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A B S T R A C T   

This study reveals an incompressible steady Darcy flow of Maxwell nanofluid by a porous disk 
with the impact of activation energy. The liquid flow is due to a stretchable rotating disk. The 
heat equation also includes the impact of heat source/sink and radiation for the purpose of heat 
transportation. The von Karman transformations are utilized to gain the dimensionless form of 
ordinary differential equations (ODEs). The solutions are visualised in the form of graphical re-
sults using bvp 4c method in Matlab software. The ranges of the associated physical parameters 
as, 0.0 ≤ β ≤ 0.9, 0.0 ≤ M ≤ 0.9, 0.0 ≤ λ ≤ 1.5, 0.1 ≤ R ≤ 0.9, − 0.2 ≤ s ≤ 1.3, 0.3 ≤ Bi ≤ 0.6, 
0.0 ≤ γ ≤ 0.15, 0.1 ≤ Nt ≤ 2.0, 0.2 ≤ Nb ≤ 0.8, 0.0 ≤ Rd ≤ 0.3, 0.0 ≤ σ ≤ 1.5, and 0.0 ≤ E ≤ 0.9 
are provided for the graphical solutions developed for the problem. The data of Nussetl and 
Sherwood numbers are presented here with regard to various physical parameters. According to 
the numerical results, increasing the Deborah number has a trend to decrease the radial curves. 
Moreover, the temperature distribution is increased considerably for rising the radiation 
parameter and the higher rate of the rotation parameter shows a weaker concentration trend. To 
validate the numerical approach, an excellent comparison is established using a tabular 
description. To sum up, the current study effectively fills a gap in the antecedent literature.   

1. Introduction 

Fluids with non-Newtonian behavior have been used in a variety of engineering applications, including remediation, hydraulic 
fracturing and a variety of industrial processes. Non-Newtonian fluids have flow equations that are far more nonlinear than the Navier- 
Stokes equations. Three categories—rate, differential and integral—are used to categorise these non-Newtonian fluid models. The 
present model, known as the Maxwell fluid model, is a subclass of a rate type liquid model that is being taken into consideration and 
predicts the effects of relaxation time. Mabood et al. [1] discussed the convective Maxwell liquid flow with the effect of thermal 
radiation. Moreover, the non-Newtonian Maxwell fluid flow with the presence of nanoparticles was explored by Ijaz and Ayub [2]. The 
Cattaneo-Christov theory on Maxwell nanofluid flow was discussed by Ahmed et al. [3]. In their study, they used a rotating disk 
geometry to generate the liquid flow. The rotating flow of Maxwell nanofluid was deliberated by Maboob et al. [4] and obtained 
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Nomenclature 

r,φ and z Cylindrical coordinate 
ν kinematic viscosity 
σ1 electrical conductivity 
cp specific heat capacity 
λ1 relaxation time 
DB the Brownian diffusion coefficient 
k∗ Stefan-Boltzmann constant 
η dimensionless variable 
Ea activation energy 
n filter rate constant 
B0 Magnetic filed strength 
Ω Swirl rate of the disk 
Tf convective fluid temperature 
Cw wall concentration 
K permeability of medium 
R stretching parameter 
M magnetic parameter 
Nb Brownian motion parameter 
Rd Raditation parameter 
δ temperature difference parameter 
E activation energy parameter 
Pr Prandtl number 
θw temperature ratio parameter 
Shr Sherwood number 
F radial velocity 
ϕ Dimensionless concentration 
H Axial velocity 
u,v and w Velocity components 
ρ fluid density 
μ dynamic viscosity 
k thermal conductivity 
hf convective heat transfer coefficient 
τ heat capacities ratio 
σ∗ Rosseland mean spectral absorption coefficient 
DT the thermal diffusion coefficient 
k1 Boltzmann constant 
Kr reaction rate 
w0 mass flux velocity 
c stretch rate of the disk 
T∞ far away fluid temperature 
C∞ far away concentration 
s suction parameter 
λ porosity parameter 
β relaxation time parameter 
Bi Biot number 
Sc Schmidt number 
Rd radiation parameter 
σ chemical reaction parameter 
γ heat generation parameter 
Nt thermophoresis parameter 
Nur Nusselt number 
′ differentiation with respect to η 
θ Dimensionless temperature 
G Azimuthal velocity  
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numerical solution. A number of applications have led many investigators to focus on the analysis of Maxwell flow [5–8]. 
According to the aforementioned literature study, it is evident that no researchers have looked into Maxwell fluid flow with these 

physical features that are included in the current problem. The key objective of this research is to study the investigation of Darcy flow 
of convective and radiative Maxwell nanofluid over a porous disk with the impact of activation energy. The governing problem is 
handled with a numerical method. The solutions are represented through graphical format and explained in detail. 

2. Modeling of the problem 

Let us assume an axisymmetric steady incompressible radiative Maxwell nanofluid flow by a rotating disk [9–22] with the role of 
Darcy effect. In addition, the heat and mass transportation are also discussed with the influence of heat source/sink, thermal radiation 
and activation energy [23], respectively. Further, the convective boundary condition [24] is also taken into consideration. A Buon-
giorno model is appropriate and adopted to discuss the thermophoresis and Brownian motion impacts. Here we assumed that the 
surface (disk) is porous with mass flux velocity w0. The swirl and stretch rates of the disc are indicated here by (Ω,c), respectively. Fig. 1 
(a) depicts the underlying geometry of the problem. In addition, (Tf ,T∞) the convective and far away fluid temperature, respectively. 
Moreover, (Cw,C∞) are the wall and far away concentration, respectively. 

In light of the aforementioned presumptions, the constructed equations are [3,25]. 
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Fig. 1. aA physical diagram of the disk.  
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Fig. 1. bFlow chart diagram.  

Table 1 
Comparison table of F′(0) and G′(0) for various estimation of M, when β = 0.  

F′(0)

M Ref. [29] Ref. [30] Current results 
0.0 0.510233 0.510233 0.510232 
0.1 0.480481 0.480481 0.480479 
0.2 0.453130 0.453130 0.453135 
− G′(0)
M Ref. [29] Ref. [30] Current results 
0.0 0.615926 0.615926 0.615922 
0.1 0.662122 0.662122 0.662131 
0.2 0.708778 0.708778 0.708780  

Table 2 
Comparison table of − θ′(0) and − ϕ’(0) for various estimation of M, when β = 0.  

− θ′(0)

M Ref. [29] Ref. [30] Current results 
0.0 0.325912 0.325912 0.325915 
0.1 0.304612 0.304612 0.304609 
0.2 0.283159 0.283159 0.283161 
− ϕ’(0)
M Ref. [29] Ref. [30] Current results 
0.0 0.233494 0.233494 0.233486 
0.1 0.215631 0.215631 0.215635 
0.2 0.196521 0.196521 0.196519  
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The boundary conditions are [26]. 

u= cr, v=Ωr,w=w0, − k
∂T
∂z

= hf
(
Tf − T

)
,C=Cw at z= 0,

u → 0, v → 0, T → T∞,C → C∞ as z→∞ (6) 

The radiative heat flux expression [26–28] is given by 

qr = −
4
3
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= −

16
3

σ∗T3

k∗
∂T
∂z

, (7) 

The transformations is given by [26]. 
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Ων

√
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. (8) 

Placing the variables (8) into Eqs. (1)–(5), results the following [3,25,28]. 

Fig. 2. a), b): lots of F(η) and G(η) by β.  

Fig. 3. a), b): Plots of F(η) and G(η) by M.  
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H′ + 2F = 0, (9)  
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Fig. 4. a), b): Plots of F(η) and G(η) by λ.  

Fig. 5. a), b): Plots of F(η) and G(η) by R.  
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The transformed BCs are [26]. 

F(η) = R,G(η) = 1,H(η) = s, θ’(η) = − Bi(1 − θ(η) ),ϕ(η) = 1 at η = 0,

F(η)→0,G(η)→0, θ(η)→1,ϕ(η)→0 as η→∞, (14)  
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Fig. 6. a), 6b): Plots of H(η) by β and s. c): Plot of F(η) by s.  
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parameter, Rd =
(

16
3

σ∗T3
∞

kk∗

)
the radiation parameter, Sc =

(
ν

DB

)
the Schmidt number and Pr = ν(ρcp)

k the Prandtl number. 

The Nusselt {Nur} and Sherwood {Shr} numbers are defined by [28] 
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The dimensionless form are 

Re− 1
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}
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1
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Where the Reynold number is Re =
(

r2Ω
ν

)
. 

Fig. 7. a), b): Plots of θ(η) by β and M. c), d): Plots of θ(η) by Bi and γ.  
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2.1. Numerical scheme 

The current problem solution has been obtained by the aid of Bvp4c Matlab approach numerically. To use this approach first we 
convert ODEs into the system of 1st order differential equations, which is followed by Eqs. (17)-(22). Aditionally, the flow chart for 
bvp4c techniquie is given in Fig. 1(b). 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ς1 = H
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ς5 = G’
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ς7 = θ’
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ς9 = ϕ’

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17)  

ςς1 = − 2ς2, (18)  

Fig. 8. a), b): Plots of θ(η) by Nt and Nb. c), d): Plot of θ(η) by Rd and Pr.  
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(
− E
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The non-dimensionalized form of the boundary conditions is 
{

ς1(0) = s, ς2(0) = R, ς4(0) = 1, ς7(0) = − Bi(1 − ς6(0)), ς8(0) = 1
ς2(∞)→0, ς4(∞)→0, ς6(∞)→0, ς8(∞)→0

}

. (23)  

3. Result and discussion 

In this part of the research, the objective is to investigate the physical significance of several emerging parameters on the fluid 
velocity, thermal, and concentration of the liquid under study. 

The physical results are acquired by using bvp4c Matlab solution tenchique. Moreover, the tabluted values for the heat and mass 
transfer rate are observed and comparisons are done with pervious published data. The eveloving parmeters like relaxation parameter 
(β), suction parameter (s), stretching parameter (R), porosity parameter (λ), (M), (Nb), Biot number (Bi), Raditation parameter (Rd), 
thermophoresis parameter (Nt), Schmidt number (Sc), temperature difference parameter (δ), radiation parameter (Rd), activation 
energy parameter (E), chemical reaction parameter (σ), heat generation parameter (γ) and (Pr) on the velocity, thermal, and con-
centration profiles are sketched. 

Tables 1 and 2 is formed to compare the present results with previous published data which shows great harmony among them. 
The variation of affecting parameter (β, M, λ, R and s) on the radial, angular, and axial velocities profiles are sketched in Figs. 2–6. It 

is illustrated from Fig. 2(a) and (b) that great estimation of β declines the radial as well as angular velocity of the liquid. Physically, for 
the larger values of β behave like a solid and for smaller values its behave like a fluid, thereby the fluid resistance improves which result 
to diminishes in both directions. Fig. 3(a) and (b) represents the behavior of M on the radial and angular velocity. As, due to lager 
estimation of magnetic effect, the resistive forces boost up as a results the fluid velocity declines along the radial and angular direction. 
The diversion in the velocity sketched for the various estimation of λ, is displayed in Fig. 4(a) and (b). It is discovered that the velocity 
of the liquid and associated boundary layer thickness decline due to higher values of λ. Actually, the occurrence of porous media 
produces the resistance to the motion of the liquid, which deteriorating the fluid velocity in both direction. The variation in the radial 
and angular velocity due to larger estimation of stretching ratio parameter (R) evaluated in Fig. 5(a) and (b). It is noted in Fig. 5(a) that 

Fig. 9. a), b): Plots of φ(η) by β and σ.  
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Fig. 10. a), b): Plots of ϕ(η) by Nt and Nb. c), d): Plots of ϕ(η) by Sc and E. e): Plot of Nur by Bi. f): Plots of Shr by E.  
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various estimation of R improves the fluid velocity in radial direction, while opposite trend is found in the case of angular velocity, 
which is depicted in Fig. 5(b). The upshot of relaxation and suction parameter against the axial velocity is shown in Fig. 6(a) and (b). It 
can be shown that by taking the bigger estimation of β and s, the fluid velocity in axial direction is improved with respect to both 
parameters. Fig. 6(c) depicts the variation in the fluid velocity due to various values s. As obvious from the curve that the improvement 
in fluid velocity and boundary layer thickness can be demonstrated by increasing s. 

The outcomes of the developing parameters on the thermal profiles are depicted in the Figs. (7) and (8). It is showed from Fig. 7(a) 
and (b) that enlarging values of β and M boosts the liquid temperature and boundary layer become thicker due to higher resistive 
forces. The variation in θ(η) are sketched against the numerous values of Bi and γ and are illustrated in Fig. 7(c) and (d). It is seen from 
the sketch that greater estimation of Bi and γ improves the thermal profile. The higher values of Nt declines the temperature distri-
bution, while converse trend is seen for Nb, which both are sketched in Fig. 8(a) and (b), respectively. Additionally, Fig. 8(c) and (d) 
depict the effect of (Rd) and (Pr) on the θ(η) sketch. It is further observed that higher estimation of Rd and Pr improves the temperature 
of the liquid. Physically, the occurrence of radiative heat flux shows more heat absorption in the liquid which boosts up the liquids 
temperature. 

The impact of numerous parameter on φ(η), sketch is portrayed in the Figs. (9) and (10). From Fig. 9(a) and (b), it is noted that due 
to larger estimation of relaxation parameter (β) and chemical reaction parameter (σ) the ϕ(η) sketch and related thickness of boundary 
layer enlarges β, while opposite trend is seen for the numerous values of σ. The diversion in the ϕ(η) sketch against the growing 
estimation of Nt and Nb is shown in Fig. 10(a) and (b). It is noted that due to larger values of Nt, the ϕ(η) sketch expands while opposite 
trend is observed for the bigger estimation of Nb. The effect of the Sc and E against the nanoparticles concentration profile is given in 
Fig. 10(a) and (b). It is described that nanoparticles concentration declines for the larger values of Sc, while converse trend is seen for 
the higher estimation of activation energy parameter. Physically, growing values of Sc causes a reduction in the mass diffusivity which 
leads to decay the ϕ(η) sketch and corresponding boundary layer thickness. Moreover due to larger E weaker reaction rate which rises 
the chemical reaction. Further, the effect of Bi and E on Nusselt as well as Sherwood numbers are drawn in Fig. 10(e) and (f). It is noted 
that the Nusselt number enhances by the higher rate of Bi and Rd. Additionally, the skin friction reduces with the impact of E. 

4. Concluding remarks 

The current investigation mainly focuses on the radiative Maxwell nanofluid flow with Darcy - Forchheimer across the porous 
medium subject to rotating disk. The heat and mass transport analysis is presented by the influence of nonlinear thermal radiation and 
activation energy. Moreover, convective boundary conditions with suction effect also take to analyze in the current investigation. The 
key finding of the current paper are followed as,  

• The radial and angular velocities are reduced for larger estimation β, while axial velocity shows opposite trend for β.  
• Due to appearance of porous media impact the resistance of fluid motion enhances, as a result the fluid vecloity declines.  
• Higher estimation of suction parameter improves the radial and axial velocity.  
• More heat is transmitted into the fluid due lager estismation of Rd, which results to improves the temperature.  
• Larger values of magnetic parameter and Biot number develops the temperature of the liquid.  
• The higher values of Brownian motion parameter improves the temperature profile but opposite trend is noted for concentration 

profile.  
• The nanoparticle concentration is augmented by the growing estimation of E.  
• As the Biot number and radiation parameter increase, so does the rate of heat transfer.  
• The skin friction is reduced with the influence of activation energy. 
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