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Heterogeneous cell populations form an interconnected network that determine their collective
output. One example of such a heterogeneous immune population is tumor-infiltrating lymphocytes
(TILs), whose output can be measured in terms of its reactivity against tumors. While the degree of
reactivity varies considerably between different TILs, ranging from null to a potent response, the
underlying network that governs the reactivity is poorly understood. Here, we asked whether one
can predict and even control this reactivity. To address this we measured the subpopulation
compositions of 91 TILs surgically removed from 27 metastatic melanoma patients. Despite the large
number of subpopulations compositions, we were able to computationally extract a simple set of
subpopulation-based rules that accurately predict the degree of reactivity. This raised the conjecture
of whether one could control reactivity of TILs by manipulating their subpopulation composition.
Remarkably, by rationally enriching and depleting selected subsets of subpopulations, we were able
to restore anti-tumor reactivity to nonreactive TILs. Altogether, this work describes a general
framework for predicting and controlling the output of a cell mixture.
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Introduction

The collective output of heterogeneous cell populations is
dictated by a complex network of interactions that span the
molecular, cellular, and environmental levels (Benoist et al,
2006; de Visser et al, 2006). A major question is whether
simple rules can be applied to predict and control the output of
such cell populations, made of different cell types. One
approach to address this question is to study the behavior of
individual subpopulations composing the heterogeneous cell
mixture in isolation. However, the behavior of each subpopu-
lation is often altered in the presence of other cell types and
factors. An alternative approach is to search for a set of
explanatory genes and markers that correlate with the output
of a cell mixture using high throughput technologies such as
microarrays (Van’t veer et al, 2002; Segal et al, 2004). Although
microarrays are effective for analyzing homogeneous

populations of cells, they loose their predictive power when
applied to heterogeneous populations due to large variability

and averaging effects. One useful approach for quantitatively

measuring the percentage of different subpopulations char-

acterized by specific receptors or markers in a cell mixture is

flow cytometry (Perfetto et al, 2004). Flow cytometry was used

earlier for the purpose of analyzing immune subpopulations to

predict the clinical outcome and tumor metastasis in breast

and colorectal cancer patients (Kohrt et al, 2005; Pages et al,

2005). Following this line of studies, we use multiple

subpopulation flow cytometry measurements to ask whether

the overall behavior of a heterogeneous population can be

predicted and controlled by the composition of its subpopulation

constituents.
As a system model for a heterogeneous population of cells,

we use tumor-infiltrating lymphocytes (TILs). TILs are an
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example of an immune population composed of different
lymphocytic subpopulations that are derived from a tumor
mass and have specificity and potential reactivity against the
tumor. The phenomenon of circulating, as well as infiltrating
lymphocytes in cancer patients was documented in a wide
variety of solid tumors including primary brain tumors,
epithelial cancers, and others (Vose et al, 1977; Romero et al,
1998; Lee et al, 1999). Presently, TILs are used in a clinical
protocol called adoptive cell transfer for metastatic melanoma
treatment. This treatment consists of TIL isolation from a
tumor mass, their functional evaluation as determined by the
levels of Interferon-g (IFN-g), expansion and re-injection back
into the patient (Dudley et al, 2003). Because of their potential
reactivity against tumors, TILs are extensively studied
(Puisieux et al, 1994; Zhang et al, 2003; Terabe and Berzofsky,
2004; Bronte et al, 2005). Yet, despite their clinical importance,
little is known about the underlying composition and cellular
interactions that determine the degree of TIL reactivity and
consequentially on how to control their reactivity.

In this study, we measure the subpopulation frequencies of
TIL populations originating from different melanoma terminal
patients. We show that none of the individual subpopulations
examined in this study is capable of accurately predicting the
collective TIL response to cancer cells. However, by using a
simple computational model, one can generate a set of rules

that accurately predict the degree of TIL reactivity in terms of
its subpopulation constituents. Guided by these rules, we were
able to control the reactivity of TILs by rational manipulation
of their subpopulation composition. This enabled us to turn
nonreactive TILs into reactive ones and vise versa (the
workflow is summarized in Figure 1A).

Results

Different TILs show a wide range of anti-tumor
reactivity levels even when extracted from the
same patient

Metastatic melanoma tumors originating from the lymph
nodes, lung, liver, spleen, and skin were surgically removed
from 27 different patients. This study was approved by
the Israeli Ministry of Health (Approval No. 3518/2004,
ClinicalTrials.gov Identifier NCT00287131), and informed
consent was obtained from all patients. At least two TILs were
extracted from each patient tumor resulting in 91 different TILs
(see Materials and methods; Supplementary Excel S1).

As a first step, the reactivity of the TILs was determined by
measuring IFN-g secretion, which is a major criterion for
determining T-cell activity, after incubation with autologous
melanoma. By using the clinical threshold of 200 pg/ml IFN-g,
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Figure 1 A schematic workflow of TIL characterization, analysis, and reactivity control. (A) TILs were extracted from surgically removed tumor mass originating from
metastatic melanoma patients. Each TIL was characterized by functional evaluation of IFN-g secretion levels followed by subpopulation fraction measurements using
flow cytometry. This information was combined into a multiparametric model for prediction and rule-based description of TIL reactivity. Following this analysis, specific
subpopulations were rationally selected for enrichment and depletion thus enabling control of TIL reactivity against melanoma. (B) Different cell surface receptors define
specific T-cell subpopulations with distinct functional states. Some of these receptors are mutually exclusive (e.g. a mature T-cell will show either a CD8 or a CD4),
whereas other receptors may appear simultaneously on the same cell.
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39 TILs cultures were classified as reactive and 52 as
nonreactive. Importantly, different TILs from the same patient
and tumor mass, produced different reactivity levels varying
from a potent to a null response (see Materials and methods).

TILs are composed of a wide range
of subpopulations

The immune subpopulation compositions of the TIL cultures
were characterized using standard multicolor flow cytometry
by counting the number of cells in each subpopulation and
calculating its fraction out of the entire population. The
markers used for subpopulation mapping included combina-
tions of triple staining from the pool of the following surface
receptors: CD3, CD4, CD8, CD25, CD28, CD33, CD56, CD69,
CD85, CD94, CD152 (Figure 1B) and the intracellular cytotoxic
proteins, perforin and granzyme B. Each triple staining of
three different receptors X, Yand Z resulted in 6 single staining
(Xþ , X�, Yþ , Y�, Zþ , Z�), 12 double staining (e.g. XþY�),
and 8 triple staining (e.g. XþYþZ�). The single, double,
and triple staining produces a hierarchy of subpopulation

characterization ranging from general to more specific
subpopulations. Overall, we measured 102 subpopulations
for each of the TILs (Supplementary Table SI; Supplementary
Excel S1). Each TIL is represented as a vector of subpopulation
frequencies, for example, see Supplementary Figure S1. A
quality control filtering procedure was used to omit subpopu-
lations whose frequency was near the technical sensitivity
limitation of flow cytometry (see Materials and methods),
yielding a final dataset in which each TIL is characterized by 33
features: 31 distinct subpopulations, perforin and granzyme B
(Supplementary Table SII; Supplementary Excel S2). We
observed a wide range of frequency distributions for the
different subpopulations (Supplementary Figure S2).

Individual subpopulations are partially predictive
of TIL reactivity

To study whether any individual subpopulation can be used to
differentiate between reactive and nonreactive TILs, we
performed TIL reactivity prediction based on individual
subpopulation frequencies (see Materials and methods). The
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Figure 2 Individual subpopulations are partially predictive of TIL reactivity. For each subpopulation, blue and red dots indicate 39 reactive and 52 nonreactive TILs. The
y-axis is the percentage of cells that belong to a specific subpopulation. The black horizontal bars indicate the optimal cutoff for classifying reactive and nonreactive TILs.
The MCC classification accuracy of each subpopulation is shown at the bottom.
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prediction accuracies of different subpopulations ranged
between 0 and 0.49 in terms of Matthews correlation
coefficients (MCCs) with sensitivity of up to 80% and a
specificity of 68% (Figure 2; Materials and methods). These
limited classification accuracies suggest that the frequency of
any individual subpopulations is a limited predictor of the cell
mixture collective output.

A combination of subpopulations accurately
predicts TIL reactivity

To examine whether the incorporation of multiple subpopula-
tions can significantly improve the reactivity prediction
accuracy, we applied a support vector machine (SVM) model
(see Materials and methods) (Noble, 2006). The prediction
accuracy of the SVM model was MCC¼0.74 (sensitivity of 91%
and specificity of 88%) compared with an MCC¼0.49 achieved
by the best individual subpopulation. These results emphasize
the importance of combining different subpopulation fractions
for accurately predicting cell mixture reactivity, rather than
looking at a specific subpopulation. These results are in
accordance with the ‘multiplayer’ nature of the immune
system (de Boer and Perelson, 1991; Benoist et al, 2006;
Frankenstein et al, 2006; Noble, 2006). The misclassifications
may be explained by flow cytometry sensitivity limitations,
important subpopulations that were not measured, and the

inherent stochasticity of the system. The fact that a high
accuracy of prediction can be achieved by the SVM indicates
that there is an underlying pattern connecting a combination
of subpopulations and the collective TIL reactivity. However,
the SVM model does not lend itself easily to biological
interpretation. In the next two sections, we turn to investigate
the underlying biological rational and subpopulation inter-
play, which govern TIL reactivity.

Reactive and nonreactive TILs have distinct
subpopulation signatures

The usage of differential gene expression signatures has
become a well-established method for distinguishing between
various cellular states and different pathological conditions
(Golub et al, 1999). We extend this concept to heterogeneous
cell populations, by using a similar notion of a ‘subpopulations
signature.’ Unsupervised hierarchical clustering was applied
on the subpopulation signatures as shown in Figure 3, where
each column corresponds to a TIL culture and the rows
represent subpopulations. Two significant clusters emerge,
each representing a profile of CD4 and CD8 enriched subsets.
These two markers represent regulatory and cytotoxic T-cell
subpopulations, respectively (Figure 1B). Interestingly, the
two clusters also separate between nonreactive and reactive
TILs (Fischer exact Po10�3). This suggests that TIL reactivity
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Figure 3 Reactive and nonreactive TILs exhibit distinct subpopulation signatures. Columns and rows correspond to TILs and subpopulations, respectively. Colors
indicate the fraction of cells belonging to each subpopulation in each TIL. Unsupervised clustering was used on the rows and columns (see Materials and methods). The
red and blue arrows represent nonreactive and reactive TILs, respectively. Two main clusters emerge characterized by CD4þ and CD8þ overabundant subpopulations.
Interestingly, although the clustering procedure did not take into account TIL reactivity, the emerging clusters do separate nonreactive from reactive TILs (Po10�3).
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against melanoma is largely dictated by its subpopulation
composition. We also observed that the nonreactive cluster is
further divided into two subclusters, both of which are
enriched with nonreactive TILs that have distinct profiles.
The first is mostly CD4, whereas the other is a mixture of CD8
and CD4 subpopulation derivatives, suggesting CD4 dom-
inance over CD8.

Reactivity and nonreactivity can be explained
by simple subpopulation-based rules

To further simplify the subpopulation signature, we used a
decision tree algorithm that scans through a large space of
subpopulation-based rules and finds an optimal set of rules
that can be used to predict TIL reactivity (see Materials and
methods). This approach produced a simple set of four rules

for distinguishing between reactive and nonreactive TILs
(Figure 4A). The rules are based on the following questions:

Q1: Does CD8þCD28�CD152� subpopulation constitute
more than 43% of the entire TIL population?

Q2: Does CD94þ subpopulation constitute more than 0.4%
of the entire TIL population?

Q3: Does CD8þCD33�CD69þ subpopulation constitute
more than 60% of the entire TIL population?

The four rules are:

R1: If Q1 is false and Q2 is false then the TIL is classified as
reactive.

R2: If Q1 is false and Q2 is true then the TIL is classified as
nonreactive.

R3: If Q1 is true and Q3 is false then the TIL is classified as
reactive.
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Figure 4 Simple rules based on subpopulation frequencies can predict TIL reactivity. (A) A decision tree algorithm was used to generate a simple set of four rules for
classifying TIL functionality (see Materials and methods). Each rule is a path from the tree root (top) to one of the leaves (bottom). (B) IFN-g levels of reactive TILs can be
described as a function of two subpopulation fractions with positive and negative weights. Each dot is a reactive TIL. The y-axis is the empirical IFN-g measurements and
the x-axis is the theoretical IFN-g levels calculated using the following model:

IFN� gðpg=mlÞ ¼ 63 � ðCD8þCD28�Þ � 50 � ðCD8þCD69þCD33�Þ þ 253:

Overall, IFN-g levels of reactive TILs can be described to a large extent as a balance between two opposing subpopulations with positive and negative effects.
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R4: If Q1 is true and Q3 is true then the TIL is classified as
nonreactive.

The accuracy of the rule-based predictions is MCC¼0.69
(sensitivity of 87% and specificity of 83%). Although these
rules yield an accuracy that is slightly reduced compared with
the SVM model (MCC¼0.74), their advantage is that they are
simple and amenable to interpretation. These rules highlight
three subpopulations, namely: CD8þCD28�CD152�, CD94þ ,
and CD8þCD69þCD33�. The first emphasizes the role of the
CD28 and 152 receptors in determining the TIL reactivity in
addition to CD8. Specifically, our observation that reactive
CD8 T-cells lack both co-stimulatory CD28 receptor and the co-
inhibitory receptor CD152 on their surface is in agreement
with current knowledge. CD28 is down regulated and
internalized after proper T-cell activation (Linsley et al, 1993;
Eck et al, 1997; Alegre et al, 2001). The absence of CD152
receptor on reactive TILs is in accordance with its potent co-
inhibitory role. The second subpopulation is marked by CD94,
an inhibitory receptor expressed in low levels on T-cells
(Leibson, 2004). Its inhibitory function may explain why
higher levels are correlated with nonreactive TILs. The third
subpopulation (CD8þCD69þCD33�) is characterized by the
CD69 and lack of CD33 receptor staining. Little is known about
the specific function and ligands of these two receptors and in
particular on the role of CD33 in Tcells (Nakamura et al, 1994;
Shiow et al, 2006). These findings suggest that CD33 expres-
sion on the surface of Tcells is positively correlated with anti-
tumor T-cell functionality. In addition, the expression of CD69,
which is an early activation marker in Tcells, was surprisingly
correlated with nonreactivity.

To test whether subpopulation analysis can be used, not
only to classify between reactive and nonreactive TILs, but
also to predict the exact level of IFN-g secretion, we
focused exclusively on the reactive TILs. To this end, we
performed a linear regression on pairs of subpopulations and
IFN-g levels. By using an equation of the form
IFN� g ¼ aþ b1 � X1 þ b2 � X2 , where X1 and X2 represent
the fraction of the two different subpopulations, we were able
to accurately determine the exact levels of IFN-g with Po10�4

(see Figure 4B). After scanning all possible pair combinations,
the pair that yielded optimal results, in terms of IFN-g secretion
was CD8þCD28� and CD8þCD69þCD33�. Notably, these
subpopulations are highly similar to those used for classifica-
tion of reactive and nonreactive TILs in the decision tree
(Figure 4A). This shows that a simple model that takes into
account the amount of cells belonging to selected subpopula-
tions can be used to quantitatively infer the degree of cell
mixture reactivity.

A TIL’s reactivity can be controlled by rational
manipulation of its subpopulation composition

Overall, these results indicate that TIL anti-tumor reactivity is
too complex to be explained by an individual subpopulation.
Yet, the combination of a few subpopulations-based rules and
simple formulas can explain the reactivity to a large extent.
These observations raise the conjecture whether one could use
these rules to control reactivity of TILs by manipulating their

subpopulation fractions. Specifically, we hypothesized that
nonreactive TILs can be turned into reactive ones by depleting
nonreactive-associated subpopulations and vice versa; that
reactive TILs can be turned into nonreactive ones by depleting
reactive-associated subpopulations. To test the first hypoth-
esis, we used specific antibodies to selectively deplete the
subpopulations CD4, CD28, CD85, CD94, and CD152 that we
found to be associated with nonreactivity. The experiments
were performed on a fresh cohort of 12 nonreactive
TIL cultures that originated from four melanoma patients
(Supplementary Table SIII) and were not part of the 91 TIL
samples used for the subpopulation signature elucidation.
First, we characterized the subpopulation frequencies of each
TIL and its anti-tumor reactivity. All of the 12 fresh TILs were
nonreactive with IFN-g levels below the 200 pg/ml clinical
threshold. We then depleted the inhibitory-related subpopula-
tions in each TIL using specific antibodies and magnetic bead
negative selection (see Materials and methods; Supplementary
Excel S3). After 36 h of recovery, both original and manipu-
lated TILs were challenged with autologous melanoma for 12 h
followed by supernatant IFN-gmeasurement. Remarkably, 9 of
the 12 originally nonreactive TILs became reactive after
manipulation (Figure 5A; Supplementary Table SIII). The
IFN-g level of the nine reactive TILs showed a dramatic
increase with levels exceeding the 200 pg/ml threshold and
ranging between B300 and B4000 pg/ml. Overall, the
reactivity before and after manipulation yielded up to 106-
fold increase in IFN-g secretion. Two of the three TILs that
retained a nonreactive state after manipulation also exhibited
an increase in IFN-g levels, but remained under the threshold
of 200 pg/ml. The degree of postmanipulation reactivity of
TILs was independent of their subpopulation profiles before
manipulation. For example, TILs No. 2 and 9 shared similar
subpopulation profiles before manipulation (Figure 5B), but
different profiles and reactivity levels (4020 and 295 pg/ml)
after manipulation (Figure 5A; Supplementary Table SIII).

As negative controls, we tested the specificity and sponta-
neous release of IFN-g secretion by incubating the TILs with
unrelated melanoma, culture media (Figure 5A), or mock
antibodies (data not shown). In all controls, IFN-g levels
remained unchanged and below threshold, indicating the
specificity of the procedure and excluding the possibilities of
IFN-g secretion increase that is due to spontaneous release or a
nonspecific activation.

Next, we tested the complimentary hypothesis that reactive
TILs can be turned into nonreactive ones by depletion of
reactive-associated subpopulations. To test this, we used five
fresh TILs that were not used in the earlier samples and all of
which were highly reactive. After depletion of their reactive-
associated subpopulations by using the CD8, CD56, and CD33
specific antibodies, all the TILs showed a dramatic decrease in
reactivity ranging from B10 to B460-fold (Supplementary
Figure S5A). Negative controls for testing specificity and
excluding spontaneous release of IFN-g secretion were
performed by incubating the TILs with unrelated melanoma,
culture media (Supplementary Figure S5A), or mock anti-
bodies (data not shown). In all cases, no significant change in
reactivity or subpopulation composition was observed.

The fact that nonreactive TILs can be transformed into
reactive ones and vice versa after a manipulation of their
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manipulation are designated by a red color and the letter ‘P.’ Ten TILs after manipulation are designated by the letter ‘A’ with blue and yellow corresponding to reactive
and nonreactive, respectively. Eight of the nonreactive TILs before manipulation became reactive, seven of which also showed a shift from a nonreactive subpopulation
signature to a reactive one as indicated by the blue arrows going from right to left. The two TILs that remained nonreactive after manipulation exhibited either a minor
change or a negative change in subpopulation signature as indicated by the red arrows. (C) The transformation of a nonreactive TIL to a reactive one can be described
as a path between two points in the subpopulation space. In order to visualize the TILs positions in the multidimensional subpopulation space, we applied PCA, which is a
method for dimensionality reduction (see Materials and methods). This enabled us a simple 2D visualization of the different TILs. The x and y-axes are the principal
components capturing 49 and 24% of the total variance in the data. The x-axis captures a shift from CD8þ and CD28� enriched subpopulation to CD4þ and CD28þ

subpopulations, whereas the y-axis reflects a combination of additional subpopulations (see Supplementary Figure S4 for subpopulations coefficients defining each of
the principal components). The figure shows a subspace region that is overpopulated with reactive TILs. The change in reactivity can be visualized as a path from a
nonreactive TIL to a TIL that resides in the reactive subspace (e.g. see dotted arrow).
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subpopulation balance suggests that nonreactivity is largely
dictated by simple subpopulation interactions rather than
lack of specificity to melanoma cancer epitopes. These results
further emphasize the importance of interplay between
different subpopulations in determining the TIL collective
output.

The shift between nonreactive and reactive states
is accompanied by a transformation of the
subpopulation signature

To link the change in reactivity with the change in the
underlying subpopulation composition, we examined the TIL
profiles before and after the manipulation. For this analysis,
we used 10 of the 12 TILs that had sufficient cell counts. To rule
out the possibility that the shift from nonreactive to reactive
state is simply proportional to change in the amounts of the
major subpopulations CD4 or CD8, we monitored their
amount before and after manipulation (Supplementary Table
SIII). The observed average-fold change was 0.7±0.71 for CD4
and 2.5±2.4 for CD8 compared with a 34.8±31.3-fold change
of IFN-g secretion.

A more global comparison of all subpopulations showed
that the profiles of 9 of the 10 nonreactive TILs before
manipulation were similar to that of the nonreactive TIL
profiles as determined by the original 91 sample dataset
(compare Figure 5B with Figure 3). Furthermore, the shift from
a nonreactive to reactive state was accompanied by a shift from
a nonreactive to reactive subpopulation signature. Similarly, a
transition from reactive to a nonreactive state was also
accompanied by a shift to a nonreactive subpopulation
signature. This point is illustrated in Figure 5B and C and
Supplementary Figure S5B, C.

Discussion

Predicting and controlling the output of a heterogeneous
cell population is a highly challenging task with many
biological and clinical implications. To study this question,
we chose TILs, a heterogeneous immune cell population
composed of different immune subpopulations that have a
quantitatively measurable output in terms of their degree of
reactivity against tumors. Because of their clinical
importance, TILs have been extensively studied, yet little is
known about the factors that govern their collective degree of
reactivity.

This work describes for the first time an experimental and
computational approach that accurately predicts the in vitro
reactivity of TILs that were extracted from tumors of
melanoma patients. This was done by experimentally measur-
ing a unique set of cell surface receptor combinations that
define a rich set of subpopulations composing the TIL.
Although some of these receptor combinations define well
established and highly studied subpopulations, most of the
receptor combinations used herein defines previously unstu-
died subpopulations. Using a quantitative measure of the
subpopulation constituents of each TIL, we constructed a
computational model that accurately predicts TIL reactivity
with 91% sensitivity.

We identified strong correlations in expression of different
receptors on individual cells. This co-expression may suggest
co-regulation of receptors with related function. For example,
the expression levels of the receptors CD85, CD94, and CD152,
all of which play inhibitory roles, were significantly correlated
(average r¼35%), suggesting that these receptors might have
common regulation (Supplementary Figure S3). The existence
of such correlations simplifies the way one can describe this
complex biological apparatus and sets a direction for begin-
ning to understand receptors with an unknown function.
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Although in theory the number of possible subpopulation
combinations that compose a TIL is large, in practice TILs fall
into a few distinct profiles (Figure 3). These defined signatures
may imply that under equilibrium different T-cell subpopula-
tions balance one another. We were able to find a simple set of
rules that map between a TIL’s subpopulation composition and
its reactivity (Figure 4A) with an 87% sensitivity. The rules
suggest that the degree of reactivity is determined by the
balance between subpopulations with effector or inhibitory
functions. Furthermore, we show that the same subpopula-
tions can be used, not only to differentiate between reactive
and nonreactive TILs, but also to predict the exact level of IFN-
g secretion of the reactive ones (Figure 4B). The rules also
highlight the importance of subpopulations with previously
uncharacterized functions, such as the subpopulation marked
by the CD33 receptor. CD33 is a central myeloid marker that
has been identified earlier on the surface of T-lymphocyte
(Nakamura et al, 1994). Yet, its function and mechanism
of action are not well understood. This study shows that
CD33-marked subpopulations are correlated with positive
anti-tumor reactivity.

This study focuses on predicting and controlling in vitro
IFN-g collective output of TILs. It is important to stress that
IFN-g secretion of TILs does not always correlate with clinical
response. One interesting future direction of this work is to
investigate whether this approach can be used to compose a
set of TIL subpopulation-based rules for predicting patient
response. Such a prediction is expected to be more difficult
than in vitro TIL reactivity prediction and will require the
incorporation of additional factors such as patient-related
background and tumor-related factors.

Our finding that simple subpopulation-based rules can
predict TIL reactivity raised the conjecture of whether one
might be able to control the overall population output by
rational manipulation of its subpopulation constituents.
Guided by these rules, we selectively enriched and depleted
specific subpopulations of a fresh cohort of nonreactive TILs
extracted from melanoma patients. We show for the first time
that nonreactive TILs can become anti-tumor reactive after
rational manipulation. By manipulating the subpopulation
composition in the opposite way, we were also able to
transform reactive TILs into nonreactive ones. These results
open the way for future studies in which rational subpopula-
tion manipulation of TILs may be used to control their
effectiveness in the clinical setting.

Another aspect of this result is that it sheds light on the reason
for lack of TIL reactivity in vitro. There are three possible
explanations why some TILs do not respond against tumors:
First, nonreactivity may result from an inappropriate T-cell
receptor repertoire that lacks tumor specificity. Second, TILs
may not be able to respond because of antigen deletion or down
regulation by the tumor. Last, TILs may be actively suppressed
by the tumor cells and their microenvironment. Our data
support the last explanation of active suppression. We show
that by excluding a few defined subpopulations of the TIL itself,
it is possible to elicit a potent response in previously
nonresponsive TILs. These results support the possibility that
the anti-tumor reactivity of T-cells is mainly suppressed due to
inhibiting effects of some of its subpopulations constituents and
are in accordance with earlier studies that linked between

specific immune populations and tumor metastasis or patient
prognosis (Chiba et al, 2004; Kohrt et al, 2005; Pages et al, 2005).

In the future, the subpopulation-based framework described
herein can also be extended to predict and control the outputs
of other types of heterogeneous cell populations in fields such
as stem cells, tumor immunology, and tissue engineering.

Materials and methods

TIL and melanoma cultures

Metastatic melanoma tumors were surgically removed from 27
different patients. The isolation and expansion of TILs performed in
this study closely follows an earlier published protocol (Dudley et al,
2003). Briefly, tumor tissue from metastatic melanoma patients was
surgically removed. The tumors were extracted from lymph nodes,
lung, liver, spleen, and skin metastases. Every patient signed an
informed consent approved by the Israeli Ministry of Health (Approval
No. 3518/2004). Various techniques, such as homogenization,
fragmentation, fine needle aspiration, and enzymatic digestion, were
used to obtain melanoma cultures. TILs cultures were established by
dissecting tumor specimens into 1–2 mm3 fragments. Each fragment
was placed in a different well (we used a 24-well tissue culture plate)
with 2 ml of complete medium, comprised of RMPI 1640 (Lonza,
Verviers Sprl, Belgium) containing 10% human serum (Gemini Bio-
Products, West Sacramento, USA; Blood bank, Magen David Adom,
Tel-Hashomer, Israel), 25 mmol/l HEPES pH 7.2 (Lonza), 100 U/ml
penicillin (Lonza), 100mg/ml streptomycin (Lonza), 50mg/ml genta-
mycin (Lonza) and 5.5�10�5 mol/l 2-mercaptoethanol (Invitrogen
Corp., Paisley, UK) and 6000 IU/ml IL-2 (Proleukin, Chiron BV,
Amsterdam, The Netherlands). After 4–6 days, a dense TIL carpet
was observed around the fragment and 8–12 days after initiation
lymphocytes covered the entire well. Each TIL culture was maintained
independently and split into two daughter wells to maintain a cell
concentration of 0.5–2.0�106 cells/ml. Individual TIL cultures
reached a cell number of 30–60�106 cells after 24.5±6.6 (stderr)
days.

Measuring IFN-c release after co-culture
with melanoma cells

The activity and specificity of each TIL was determined by an IFN-g
release assay. After washing, TILs were co-cultured with autologous
melanoma cells, or HLA-mismatched melanoma lines as negative
control, at an effector target ratio of 1:1 (1�105 each) in a 96-well plate
for 14–16 h. Culture medium contained 10% fetal bovine serum
(Invitrogen), 25 mmol/l HEPES pH 7.2, 100 U/ml penicillin, 100mg/ml
streptomycin, and 2 mmol L-glutamine, 1 mM sodium pyruvate
(Lonza) in RPMI 1640. Cells were centrifuged, supernatant was
removed and the secreted IFN-g levels were determined by sandwich
enzyme-linked immunosorbent assay and CBA cytokine bead array
(R&D Systems, BD biosciences). All the assays were done with at least
two biological independent replicates, within each of which we
performed at least two technical replicates. The clinical threshold of
200 pg/ml IFN-g was used to classify each TIL as reactive or
nonreactive. Importantly, different TILs from the same tumor mass,
exhibited a wide spectrum of biological activity ranging from potent to
null response (Supplementary Table SI).

Characterization of TIL subpopulation
composition using flow cytometry

Various combinations of triple staining from the pool of the following
antibodies were used for subpopulation mapping: ahCD4, ahCD25,
ahCD28, ahCD56, ahCD69, ahCD85, ahCD94 (DakoCytomation),
ahCD152 (Serotec) and ahCD3, ahCD33, ahCD8 (BD biosciences),
and ah-perforin and ah-granzyme-B (eBiosciences). For detailed list of
all the subpopulations that were measured see Supplementary
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Table SI. For flow cytometric analysis of cell surface receptors, 2.5�105

cells were washed and re-suspended in PBS containing 0.1% BSA.
Cells were incubated on ice with the appropriate conjugated antibodies
for 20 min and were subsequently washed three times with cold PBS
containing 0.1% PBS. Samples were analyzed using a FACScaliber
machine (BD Biosciences). Background staining was assessed using an
isotype control antibody.

Dataset filtering procedure

To remove patient interdependence in the dataset, in case two or more
TILs originating from the same patient showed a similar reactivity level
and subpopulation composition only one representative TIL was kept.
Starting from 101 TILs, 10 TILs were excluded resulting in the final set
of 91 different TILs (Supplementary Table SI). The remaining TILs
exhibit a wide range of functional and phenotypic variations even
when extracted from the same patient and tumor mass.

Initially, each of the 91 TILs was characterized by measuring 102
different subpopulations (raw data is given in Supplementary Excel
S1). Only subpopulations adhering to the following criteria were kept
in the dataset: (1) the average fraction of the subpopulation in all TILs
was 41% and (2) the individual subpopulation-based classification
threshold was between 1 and 99% (see details below). These steps
eliminated subpopulations whose amount was near the experimental
technical sensitivity of the flow cytometry. The final filtered dataset
included 33 subpopulations for 91 TILs (Supplementary Table SII and
Excel S2).

TIL classification based on individual
subpopulations

The individual subpopulations-based classification procedure was
performed by finding the optimal subpopulation frequency cutoff
between reactive and nonreactive TILs in terms of the MCC on a train
set and measuring the performance on a previously unseen test set
(results are summarized in Figure 2). The MCC is defined as follows:

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTP þ FPÞðTN þ FNÞðTN þ FPÞ

p

Where TP, FP, TN, FN are true positives, false positives, true negatives,
and false negatives, respectively. In general, MCC values range
between �1 to þ 1, indicating completely wrong and perfect
classification, respectively. An MCC of 0 indicates random classifica-
tion. It has been shown earlier that the MCC is especially useful for
measuring and optimizing classification accuracy in cases of un-
balanced class sizes (Pierre Baldi, 2001) (in our case the 39 of the TILs
are reactive and 52 are nonreactive). The MCC measure assigns a
proportional weight to instances from each set (each instance of the
smaller set receives a larger weight). The sensitivity and specificity
were computed as follows:

Sensitivity ¼ TP

TP þ FN
; Specificity ¼ TN

TN þ FP

The classification accuracy results were estimated using a leave-one-
out cross-validation, where each TIL was excluded once from the train
set and used as a test set. In addition, to rule out interdependence
between TILs originating from the same patient, we performed a leave-
one-patient-out cross-validation. During each iteration, all the TILs
that were extracted from the tumor mass of the same patient were
excluded from the train set and used for testing. This yielded similar
results as the original leave-one-out cross-validation on the TIL level.

SVM classification

We applied a SVM model to predict whether TILs are reactive or
nonreactive based on subpopulation fractions (CJC Burges, 1998).
Briefly, each TIL is mapped to a point in a multidimensional space
according to its subpopulation fractions. The SVM classifier generates
a hyper-surface that separates reactive and nonreactive points. Input
data were normalized by linearly rescaling the subpopulation

frequencies of each TIL to values between –1 and 1. Classifications
were done with a linear kernel and the accuracy was assessed using a
leave-one-out procedure. All SVM classifications were performed
using the gist-train-svm software http://bioinformatics.ubc.ca/gist/.

TILs and subpopulation clustering

Two ways clustering was performed using an agglomerative hierarch-
ical clustering scheme with average linkage. The analysis was
performed using the Matlab statistical and bioinformatics toolbox
software (for details see Matlab Bioinformatics and Statistics toolbox,
a user’s guide). The Spearman correlation between each pair of TILs
(i.e. the correlation between the corresponding column vectors
of subpopulation frequencies) was used as a distance measure for
clustering the columns (see Figure 3). Similarly, the distance between
subpopulations was computed using a Spearman correlation on the
corresponding rows. The two main clusters were generated by cutting
the TIL dendrogram at the top most linkage. Spearman correlation was
chosen rather than the alternative distance measures such as Pearson
correlation or Euclidean distance, as it is less sensitive to outliers and
resulted in a more significant Fischer exact enrichment of reactive and
nonreactive TILs in each of the main clusters.

Decision tree algorithm

The decision tree in Figure 4Awas generated using the Matlab statistics
toolbox software. Briefly, the algorithm iteratively selects a subpopu-
lation and the threshold that best classifies instances of the train set
into distinct classes thus generating a tree-like structure. Here, we use
the Gini impurity function (Breiman, 1993) as a quantitative measure
for subpopulation classification accuracy. First, the tree root is selected
by identifying the subpopulation that best separates TILs into reactive
and nonreactive. The tree root splits all the TIL samples into two
mutually exclusive subgroups with reduced class impurities. Each of
the subgroups is then further split in an iterative manner with different
subpopulations and thresholds using the same impurity minimization
principle. Here, we only allowed splits on nodes that contain more than
10 samples. The resulting tree is then automatically pruned to avoid
model over-fitting (for details see Matlab Statistics toolbox, a user’s
guide). Model accuracy was evaluated using a leave-one-TIL-out and
leave-one-patient-out cross-validation (for details see Section: TIL
classification based on individual subpopulations). We note that the
threshold of 200 pg/ml that is used in the clinic for classifying a TIL
reactivity is arbitrary. Therefore, we tested the sensitivity of our model
to other thresholds ranging from 150 to 500 pg/ml and found that the
prediction accuracy as well as the subpopulations that were identified
as good separators remained similar within this threshold range.

Enrichment and depletion of specific
subpopulations

T-cell depletion was obtained by incubating the TILs with anti-CD4,
anti-CD28, anti-CD152, anti-CD85, and anti-CD94 for 20 min. Subse-
quently, cells were mixed with anti-mouse IgG-coated magnetic beads
(Dynal, Lake Success, NY) for additional 10 min followed by magnetic
depletion for 5 min. The negative fraction was then washed three times
with PBS 0.1% BSA and was incubated for 36 h recovery in 371C.

Principal component analysis of TILs

Principal component analysis (PCA) is a commonly used method for
transforming multidimensional data to lower dimensions at the
expense of loosing part of the data variance (IT Jolliffe, 2002). The
PCA procedure used here was implemented as part of the Matlab
statistics toolbox. Briefly, each TIL, which is defined by a multi-
dimensional vector of its subpopulation fractions, was reduced to a 2D
entity using two principal components where each principal compo-
nent is a linear combination of original subpopulations. The exact
contributions of each subpopulation to each principal component are
specified in Supplementary Figure S4.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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