of human mobility across

communities further continued to promote the spread of

SARS-CoV-2 variants to other communities of high human

mobility levels, further away. Among these, the effect of

inter-community and cross-community humanmobility on

the enhancement of the spatiotemporal spread of Omicron

BA.2 was much more significant than that of Omicron

BA.1 and Delta AY.127. This enhancement accumulated

over time.

iii) The spread of Omicron BA.1, BA.2, and Delta AY.127 also

had a certain impact on the temporal variation of the overall

symptom onset risk in Hong Kong over time, but the impact

intensity was different. The overall symptom onset risk

increased from 0.25 to 0.86 within 20 days of the spread

of Omicron BA.2, which was 1.16 times increase during

the spread of Omicron BA.1. The overall symptom onset

risk in Hong Kong was already at a high-onset-risk level.

In contrast, by the 20th day of Delta AY.127 entering the

community, the overall symptom onset risk in Hong Kong

increased only to the low-medium risk level. The overall risk

increases within 20 days of Delta AY.127 spread decreased

by 58% and 78% relative to the respective Omicron BA.1

and BA.2 periods.

Through the simulation and comparison of the

spatiotemporal symptom onset risk with Omicron BA.1,

BA.2, and Delta AY.127 under different scenarios with different

levels of full and booster vaccination rates, this study also

provides a scientific reference for areas attacked by SARS-CoV-2

variants. The results show that:

1) When the full vaccination rate is increased, the overall

symptom onset risk with Omicron BA. 1, BA.2, and Delta

AY.127 in Hong Kong is effectively reduced. If the booster

vaccination rate is further increased, the overall symptom

onset risk can be likewise, further reduced. Within 20

days of Omicron BA.1 entering the community, when

the full vaccination rate was increased by 394,000 people

receiving the Sinovac vaccine and 383,000 people receiving

the BioNTech vaccine, the overall symptom onset risk

decreased by an average of 24.22%. On this basis, when the

booster vaccination rate was increased by 726,000 people

receiving the Sinovac vaccine, and 1,000,000 people receiving

the BioNTech vaccine, the overall symptom onset risk was

further reduced by an average of 16.90%. Compared with

Omicron BA.1, the reduction effect of increased vaccination

rate on the overall symptom onset risk of Omicron BA.2

was lower. When the full vaccination rate was increased by

371,000 people receiving the Sinovac vaccine, and 627,000

people receiving the BioNTech, the overall onset risk was only

reduced by 4.16 and 21.01%. When the booster vaccination

rate was further increased by 965,000 people receiving

the Sinovac vaccine, and 2,176,000 people receiving the

BioNTech vaccine, the overall onset risk was further reduced

by 7.36 and 11.49%. Increased vaccination rates were most

effective in reducing the risk of symptom onset due to

hamster-related Delta AY.127. When the full vaccination

rate was increased by 334,000 people receiving the Sinovac

vaccine, and 600,000 people receiving the BioNTech vaccine,

the overall onset risk was reduced by 25.30 and 58.54%.

When the booster vaccination rate was increased by 1210,000

people receiving the Sinovac vaccine, and 2,450,000 people

receiving the BioNTech vaccine, the overall onset risk was

further reduced by 32.37 and 23.63%.

2) The increased full and booster vaccination rates can

effectively reduce the symptom onset risk for each TPU.

The above reduction effect is different for Omicron BA.1,

BA.2, and Delta AY.127. For Omicron BA.1, when the full

vaccination rate was increased by 10 times, the symptom

onset risk in each TPU decreased by 32.76%, especially for

medium and medium-low onset risk TPUs around areas of

high human mobility. When the booster vaccination rate

was also increased by 10 times, the symptom onset risk

decreased by 43.12%, especially for the medium-high onset

risk TPUs, around areas of high human mobility. But for

Omicron BA.2, when the full and booster vaccination rates

were increased by 10 times, although onset risk in each

TPU was reduced by an average of 25.86%, the reduction

effect seemed to be mainly for TPUs of medium-low and

medium onset risk. The reduction effect of the symptom

onset risk for TPUs originally at high and medium-high risk
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was more limited. Additionally, increasing vaccination rates

could have the most significant effect on reducing the risk of

hamster-associated Delta AY.127. When the full and booster

vaccination rates were increased 10 times, the simulated

symptom onset risk in each TPU was reduced by an average

of 92.13%, even for TPUs of high onset risk.

This current study has several limitations worthy of further

examination. Firstly, the traffic flow data used in this study

to measure daily human mobility is composed only of the

official total population traffic flow on major arterial roads

in Hong Kong. This restricts our exploration of COVID-

19 symptom onset risk in different age groups and genders

facing Omicron BA.1, BA.2, and Delta AY.127. Recently, we

are applying to China Mobile Hong Kong for the main

relevant mobile phone signaling data of different age groups

to analyze their daily mobility, which has the potential to

support the further exploration of COVID-19 symptom onset

risk in people of different ages and genders. Secondly, lack of

vaccine efficacy data related to sub-variants, the vaccination

effectiveness against Omicron and Delta has been used in this

study. However, the predictive performance of this proposed

model can be even further improved if further sufficiently

reliable vaccine effectiveness data against Omicron BA.1, BA.2,

and Delta AY.127, especially for Sinovac vaccines, can be

achieved. Importantly the acquisition of reliable effective vaccine

data against Omicron BA.1, BA.2, and Delta AY.127 related to

different age groups and genders, will further strengthen the

additional study of COVID-19 symptom onset risk for different

ages and different genders.

WHO requests countries and regions to continue to be

vigilant, to monitor and report new sequences, as well as to

conduct independent and comparative analyses of the different

Omicron sub-lineages (2). Furthermore, WHO also encourages

countries and regions to share available data on transmissibility

and severity of variants, and their impact on diagnostics and

vaccines (2). As the study has provided a comprehensive

investigation about the spatiotemporal symptom onset risk of

Omicron BA.1, BA.2, and Delta AY.127, we hope that this

study can assist countries and regions to prevent the emergence

of these variants on a strategic basis. Moreover, for countries

and regions where the new SARS-CoV-2 variant Omicron has

appeared, this study provides scientifically derived findings on

the impact of the full and booster vaccination campaigns on

reducing the symptomatic infection.
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