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Crude Oil Sensing using Carbon 
Nano Structures Synthetized from 
Phoenix Dactylifera L. Cellulose
Chouaib Fethiza Tedjani1,3, Omar Ben Mya2*, Abdelkrim Rebiai1,3, 
Abdelhamid Khachkhouche2, Abdelhakim Dehbi2 & Nacer Eddine Méchara2

This study reports on the crude oil-sensing using carbon nano structures (CNSs). A mixture of CNSs was 
obtained by a simple method of preparation using palm cellulose ash and nitric acid as precursors, the 
powder was characterized by x-ray diffraction and infrared spectroscopy. The optical density of crude 
oil from Rhoud El-Baguel area (Southeast of Algeria) studied using UV-Vis spectroscopy, before and 
after adding an amount of CNSs powder to view the CNSs crude oil sensing and therefore a new method 
to determine the quality of crude oils and the comparison between them. Results show that CNSs 
prepared from palm cellulose ash have a good crystallinity and it is formed mainly from carbon nano 
dots (CNDs) with 4.32 Å in layers spacing and 7.4 Å in crystallite size, indicate that CNSs can be used as 
an excellent crude oil sensor.

In the petrochemical industry, knowledge of the quality and content of crude oil is a key factor in improving the 
refining process. Methods of spectroscopy are the most important methods used because they contain important 
informations regarding the chemical properties of each sample1. The compounds in oil, responsible on optical 
response named: Fluorophores (Table 1), which are compounds that absorbs in the UV-visible range. This condi-
tion is fulfilled for conjugated electron systems, such as polyunsaturated molecules and aromatics2.

Nano carbon structures have a wide range of interest because of their use in applications such as energy stor-
age, tribology, electronics, medicine, catalysis and sensors3–7. Carbon nano structures (CNSs) are an ultra-small 
photoluminescent (PL) nanomaterial (<10 nm), It has significant optical properties, disposable surface functions, 
chemical inactivity, high photoresist, simple and inexpensive methods of preparation, and an abundance of raw 
materials,…8. The preparation of CNSs is a process of mix between two precursor forms, one of which installs the 
main carbon frame and the other within the structure elements. In this regard, the most prominent synthesis was 
cellulose ash as a carbon source, while nitrogen acid contains activating molecules9.

CNSs are crystals which can act as a sensor by sparkling at the desired wavelength or color. We emphasize 
that fluorescent organic molecules are often aromatic or contain multiple bonds, which are alternating single and 
double bonds, responsible for the high-octane number and therefore the quality of petroleum10. These molecules 
contain non-bonding electrons that form a cloud around the molecule and are usually prone to excitement and 
shine in response to the light energy projected on them11.

Expremental and Methods
Extraction of Cellulose from Phoenix Dactylifera L. tree.  The Phoenix Dactylifera L. leaves were 
crushed and screened to ensure that the particle size was distributed from 8 meshes to 30 meshes. Leaves were 
immersed in 5 wt% sodium hydroxide solution at ambient temperature for 12 h. Then they were washed with 
water for several times and dried in the oven at 80 °C for 24 h. To remove the wax, the debris of leaves were 
immersed in the solution of methylbenzene and ethyl alcohol (volume ratio of 1:1), and kept boiled for 8 h. The 
residues were washed with ethyl alcohol several times and then dried in the oven at 80 °C for 24 hours. And to 
remove lignin, leaves were soaked in hydrogen peroxide (30 vol%) and acetic acid solution (volume ratio of 1:1), 
and boiled with magnetic stirring at 60 °C for 7 h. Water was used to wash the residue and then filtered until the 
filter was neutral. The fibers obtained were boiled in 5 wt% of sodium hydroxide solution at 80 °C for 2 h, then, 
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Fluophore Chemical structure Fluophore Chemical structure

Benzene Phenol

p-cresol dibenzofuran

Acenaphthene Carbazole

Chrysene Benzo(a)pyrene

p-methyl anisole dibenzothiophene

Phenanthrene Pyrene

Porphyrin Toluene

m-Xylene Indole

Naphthalene 2-Naphthol

2,3-Benzofuorene Anthracene

Continued

https://doi.org/10.1038/s41598-019-54417-2


3Scientific Reports |         (2019) 9:17806  | https://doi.org/10.1038/s41598-019-54417-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

washed with water to neutral and dried in the oven at 80 °C for 24 h. The cellulose fibers from Phoenix Dactylifera 
L. leaves were obtained12,13.

Synthesis of carbon nanostructures (CNSs).  In order to obtain C-nanostructures, the cellulose 
extracted previously was carbonized in a muffle furnace directly at 240 °C for 2 h4. About 5 g of fine ashes obtained 
from cellulose furnace and mixed with concentrated nitric acid (60%) and stay in agitation for 24 hours. The mix-
ture was separated by centrifugation at 12,000 rpm for an hour to separate the residue and supernatant. The latter 
was heated in a vacuum oven at 200 °C14.

Crude oil optic sensing.  The oils were excited by ultraviolet rays (300–400 nm) which fluoresce in the 
visible wavelength range of 400 to 600 nm. The crude oil sample was obtained from Rhoud El-Baguel, close 
Hassi-Messaoud region, city of Ouargla south eastern of Algeria. To perform optical density measurements, it 
was required to dilute the sample to obtain a transparent solution to transmit the light. Cyclohexane was chosen 
as solvent that can optically respond in the range of 350 nm–500 nm, wavelengths used to excite crude oil15,16. Six 
samples of oil diluted in cyclohexane at different concentrations were used for the measurements. Table 2 shows 
the different concentrations of prepared samples. Absorption spectra of all samples were measured at room tem-
perature. at 350, 400,450 and 500 nm.

Characterization of carbon nanostructures (CNSs) and optic sensing.  The type of the carbon Nano 
structure was analyzed by X-ray powder diffraction (XRD) using a BENCHTOP PROTO AXRD diffractometer 
in the range 2θ:10–80°(step: 0.1°) and CuKα1Source (λ = 1,54 Å). Fourier transform infrared spectra were obtained 
on a SHIMADZU 8400 s (FT-IR) spectrometer whose extent is between 400 and 4000 cm−1. UV/visible absorp-
tion spectra were recorded with a UV/VIS 6305 spectrophotometer (JENWAY Company).

Fluophore Chemical structure Fluophore Chemical structure

Perylene

Table 1.  Some Fluophore found in crude oil26.

Sample Concentration (ml/l)

1 0.5

2 1

3 1.5

4 2

5 2.5

6 3

Table 2.  Concentration of oil in cyclohexane.

Figure 1.  Powder XRD of carbon nano structures sample.
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Results and Discussion
Characterization of CNSs by XRD.  Figure 1 shows the X-ray diffraction pattern of Carbon-Nanostructures 
(CNSs) produced by one-step thermal carbonization. For carbon nanodots (CNDs), a non-relief reflection band 
centered on 2θ = 21.68° corresponds the (002) lattice spacing of carbon-based materials with amorphous nature17 
or shows a shift down; what is indicates an increase in sp2 layer spacing18.

Crystal planes and a small broad peak to about 2θ = 44.22° and 77.5° correspond to the set (100) and (110) 
reflections19,20. The spacing between the layers was calculated by applying the Bragg equation and found at 
approximately 4.23 Å. As long as the average crystallite size, Lc, can be determined using the Scherrer equation:

λ
θ

=
β

L K
cos

,c

or:
λ: the wavelength of X-rays (1.54 Å),
β: the width at half height (in radians),
θ: the diffusion angle
and K is the Scherrer constant (0.9)21.
The Lc has been estimated at 7.0 Å.

Infrared spectroscopy FTIR.  As shown in Fig. 2, the existence of carbonyl (C=O) causes the peak of about 
1696 cm−1. The presence of oxygen-containing carbon structures has been confirmed. The peak at 1528 cm−1 
can be attributed to the C=C stretching vibrations. The δ (C=O) vibration band is found at approximately 
680 cm−1 22,23. The bands at 1900, 2098.172 and 2334.892 cm−1 can been attributed to inorganic ʋ3CO3, manganese 
carbonyl stretching frequency and water molecule under strongly hydrogen-bonded conditions24–26.

In Fig. 3a it is possible to observe Rhoud El-baguel crude oil optical properties. It appears that the crude con-
centration varies proportionally with the optical density (OD) in all the domain of UV-Vis. After adding nano 
carbon, the concentration 0.4 ml/l shows the best OD (Fig. 3b) throughout the UV-Vis range.

Figure 2.  FT IR of CNSs Sample.

Figure 3.  Effect of crude oil sample concentration on optical density at different light wavelengths: (a) before 
and (b) after adding CNSs powder.
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The analysis also shows that the samples have a better optical density for a minimum value of wavelength 
(350 nm) and this for concentrations less than or equal to 0.4 ml/l. While it is less intense for other wavelengths 
throughout the UV-Vis domain (Fig. 4a). For comparison, the OD increases perfectly according to each concen-
tration and in the whole area at 400 nm (Fig. 4b).

Figure 4.  Effect of light wavelengths on optical density of crude oil sample at different concentration: (a) before 
and (b) after adding CNSs powder.

Figure 5.  Optical density variation of different oil concentrations at 400 nm before and after adding CNSs 
powder.

Figure 6.  Optical density variation of 0.4 ml/l oil sample at under different light wavelengths before and after 
adding CNSs powder.
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In order to determine clearly the effect of carbon nanostructures on the optical properties of the oil sample, 
we study the optical density changes in terms of concentration of samples under a constant wave length of 400 nm 
before and after adding an amount of CNSs powder (Fig. 5).

And we study the optical density changes in terms of UV-Vis wavelengths for 0.4 ml/l concentration of sample 
before and after adding an amount of CNSs powder (Fig. 6). It is clear that the optical density increases strongly 
by adding nanocarbon.

Conclusion
Carbon Nanostructures (CNSs) can be synthetized simply with an ash of palm cellulose available locally and 
maybe used as a very effective tool for sensing and estimating the quality of crude oil and comparing between 
them.
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