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SUMMARY

Human rhinovirus (HRV) infections cause at least 70% of virus-related wheezing exacerbations and cold and flu-like
illnesses. They are associated with otitis media, sinusitis and pneumonia. Annually, the economic impact of HRV
infections costs billions in healthcare and lost productivity. Since 1987, 100 officially recognised HRV serotypes reside
in two genetically distinct species; HRV A and HRV B, within the genus Enterovirus, family Picornaviridae. Sequencing
of their �7kb genomes was finalised in 2009. Since 1999, many globally circulating, molecularly-defined ‘strains’,
perhaps equivalent to novel serotypes, have been discovered but remain uncharacterised. Many of these currently
unculturable strains have been assigned to a proposed new species, HRV C although confusion exists over the
membership of the species. There has not been sufficient sampling to ensure the identification of all strains and no
consensus criteria exist to define whether clinical HRV detections are best described as a distinct strain or a closely
related variant of a previously identified strain (or serotype). We cannot yet robustly identify patterns in the circu-
lation of newly identified HRVs (niHRVs) or the full range of associated illnesses and more data are required. Many
questions arise from this new found diversity: what drives the development of so many distinct viruses compared to
other species of RNA viruses? What role does recombination play in generating this diversity? Are there species- or
strain-specific circulation patterns and clinical outcomes? Are divergent strains sensitive to existing capsid-binding
antivirals? This update reviews the findings that trigger these and other questions arising during the current cycle of
intense rhinovirus discovery. Copyright # 2010 John Wiley & Sons, Ltd.
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DEFINITIONS
We use the term ‘strain’ to indicate the molecular
equivalent of a classical human rhinovirus (HRV)
serotype or distinct newly identified HRV (niHRV)
detected from a patient specimen. A ‘variant’ is a

clinical detection of the same strain from a differ-
ent individual, usually sharing 95–100% nucleo-
tide or amino acid identity, depending on the
analysed region. To simplify strain identification,
we add the species identifier to the strain names
e.g. HRVB-14 or HRVC-QPM.

When relevant, we refer to nucleotide-based
strain typing targets using their encoding region
name and viral protein (VP) name is used for the
encoded product only. Thus, the 1A/1B region is
the RT-PCR target which encodes VP4 and VP2.

An HRV C strain is defined in this review as a
member of the proposed species consisting of
HRV strains that cluster most closely with the first
polyprotein sequence described, HRVC-QPM [1].
These include HRVC-NAT001, HRV-HRVC-
NAT045, HRVC-C024, HRVC-C025, HRVC-C026,
HRVC-NY074, HRVC-QCE, HRVC-N4 and HRV-
N10. If the 50 NTR is used for strain typing instead
of the capsid sequence, the ‘HRV C’ membership
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navirus; URT, upper respiratory tract; VLDLR, very low density lipo-
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is swelled by some HRV A strains and is thus bet-
ter described by the assignment, ‘HRV AC’.

INTRODUCTION
In the 1950s and 1960s a flurry of research into
colds and flu-like illnesses (CFLIs; [2]) and identi-
fication of ‘common cold viruses’ resulted in the
first reports [3] of what became known as rhino-
viruses [4,5]. By 1987, 100 serotypes had been
amassed during three stages of submission and
neutralising antibody studies [5]. HRVs are cur-
rently organised into two International Committee
on Taxonomy of Viruses (ICTV)-approved species,
Human rhinovirus A and Human rhinovirus B with a
third, Human rhinovirus C, receiving initial
approval by the Executive Committee and await-
ing ratification by the ICTV [6] (Table 1).

HRVs infect the upper and lower respiratory
tract (URT and LRT) [7,8] (Figure 1) and they cause
more asthma [9–12] and chronic obstructive pul-
monary disease (COPD) [13] exacerbations than
any other factor identified to date, in addition to
the majority of CFLIs [14,15]. The knowledge of
viral involvement in asthma and wheeze has
been percolating through the literature since at
least 1957 [16,17], but the important role of HRVs
in wheeze was made much more obvious once
PCR became available [18,19]. Up to a quarter of
children worldwide experience asthma symptoms,
with prevalence plateauing in some countries
while rising in other parts of the world [20]. In
adults, COPD exacerbations are predicted to
soon become the world’s third leading cause of
death [21] and HRVs play a central role in illness
among adult transplant recipients [22]. HRVs have
been the most common reason for prescribing anti-
biotics [23] and are associated with pneumonia
[24], otitis media [25] and sinusitis [26]. It is inter-
esting to note that, in contrast to other well-known
respiratory viruses, the clinical symptoms of HRV
infection are primarily caused by the host’s
immune response to infection rather than by viral
cytopathicity [27–30]. Intriguingly, whether in the
midst of an influenza pandemic or during an out-
break of an emergent virus such as the SARS-CoV,
HRVs are the most common virus detected in
patients meeting appropriate clinical criteria for
presentation to hospitals or clinics [31,32]. The
HRVs, therefore, create an enormous direct and
indirect socio-economic burden across the devel-
oped and developing world [33,34].

NEW RHINOVIRUS DIVERSITY:
ACKNOWLEDGING THE ELEPHANT
IN THE RESPIRATORY TRACT
For decades HRV testing data have correlated
poorly with clinical outcomes or yielded untype-
able strains, undermining HRV epidemiology
[35,36] and reinforcing the ‘common cold virus’

Table 1. Members of the HRV species with
complete polyprotein sequence residing on
Genbank

Human Human Human
rhinovirus A rhinovirus B rhinovirus C

1M,B 34B 64B 3H,A QPM
2M,B 36B 65B 4A QCE
7H,B 38B 66B 5A NAT001
8H,A 39B 67B 6H,A NAT045
9H,B 40B 68B 14H,A C024

10H,B 41B 71B 17H,A CO25
11H,B 43B 73B 26H,A CO26
12H,B 44B 74B 27H,B NY074
13H,B 45B 75B 35A N4
15H,B 46B 76B 37A N1O
16H,B 47B 77B 42A

18H,B 49B 78B 48A

19H,B 50B 80B 52A

20H,B 51B 81B 69A

21H,B 53B 82B 70A

22H,B 54B 85B 72A

23H,B 55B 88B 79A

24H,B 56B 89B 83A

25H,B 57B 90B 84A

28H,B 58B 94B 86A

29M,B 59B 95A 91A

30M,B 60B 96B 92A

31M,B 61B 98B 93A

32B 62B 100B 97A

33B 63B N13 99A

M and H indicate early cell tropism-based classification
(monkey, human) abandoned in favour of a sequential
numbering system [145]. HRV strains were later divided
into the major and minor groups defined by receptor
tropism [146,147]. Receptor-designated minor group
HRV strains are underlined, major group are shown in
bold. Antiviral groups (A and B) are labelled [148,149].
HRV-87 is not included as it has been previously defined
as a variant of HEV-68 [150]. HRV-Hanks (not listed)
and HRV-21, HRV-8 and HRV-95 are most likely the
same serotype [119].
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label that resulted in the underestimation of HRV
impact. With the advent of diagnostic PCR, it
became apparent that HRV infections are the
most frequent of viral respiratory infections, even
in hospitalised young children [23,37–39]. While
the first classical HRV strain sequences were
lodged onto GenBank in 1994 [40], it was not until
1999, using specimens collected in 1992–1995 [41],
that the first hint of new HRV diversity appeared
(< 98% identity with classical strains in the 50 non-
translated region (NTR)). In 2006, using phylogeny
of 1A/1B sequences from HRV positive specimens
collected in 2003, we announced a distinct and pre-
viously undefined clade of HRVs [42] which was
quickly followed by a report of related HRV
strains among some cases of a 2004/2005 CFLI out-
break in New York [43]. Global identification of

clade members ensued [15,36,37,43–60] and it
now seems that the much overlooked HRVs have
been brought in from the cold.

In our opinion, the current HRV discovery
phase is ongoing, not, as was once suggested, lar-
gely complete [61]; there will be descriptions of
many more novel strains in the years to come.
The niHRV strains do not appear to be emerging
viruses in that they have likely not arisen from a
recent zoonotic event [62] but have instead been
circulating for at least a decade [49,52] and prob-
ably much longer [51], without previous detection.
Historically, HRV culture was fraught with
unreliability and continues to fail in all attempts
to isolate niHRVs [1,57]. Even when using a
strain-typing PCR, HRV Cs have been missed if
the HRV-positive patient specimens had first

Figure 1. Acute illness and the respiratory tract. Upper and lower respiratory tract (URT/LRT), components of the ear and anatomical

sites of interest are indicated. Beside the schematic are the approximate locations of URT and LRT illnesses associated with infection by

respiratory viruses. Cell lines used to attempt HRV C isolations are listed. *Recurrent attacks of shortness of breath and wheezing caused

by spasmodic contraction of the bronchi, attributed to infection. Adapted from Reference [165]
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been passaged in culture [63]. By overcoming the
insensitivity of culture, PCR with subsequent
sequencing produced a large number of diverse
viral discoveries from within the human respira-
tory tract [1,64–69]. Unfortunately, the inclusion
of HRV screening has not yet become as accepted
as it has become for other respiratory viruses
including human respiratory syncytial virus
(HRSV), influenza viruses (IFVs), parainfluenza
viruses (HPIVs) and metapneumovirus (HMPV)
[70–72].

PHYLOGENETIC TREES AND SHRUBS:
DETECTING AND TYPING HRV STRAINS IN
CLINICAL SPECIMENS
HRVs were one of the clinical virology labora-
tory’s earliest targets for conventional PCR [73].
We have previously reviewed in detail the failings
of culture-based HRV detection methods and
listed many PCR-based methods. A review of the
many recent papers reporting niHRVs reveals
some general trends. HRV strains, both known
and new, form a significant, although variable,
proportion of respiratory virus detections (Table
2). It is not especially difficult to assign detections
to one of the three species using sequence obtained
from a variety of coding regions. Strain typing,
however, is more challenging, as we discuss
below. A combination of HRV As and Cs have
the highest prevalence within the HRVs, although
in different studies either the As or Cs may be
much more frequently detected [37,47,50,51].
HRV Bs are consistently rare, constituting around
7% of HRV detections overall [50,54], thus smaller
studies may fail to detect any [47,48,56]. Many dif-
ferent HRV strains may be detected within single
studies, covering short periods of time [15,45],
emphasizing the great diversity of this group.

Since 1988 [74] the transcriptionally important
[75,76] 50 NTR (Figure 2) has been the pre-eminent
target for contemporary screening and is popular
for strain typing (Table 3). Many subtly different
assays target this area. It is relatively easy to
amplify all HRV and human enterovirus (HEV)
strains due to multiple, small, broadly conserved
regions within its sequence [41,74,77]. It is more
sensitive than the longer and more variable 1A/
1B region [46,54,78] which is increasingly favoured
for strain typing.

Today, several well-considered rtPCR or PCR-
derived methods are popular for detecting HRVs

in clinical specimens [51,57,79,80]. In particular,
Lu et al. described a meticulously validated novel
rtPCR assay which is capable of detecting HRV Cs
(recently enhanced by a modified forward primer
CPXGCCZGCGTGGY [Lu et al., personal commu-
nication]) in addition to the classical strains [79].
The assay detected 5� 101 synthetic RNA copies
per reaction and was 5 105-fold less sensitive to
HEVs [79], although HRV/HEV dual infections
were identified [79]. A more recent rtPCR
designed specifically to include the HRV Cs
detected 10 synthetic RNA copies per reaction
[80]. At present, viral loads of respiratory viruses
in specimens, including HRV Cs, typically range
between 104–107 copies/ml [46,81–85]. Other
assays do not comprehensively detect niHRVs,
possibly underestimating positive patients by
more than two-fold [80]. Our experience with a
conventional assay [86] uncovered very specific
(equivalent amplicon size as from an HRV target)
cross-amplification of human genomic DNA
(accession number AL139807) which may result
in over-estimation of HRV positives if strain typ-
ing is not used.

The trouble with typing and the resurgence
of recombination
The niHRVs include an as-yet unquantified num-
ber of strains that seem to have arisen from, or
contributed to, genetic recombination [45]. Recom-
bination can thwart phylogeny based on the 50

NTR by producing tree structures whose branch-
ing patterns cannot be compared with those from
other regions because the evolution of the 50 NTR
may not always be congruent with that of the
capsid coding regions [87] (Figure 3). Nucleotide
sequences are particularly useful for recombina-
tion and evolution studies. However, because the
virus immunogenically ‘shows’ the protein to its
host, the translated capsid region may be a more
clinically relevant sequence to examine for strain
typing, antiviral design and for monitoring treat-
ment efficacy, something not possible with the 50

NTR. Among the capsid regions, VP4 shows the
least variation in protein sequence among strains.
A clinical detection may differ by 5 15% from
the nearest GenBank nucleotide match in 1A/1B
but still be 5 98% identical in amino acid sequence
to a previously identified strain. This is likely due
to the sequestration of VP4 and the amino terminus
of VP2 within the capsid of HRVs, which affords
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Table 2. Virus positivity and viral co-detections

Sample Any virus HRV RT-PCR- HRV mono- HRV species Total co- Study
numbers (% of samples) positive samples detection (proportion of all HRVs detections (% of

(% of all virus (% of all HRVs) genotyped, %)/sole detections)
positive samples) detections

406 224 (55) 53 A 22 (42) 142/224 (63) [44]
B 19 (36)
C 19 (36)

827 64 (8) (66 strains) 42 (66) A 27 (41)/19 () [45]
B 5 (8)/1 ()
C 34 (52)/22 ()

289 84 (87 strains) 54 (62%) A 29 (33)/19 (22) [15]
B 8 (9)/5 (6)
C 50 (58)/30 (34)

301 147 (49) 117 (80) 99 (84) A 45 (53)1 [46]
B 12 (14)
C 28 (33)

44 272 14 (32) A 5 (36) 4/5 (80) 6/27 (22) [47]
B 0
C 9 (64) 8/9 (89)

2033 26 A 5 (19) NA [48]
B 0
C 21 (81)

1052 167 (16) 140 (84) A 64 (38)/49 (77) [49]
B 6 (4)/0
C 77 (46)/69 (90)

97 49 (51) 41/97 (42) 5/41 (12) A 8 (20) NA [50]
B 3 (7)
C 30 (73)

3265 59/326 (18) A 25 (42) [51]
B 11 (19)
C 23 (39)

517 219 (42) 93/219 (42) 82/93 (88) A 90 (97)1,6 12/517 (2) [52]
B 3 (3)

151 16/151 (11) 9/16 (56) A 2 (15)1 NA [43]
B 3 (23)
C 8 (62)

142 59 (42) 53/59 (90) A 18 (62)1 [53]
B 3 (10)
C 8 (28)

4477 99 NA A 39 (80)1 NA [37]
B 2 (4)
C 8 (16)

NR 71 NA A 33 (46)1 NA [36]
B 2 (3)
C 33 (46)

728 638 (88) 240 (38) 112 (47) A 131 (55) 140/728 (29) [54]
B 7 (3)
C 62 (26)

82 53 (64) 37 (70) 37 A 16 (55) 2 [55]
B 8 (28)
C 5 (17)

43 29 (67) 21 (72) 11 (52) A 5 (62) 10 [56]
B 0
C 3 (38)

Continues
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some protection from immune pressure. Thus,
examining only nucleotide sequences may over-
estimate the number of novel strains present but
sole reliance on VP4/VP2 may underestimate strain
diversity [63]. The 30 portion of VP2, VP3 or VP1
sequences may provide better strain typing targets,
although they have not been thoroughly evaluated.
While sequencing other subgenomic regions of
HRVs improves phylogenetic power [45,63], the
deduction of complete polyprotein sequences
yields the ultimate phylogenetic information [88].

In 2007, Lee et al. nominated a distinct clade of
HRV strains be named HRV C based on pairwise
nucleotide identity thresholds derived only from
the classical strains’ 50 NTR region [57] (Madison
clade; Figure 3). In the same month a separate pro-
posal of a novel HRV C species was made by Lau
et al. for the HRV-QPM-like strains. The latter
was based on complete coding sequence analyses
[48] which we subsequently confirmed with addi-
tional analyses and predictive modelling [89]. The
Madison clade was subsequently noted by Kiang

Table 2. (Continued)

Sample Any virus HRV RT-PCR- HRV mono- HRV species Total co- Study
numbers (% of samples) positive samples detection (proportion of all HRVs detections (% of

(% of all virus (% of all HRVs) genotyped, %)/sole detections)
positive samples) detections

181 159 (88) 108 (68) 80 (74) A 608 41 (23) [57]
B 4
C 17

544 0 54 A 33 (61) NA [58]
B 4 (7)
C 17 (31)

258 NA 60 26 (43) A 34 (57)/14 (23) NA [59]
B 12 (20)/6 (10)
C 14 (23)/6 (10)

315 211 (67) 140 (66) 96 A 28 (70)1 57 (18) [42]
B 3 (8)

C9 9 (23)

1Not all clinical HRV detections were/could be genotyped; 2Specimens had previously tested negative by culture and
direct immunofluorescence for IFV A and B, HRSV, HadVs; 383 specimens had been previously found positive for
HboV, 120 were negative [151]; 4Culture or PCR negative for other viruses including, but not limited to, HRSV and
IFV [58,152]; 5Small, mixed populations with a range of diagnostic investigations, screened for HRVs and collected
from Africa, Asia, Australia, Europe and North America; 6Not known as HRV C at the time but we believe this is
currently the best label for these strains; 7Specimens combined from categories including clinic-derived, hospital-
based and asymptomatic; 8We have used the authors numbers in this table however some of their ‘A’ strains align
best with the International Committee on Taxonomy of Viruses proposed HRV C strains; 9These strains were origin-
ally described as a sublineage of HRV A called HRV-A2 but have subsequently been renamed to HRV C [89] NA-not
available; NR-not relevant to this study.
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Figure 2. Schematic representations of the HRV genome. The example (HRVC-QPM, GenBank accession number EF186077) includes the

nucleotide positions which divide the polyprotein into the precursory (P1-3) and matured proteins (filled boxes). The structural and non-

structural regions encompass 11 proteins. The three regions contributing to ICTV species assignment criteria are underlined by dashed

lines
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Table 3. Assays used to investigate HRV Cs

PCR primer target Oligonucleotide origin Genotyping target Genotyping primer origin Study

50 NTR-1B [63] As for screening [44]
50 NTR-1B (snPCR) [63,153] 50 NTR, 1A/1B This study [45]
50 NTR –1B (snPCR) This study 1A As for screening [15]
50 NTR [79] 50 NTR, 50 NTR-1B [63,90] [46]
50 NTR [154] 50 NTR-1B [155] [47,50,51]
50 NTR-1B [63] As for screening [48]
50 NTR [79] 50 NTR-1B [63] [49]
50 NTR [156] 50 NTR [86] [52]
50 NTR [32] 1D (nPCR) This study [53]
50 NTR [157] 50 NTR [86] [37]
50 NTR–1B [63,158] As for screening [36]
50 NTR [158] As for screening [159]
50 NTR [79] 50 NTR-1B [63] [54]
50 NTR This study As for screening [90]
50 NTR [160]A 1A/1B [63] [55]
50 NTR-1B This study As for screening [63]
50 NTR [161] 50 NTR [90] [56]
50 NTR [162] 50 NTR (snPCR) This study [57]
50 NTR [120] 50 NTR, 1D [91] [120]
50 NTR [57] 50 NTR, 50 NTR-1B [57], This study. [58]
50 NTR-1B [59] As for screening [59]
50 NTR-1B [163] 50 NTR-1B [163], This study [42]
50 NTR [162] 50 NTR (snPCR) [57] [164]
50 NTR [58], This study. As for screening [102]
50 NTR This study. As for screening [80]

nPCR–nested PCR; snPCR –semi-nested PCR; 1A and 1B – regions of the genome encoding the VP4 and VP2 poly-
protein cleavage products, respectively; A-array-based detection of randomly amplified RNA.

0.02

(a) (b)

0.05
0.05

(c)

0.02

(d)

Figure 3. Phylogeny based on the 50 NTR. A radiating tree representation of (a) complete 50 NTR minus, (b) the first 350nt of the 50 NTR,

(c) the last �300nt of the 50 NTR and (d), (a) truncated to the length of, and including, theMadison clade sequences. Picornavirus species or

clades of interest are identified by colour; orange-Madison clade; pink-HEVs; blue HRV Bs; red-HRV A or AC; green HRV C or AC. Sequ-

ences include the 50 NTRs from all HRV strains with complete polyprotein sequences described by Palmenberg et al. [88], Huang et al. [45]
and strains from the Wisconsin clade [57]. HRVC-QCE, HRVC-QPM, HRVC-NAT001 and HRVC-NAT045 were excluded from the align-

ments because of incomplete 50 NTR sequences. This figure is available in colour online at www.interscience.wiley.com/journal/rmv
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et al. [90], called HRV C’ by Tapparel et al [80,91]
and Cc by Huang et al [45] all using the 50 NTR.
However, examination of the 1A/1B region of a
HRVC-N10 [45], the first complete polyprotein
sequence of this clade, shows limited distinctive-
ness. The polyprotein of HRVC-N10 does not
meet the ICTV sequence identity criteria within
P1 and 2C+3CD (5 70% amino acid identity)
exactly, however its falls within only a few percent
of doing so for the average identities of the HRV C
species. The significant point here is that reliable
phylogeny depends on an appropriate choice of
sequences. Use of too short a region, an inap-
propriate region (non-coding, too variable, too
conserved) or insufficient reference sequences
will stymie the resultant tree, no matter what pro-
gram is used or how many bootstraps are per-
formed.

An example of the problems experienced when
using 50 NTR phylogenetic trees that contain clin-
ical strains for typing is the co-localisation of some
HRV A sequences (usually HRV A-51, -65, -71 -12,
-45 and -78) with HRVC-QPM-like sequences.
Using this region makes rendering a clear defini-
tion of the two species almost impossible. For
simplicity’s sake, we call this newly defined clade
HRV AC; the pattern is similar to the merging of
HEV species when typing using the 50 NTR. Kiang
et al. [90] followed by Piralla et al. [46] have
divided the HRV A group into nucleotide-based
clades HRV A2, GAC-1 and GAC-2. Simmonds
et al. defined additional clades too, this time using
the 1A/1B region [60]. In doing so, they developed
the first coding-region based objective threshold
for defining inter- (> 10% pairwise nucleotide dif-
ference) and intraspecies (< 10% pairwise nucleo-
tide distance) variation which is key to aiding the
identification of new clinical detections as known
or novel strains [60]. The clinical value of these
genomically defined clades and cut-offs remains
unknown. These clades are not apparent when
the coding region is used for typing. We sup-
port the use of nucleotide-based coding region
sequences for improved strain typing results [87].

It was once expected that HRVs were involved
in frequent recombination events due to their simi-
larity to the HEVs, some of which are well known
for participation in genomic recombinations
[63,92]. When Huang et al. compared clinical
HRV strain typing results using the 50 NTR with
those from 1A/1B they noted two branching

patterns which were the HRVC-QPM-like clade
(which they called HRV Ca) and the Madison-
like clade (HRV Cc) [45]. Further in silico investiga-
tion predicted recombination [45]. While these
data suggest that the 50 NTR shows HEV-like
potential as a recombination ‘hotspot’ [45,88,91,
93], data for frequent recombination elsewhere in
the genome are rare [91]. In addition, empirical
demonstration of recombination among the
HRVs is lacking. Data describing recombination
in HRVs are derived only from in silico predictions
of the likelihood that shared regions of sequence
similarity between strains, identified through phy-
logeny, originate from a mixing between parental
strains. Recombination seems to involve the classi-
cal strains [88] but our ability to detect potential
recombination has been enhanced by the discov-
ery of niHRVs [45]. At present we lack sufficient
numbers of full HRV C genome sequences to per-
form reliable recombination analysis.

Contemporaneous detections (co-detections)
and the rhinoviruses: patterns in the chaos
Previously co-detection was seen as a sign of
weakness indicating that the respiratory virus,
often an HRV, could not cause significant illness
[94,95]. Some have noted more severe clinical out-
comes among multiply positive patients [96–98];
others have not [99,100]. Strong correlation
between detection of a specific virus and the co-
occurrence of certain clinical signs or symptoms
are often made when testing for the known
respiratory viruses is incomplete [15,50,101,102].
The value of clinical data from patients lacking
comprehensive testing is questionable although
the caveat must be added that any association
risks challenge while novel endemic respiratory
viruses remain unidentified. Co-detections are
influenced by the quality of the assays used to
obtain the data. Previously the HRVs were often
the forgotten diagnostic target, now, ironically
they have become the focus of investigations in
which other viruses are sometimes forgotten
[36,50,55,56,103].

In HRV C studies so far, no clear clinical differ-
ence has been noted between patients with differ-
ent numbers of pathogens detected in single
specimens [48,49,56]. Of particular interest is that
despite differences in study years and assays
used, most HRV co-detections are with HRSV
[15,44,45,49,52,59]. We recently reported that in a
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study of 1247 specimens, including 660 positive for
at least one virus, HRVs were statistically the least
likely virus of 17 examined to be associated with
co-detections [104]. These co-detection data further
prompt a rethink of the role of HRVs in driving
respiratory illness rather than being passengers.

Several studies describing HRV Cs have identi-
fied multiple HRV strains from different HRV spe-
cies in the same specimen [45,50,57] although not
in a study of acute otitis media [36]. HRV/HRV
co-detection suggests that strain typing studies
need an intermediate amplicon cloning and analy-
sis method to accurately represent every HRV
strain present. It is interesting to note that at this
point, only HRVs from different species have
been co-detected. Further work is required to
determine whether we are missing same-species
co-detections because the sequences are too simi-
lar, or if there is some immune-mediated mechan-
ism preventing same-species co-detections.

CONFIRMING VARIANTS AND
IDENTIFYING NOVELTY

Why do we need to differentiate strains?
The amino acid similarity at key genomic regions
(P1, 2C+3CD; Figure 2) aids assignation of an HRV
strain to a species within the genus Enterovirus, but
no equivalent molecular criteria exist to define an
HRV detection as a known or novel HRV strain
[89]. The viral genome is directly or indirectly
responsible for a virus’ antigenic and immuno-
genic potential, seasonal and epidemic circulation
patterns, response to antiviral and vaccine inter-
ventions and clinical effects; factors which contri-
bute to the impact of the virus. Genome
deduction and characterisation and the develop-
ment of strain-defining criteria are the first
requirements for robust analysis and definition of
respiratory viruses without which we cannot
reduce the burden of infection. Strain-specific
molecular epidemiology studies are rare for the
HRV super-group [1] despite these being com-
monplace for the less populated respiratory virus
species such as HMPV and HRSV. When Kistler
et al. described the HRVs as being under ‘purify-
ing’ selective pressure [105] (environmental forces
that encourage each strain to remain intact, once
formed) they described a very important feature
of some, if not all members [106], of the heavily
populated HRV group; their unexpected ability

to remain largely unchanged over time. This can
be seen during molecular epidemiology studies
as high levels of conservation (> 96% nucleotide
identity) among variants of the same strain
detected over the same time period. We saw this
when studying the complete 1A, 1B and 1D
regions of 17 variants of HRV-QPM detected
throughout 2003 in Queensland, Australia in
which we defined a 96% nucleotide identity
threshold to identify HRVC-QPM variants. It
should be noted that we used highly specific
rtPCR assays which may have limited the diversity
we saw within this strain. Conservation can also
be seen among temporally disparate classical
strains that we described in 2006 from the same
specimen population; the close phylogenetic rela-
tionship between, for example, QPID03-007 (from
2003) and HRVA-80 (from 1967, [107]), which
share 92% pairwise nucleotide and 100% amino
acid identity in 1A (VP4) and QPID03-0027 and
HRVB-48 (also from 1967, [107]) shared 88% and
100% amino acid identity. It is worth noting that
despite low nucleotide identity, something found
by others [49], they all shared 100% amino acid
identity.

Practical contributions aiding strain
identification: what does the host see?
A useful way to define what makes a strain differ-
ent is to look at it from the host’s perspective—
what degree of sequence difference allows pene-
tration of the host defenses by subsequent HRV
challenges? In 1977 five co-infections were noted
using culture; none contained the same HRV spe-
cies in the pairing [108]. We can now show that
each strain pairing shared < 51% amino acid iden-
tity across the polyprotein sequence. In a more
recent report two cases of recurrent CFLI with
wheeze were reported, each yielding two HRV C
strains, demonstrating that the same patient could
be infected by genetically distinct strains (sharing
85% amino acid identity in VP4) within a period of
7 months [103]. In another report, two different
(sharing 72% amino acid identify in VP4) HRV C
strains were identified from recurrent human
bocavirus (HBoV)-positive specimens collected
two weeks apart [48]. These data may provide a
practical threshold which are useful in molecularly
defining the antigenic distinctiveness of strains.
Future studies identifying and expanding upon
the characteristics of consecutive HRV infections
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could significantly define this area of clinical rhi-
novirology and could contribute to understanding
a role for nucleotide-based thresholds.

COMPARISON OF HRV GENOME SEQUENCE
AND FEATURES
The HRV Cs are quite distinct from the As and Bs
and they exhibit considerable intra-species diver-
sity. At the time of writing there were 10 HRV C
complete polyprotein coding sequences available
for public analysis, not all with a complete 50

NTR. HRVC-QCE and HRV-NY074 have the
shortest polyproteins (2140aa), HRVC-C025 the
longest (2152aa). Ten protease cleavage sites, com-
mon to all enteroviruses, are predicted to cleave
each HRV C polyprotein into typical picornavirus
structural (VP1-4) and non-structural proteins (2A-
C and 3A-D, [109–111]). The VP1/2A junction of
HRVC-N4 and NY074 VP1/2A junction consists
of the more HRV A-like V/G scissile bond
whereas the same HRVC-N10 junction consists of
an L/D cleavage site, unique among the HRVs.
HRVC-N10 also has an unusual Asp insertion at
position 2 in VP1. A translation initiation site
(MGAQVS) shared with all other HRVs and motifs
(YGDD, YGL, TFLKR and SIRWT) including those
crucial for RNA polymerase binding shared by
HRV-As, HRV-Bs and HEVs [112,113] are present
within most HRV C strains; HRVC-N4 and –N10
have SFLKR. HRV Cs differed in the amino acid
sequence of two of three exposed VP1 motifs
previously found to be conserved among HRV
polyproteins [114]. Phylogeny inferred from a dis-
continuous alignment of 10 amino acids in VP3
and VP1, which comprise the predicted intercellu-
lar adhesion molecule (ICAM)-1 footprint [115] on
major group HRV strains (Figure 4), placed the
HRV Cs on a branch with HEV strains and, unex-
pectedly, HRV-1, but distinct from the known
major (employing the ICAM-1 molecule as recep-
tor) or minor (employing the very low density
lipoprotein receptor, VLDLR) group HRV strains.
Key residues on the VP1 BC loop involved in
receptor contact with the VLDLR [116] are missing
in strains from HRV C and there are differences in
the HI loop compared to the classical strains. Anti-
genic site A [117] is absent in HRV C strains due to
deletions within VP1 while the sequence of Site B
is uniquely variable among the HRV C species. As
with other HRV C strains identified to date [118], a
conserved loop sequence motif constituting a cis-

acting replication element (cre), R1NNNA1A2

R2NNNNNNR3 was identified in the 1B region
of HRV C strains described by Piralla et al. in the
context of an appropriate predicted RNA stem–
loop structure. The secondary structure of the cre
is essential for viral genome replication and its
location differentiates all the species within the
genus Enterovirus [118].

To date, no HRV C detection has been isolated
in culture. Traditional methods have been
attempted using cell types shown in Figure 1
[1,48,49,55] and even allowing for the variability
of HRV isolation, it appears that different cell
types, organ tissue or reverse engineered viruses
will be required for success. We sought a molecu-
lar surrogate to replace some of the data important
for taxonomic description and traditionally gener-
ated by culture [89].

Without an isolate or infectious clone to test, it is
only possible to predict the likely interaction with
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capsid-binding anti-picornaviral drugs in silico.
Their site of action has been mapped to a hydro-
phobic pocket beneath a canyon in the viral
capsid [109] which encircles the union of five
monomeric capsid units. Among the 25 key dis-
continuous contact residues of the ‘footprint’ of
pleconaril (an anti-picornaviral drug), there are
12 HRV C-specific differences (INFQFLXIIMFP-
SVFITYMINMLAF) compared to the HRV A
(INLQFSILYMYASVFLLYMTNMLHH) or HRV B
(INLSFSYIAMYPSVFVVYCINMIHG) consensus
sequences [119]. There are 11 differences between
HRV A and B strains. Changes to two sites impor-
tant for identifying naturally resistant strains were
identified as Tyr152 (HRV B residue numbering
from Reference [119]) to Phe152 in some HRV C
strains and Val191 to Thr191 in all strains. The
His245 position conserved in most other classical
HRV strains (excluding HRV-8, -45 and -95 which
contain Leu) was highly variable among the HRV
Cs (Gly, Ala, Val or Ile instead). Other highly con-
served HRV A and HRV B residues including Ile/
Leu106 (Phe in HRV C) and Tyr/Phe/Ala150 (Ile or
Val in HRV C), differed in the HRV C sequences.
The empirical impact on HRV C sensitivity to ple-
conaril remains unknown.

CLINICAL OUTCOMES: ARE HRV CS
THE COMMON WHEEZE VIRUSES?
The HRV Cs are found in patients with the same
clinically indistinct, broad range of clinical out-
comes as the HRV As and Bs and other respiratory
viruses (Table 4). Symptoms of infection with
HRVCs include CFLIs [1,48,102], pharyngitis
[50], croup-like cough [89], wheeze [15,48,103],
acute otitis media [36], febrile convulsion [89],
bronchiolitis [1,15,102] and pneumonia [15,48,
120] among otherwise healthy children and adults
as well as those with underlying conditions
including asthma [1,53,55,103], immunocompro-
mise [47,120], cystic fibrosis [89] or multiple
sclerosis [121].

In our strain-specific study we identified that
most sole detections of HRV-QPM were in patients
with signs of mainly LRT illness related to wheeze
[89]. Jin et al. reported that children with HRV C
sole detections did not have wheezing, but were
diagnosed with bronchopneumonia [44]. These
diagnoses were not dissimilar to those linked to
other respiratory virus detections and in fact

HRVs, including Cs, are found in similar numbers
to HRSV in children hospitalised due to CFLI [37].

Many recent studies do include data on the HRV
As, Bs and Cs making comparisons between spe-
cies possible. Species-specific illness is not always
observed (2879} [37] but when found, the HRV Cs,
more so than As or Bs, are seen as the major con-
tributors to febrile wheeze in infants and toddlers,
to asthma exacerbations in older children (who are
able to be accurately diagnosed as asthmatic) and
to illness in hospitalised children with asthma
[48,49,53]. Not only did more children with an
HRV C have a cough than those with an HRV A
(who had more fever than the HRV C positive
children) but HRV Cs were associated with
more wheezing and supplemental oxygen than
those positive for HRV A strains [49,54]. First
time and recurrent wheezers with HRV C detected
all responded well to bronchodilators (with or
without steroids) [15]. HRV C strains accounted
for half of all detections from middle ear fluids
of children with acute otitis media [36].

The strain-specific severity data may be related
to the higher average ‘viral loads’ (relative quanti-
fication based on comparative threshold cycles in
the absence of normalisation) reported in HRV C
positive specimens relative to positives with
other HRV species [46]. Higher levels of RNA
can equate with more severe illnesses, usually
categorised with LRT rather than URT symptoms
[46] although there may not be a definite correla-
tion for asthmatics; the mere presence of HRV
can induce illness that, while more severe in asth-
matics, does not significantly differ either in virus
load or duration of viral RNA detection [122].
HRV C-positive children have more pre-existing
conditions and exhibit more LRT than URT illness
than adults. HRV C strains are often detected in
more serious clinical outcomes than HRV A or B
[46] although hospitalisations may be fewer for
HRV Cs than the other species [44].

To date, most studies have sought HRV C
strains in samples collected from the respiratory
tract (mostly the nasopharnyx) although extra-
respiratory detections have been reported in the
blood and pericardium [120,123–126]. HRV C stu-
dies have mostly examined patients from asthma
or hospital-based populations often with a focus
on inpatients (Table 4), which may characterise
the HRV Cs as more severe pathogens than they
really are. While differences between study popu-
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lations can be a problem, it is also important to
investigate a wide range of illness groups, as
they give an indication of the scope of clinical out-
comes possible. Well considered, large commu-
nity-based studies have not yet included HRV C
investigations but are important to present the
full clinical spectrum of clinical outcomes. Much
longer study timeframes will also be required if
strain diversity and circulation patterns are to be
measured usefully and if HRV species-specific
clinical outcomes are to be robustly investigated.

Detection among the asymptomatic
While the HRV Cs, like many other respiratory
viruses, are found among some patients with
none of the study-defined symptoms at the time
of sampling, they are more often detected among
sick children than asymptomatic controls [37].
Viruses detected in asymptomatic people can be
perceived as playing a minor role in illness. How-
ever, for the definition of a symptom to be most
useful, it should include any departure from nor-
mal function or feeling, not just the presence of one
or more signs such as cough, fever above 38�C, rhi-
norrhoea or vomiting. Mild headaches or mood
changes may not be as noticeable or describable
but nonetheless probably reflect a minor,
immune-managed symptom that could be corre-
lated to PCR-related HRV detections. Negative
mood and reduced alertness and reaction times
have previously been identified in those suffering
HRV infections [127] but do not register among
typical clinical criteria.

Persistence
Reports of unusually long periods of HRV positiv-
ity (> 2–3 weeks [128,129]) have increased in fre-
quency since more sensitive PCR methods
replaced cell culture for HRV detection. Identifica-
tion of the same HRV serotype over a four-week
period has been reported [130]. HRV RNA has
been detected days before symptoms commence
through to five or more weeks after they cease
[129,131,132] although commonly strain typing is
not done. Epidemiology that incorporates strain
typing usually does not find chronic shedding
[133]; strain typing indicates that HRV shedding
normally ceases within 11–21 days [79,134]. Thus,
the perception of persistence is more than likely
the result of serial or overlapping infections by
multiple untyped strains [130,135,136] and caution

is required when describing persistent HRV infec-
tions [137] in the absence of strain typing investi-
gations if the implication is that persistence is a
feature of individual HRV strains. Few data are
available [37] to address persistence since pre-
and post-sampling clinical data are rarely
described [138,139] and the definition of ‘well’
subjects prior to or at the time of sampling or
inoculation is sometimes not clear especially for
young children who cannot reliably report symp-
toms [129,133,140]. It is likely that any plan to
link long-term HRV positivity in otherwise healthy
individuals will require strain typing, regular and
frequent sampling and, as with the previous sec-
tion, identification of a truly asymptomatic, rather
than adequately asymptomatic, state.

To date, true persistence, seen as ongoing detec-
tion of a single confirmed HRV strain, has been
limited to individuals with underlying immuno-
suppression or immune dysfunction [141]. Piralla
et al. reported that HRV C strains were detected
more than three-times longer in immunocompro-
mised young patients than in immunocompetent
children, with a mean of 16 versus 53 days [46].
Multiple detection of the same strains (100% iden-
tical 1A sequence in each patient over time)
extended to 4 months in haematopoietic stem cell
transplant recipients.

Seasonality
During the 1960s, large epidemiology studies of
HRVs in temperate climes identified the major epi-
demic peak during autumn with a smaller spring
peak [61,142–144]. It can be assumed that the HRV
C strains did not contribute to these findings
which employed culture methods. HRV Cs and
other HRV species have been identified across all
months in tropical, subtropical and semi-arid
regions [15,45,47]. In our initial study (subtropical
[42]), HRV Cs were mainly detected in spring and
in our single strain study we noted HRV-QPM var-
iants had a bi-modal peak in which detection fre-
quencies were 5.0% of all virus positives in August
(late winter) and 4.2% in February (summer) [1]. A
bimodal trend was also apparent when HRV Cs
were studied in other subtropical and temperate
areas [37,48,49] while single HRV C epidemic
peaks were described in two studies in temperate
climates [58,59]. No strong conclusions can be
drawn from these data, beyond the need to
obtain more data, since sample size and length of
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sampling differed between studies. It is clear that
many HRV C strains circulate in a single year and
while some studies indicate that the same strains
can be detected in neighbouring years [63], we
did not find this to be the case for the HRV-QPM
strain in Brisbane [1].

CONCLUSIONS
With properly deployed PCR-based testing, it is no
longer possible to overlook the central role HRVs
play in human morbidity. The finding of the
niHRVs has reinvigorated HRV research but
raised many questions that need data on a scale
that does justice to the size of the HRV super-
group.

Future respiratory virus research must include
more powerful studies to confirm the trend towards
HRV C dominance in serious HRV illness and will
face a daunting array of questions needing atten-
tion. What makes an HRV distinct to the host and
how do nucleotide clades inform our understanding
of HRV diversity? What will community-based stu-
dies teach us about the clinical impact of niHRV?
What is needed to isolate the niHRVs in the labora-
tory and what cellular receptor(s) do they use? Can
we rely on in silico-derived structural predictions or
do we need crystal structures?

Apart from the basic virology aspects of identi-
fying and characterising the rhinovirome, we have
some fascinating questions to answer about why
there are so many stable strains of HRV compared
to other respiratory viruses and what their role is
in ‘training’ our naı̈ve immune systems to better
defend against viral insult. If their role is central,
what would be the impact on the population of
introducing a vaccine? What is the immunobiol-
ogy of the niHRVs and do the few strains used
in studies to date accurately reflect the pathogen-
esis of infection by any HRV strain?

The discovery of this newfound diversity has
surprised some authors and perhaps re-defined
the assumptions made by others. Hopefully the
HRV Cs can also teach the importance of an
open mind towards rhinoviruses and their role
in human illness.
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