
The SLE review series: working for a better
standard of care

Modelling clinical systemic lupus erythematosus:
similarities, differences and success stories

Teja Celhar1 and Anna-Marie Fairhurst1,2

Abstract

Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic

susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent

insights into immunological mechanisms of disease progression have boosted a revival in SLE drug devel-

opment. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end

points. This is probably because of the complexity of the disease, which is driven by polygenic predispos-

ition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse

model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease

progression. The main mouse models have been fairly successful for the evaluation of broad-acting im-

munosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appro-

priate model(s) for testing and, ultimately, identification of patients who will be most likely to respond.
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Rheumatology key messages

. Mouse models are indispensable tools to study human SLE.

. Mouse models recapitulate specific elements of SLE, particularly with regard to the mechanism of disease.

. Selection of the most appropriate model(s) for future testing of targeted SLE therapeutics is essential.

Introduction

SLE is a complex autoimmune disease with an extremely

heterogeneous clinical presentation, which reflects the mul-

tiple roles of the environment, genetics and immune re-

sponse in disease initiation and progression [1]. Variability

in disease manifestation and severity makes it extremely

challenging to study in clinical trials, especially in terms of

selecting the patient population who will be most likely to

respond to the treatment under investigation [2].

Murine models of disease represent genetically homoge-

neous populations to study the initiation and the progressive

pathogenesis at the local, peripheral and end-organ stage

[3]. They provide a much faster system for therapeutic

screening, because mice reach 50% mortality due to GN

at 5�9 months of age [4, 5]. Moreover, they allow for exam-

ination in the absence of any therapy, which is a major

caveat of studying samples from SLE patients, who still

take chronic doses of immunosuppressants even when in

remission [6]. Additionally, they allow for easy assessment of

drug combinations with the aim of reducing individual doses

and side effects of high-dose monotherapy.

The limitations to use of murine models are the increas-

ing costs, the longevity of projects and the scientific ex-

pertise to design, fulfil, analyse and interpret results to

ascertain meaningful data applicable to human disease.

In this review, we briefly discuss the commonalities and

differences of the most commonly used mouse strains in

lupus research and highlight how they have provided a

meaningful path forward for therapeutic intervention.

Main mouse models

Defining whether a system is a good model of disease

requires an analysis of its requirements. A hallmark feature

of human SLE is the presence of ANAs, anti-dsDNA
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antibodies and anti-RNA or RNA-associated antibodies.

Clinical manifestations include GN, arthritis, heart disease,

cutaneous lesions and neurological symptoms [1].

Likewise, as each patient presents with a unique pheno-

type, mouse models can recapitulate only limited features

of the disease (Table 1).

Spontaneous New Zealand black�white F1 (NZB/W),

Murphy Roths Large/lymphoproliferative (MRL/lpr) and

BXSB mouse models have been extensively used for

studying immunological mechanisms and therapeutic tar-

gets over the last 40 years [5]. All three models exhibit

serum ANAs and develop GN according to a strain- and

sex-specific time line [4, 5]. Based on their specificities,

these models can be used to examine the role of different

genes and pathways, cellular dependency in disease pro-

gression and therapeutic targeting. Additionally, IFNa-de-

pendent models and Toll-like receptor 7 (TLR7)-

associated strains are gaining in importance, based on

the extensive data supporting these pathways in the

pathogenesis of SLE [7�9].

MRL/lpr

MRL/lpr mice have a loss-of-function lymphoproliferation

(lpr) mutation within the gene encoding Fas, a cell-surface

protein that mediates apoptosis [10]. They are character-

ized by lymphoproliferation, enlarged lymph nodes

(lymphadenopathy) and GN, and between 25 and 75%

mice develop arthritis. Serologically, they display hyper-

immunoglobulinaemia, high ANAs, high anti-dsDNA anti-

bodies and anti-small nuclear ribonucleoprotein (sn-RNP)

antibodies. Male and female MLR/lpr mice are equally af-

fected [4, 5]. Lymphadenopathy and splenomegaly are

attributable to expansion of an unusual double-negative

CD4�CD8�CD3+B220+ T cell population [11]. Aside from

examining the mechanisms of autoantibody production

and renal failure, MRL/lpr mice are also used to examine

cutaneous and neurological aspects of lupus, in contrast

with other strains [12, 13].

Human relevance

MRL/lpr mice recapitulate many features of lupus; how-

ever, massive lymphadenopathy is not typical of human

disease. Nonetheless, several recent studies reported an

association of Fas and Fas ligand polymorphisms with the

susceptibility to SLE, and increased double-negative T

cells have been found in the periphery and in the kidneys

of SLE patients [14�17].

IFN dependency

Pre-autoimmune MRL/lpr mice do not show evidence of

elevated IFN-induced genes (i.e. IFN signature) [18]. IFN

receptor (IFNAR) deficiency enhanced the disease, and

anti-IFNAR antibody treatment did not mediate any long-

term effects in this model [19, 20]. Consequently, MRL/lpr

mice are not appropriate for studying the role of type I IFN

in lupus.

NZB/W

The disease in New Zealand black�white F1 hybrid (NZB/W)

mice has a strong female bias, and it is characterized by

lymphadenopathy, splenomegaly, increased concentrations

of ANA and anti-dsDNA antibodies and IC-mediated GN

[4, 5]. NZB/W mice are also used as a model of lupus-related

cardiovascular disease [21].

Crossing and selective inbreeding generated several

New Zealand mixed (NZM) strains, with diverse pheno-

typic traits and variability in penetrance, severity, onset

and gender bias [22]. The NZM2410 strain rapidly de-

velops severe GN in both female and male mice, whereas

GN in NZM2328 mice is female biased [22, 23].

Human relevance

Arguably, the most important contribution of the genetic

studies in NZB/W-congenic derivatives was the identifica-

tion of the NZM2410-derived Sle1 and NZB-derived Nba2

locuses, which are responsible for the production of auto-

antibodies [24]. Sle1 and Nba2 overlap in the telomeric

region of chromosome 1, which encodes members of

the FcgR, SLAM and IFN-inducible (Ifi) receptor families

[25�30]. This region has a human syntenic equivalent on

chromosome 1, 1q21�44, which has been associated with

SLE in human linkage studies [31�33]. Human gene asso-

ciations include Cr2 [34, 35], Fc�RIIA, Fc�RIIIA and

Fc�RIIIb [36�38], PARP [39] and CRP/SAP [40, 41].

SLAM family members Ly108 and CD84 have been iden-

tified as disease causative in mice, but they may be less

significant in human SLE [29, 42]. NZM2328-derived sus-

ceptibility locuses associated with GN, Cgnz1 and Agnz1,

are also located on the distal region of chromosome 1,

overlapping with Sle1 [23, 43]. Cgnz1 has a nearly identi-

cal homologous region in the human genome; however,

further studies are needed to identify possible suscepti-

bility genes [43].

NZM2410-derived Sle3 on chromosome 7 is respon-

sible for generalized T cell activation and development

of nephritis [44, 45]. The kallikrein genes within this

region were associated with nephritis in both mice and

humans [46]. NZM2410-derived region Sle2, responsible

for the expansion of autoreactive B cells, and NZM2328-

derived region Adnz1, responsible for autoantibody pro-

duction, are located on mouse chromosome 4 [47, 48].

These regions are under investigation to identify novel

susceptibility genes.

IFN dependency

Pre-autoimmune NZB/W mice display elevated IFN-regu-

lated gene expression in the spleen [18]. The IFN signature

has also been observed in myeloid dendritic cells from the

triple-congenic NZM2410-derived Sle123 strain [49].

Additionally, IFNAR deficiency has been shown to

reduce disease in NZM2328 and NZM2328-derived

B6.Nba2 mice [50, 51].

BXSB and associated strains with TLR7 upregulation

BXSB mice develop a rapid-onset severe disease in males

[4, 5]. The male bias is attributable to the presence of the

Y-autoimmune accelerator (Yaa) locus, which arose from

an X to Y chromosome translocation [52, 53]. This

doubled the genomic copy number and therefore the ex-

pression of a number of genes, including TLR7. TLR7 is
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crucial for the severe aspects of pathogenesis in this

model [54�56]. Yaa can also accelerate disease in MRL,

NZW and NZB lupus-prone mice [57, 58]. Likewise, a 2-

fold upregulation of TLR7 on a B6.Sle1 mild autoimmune-

prone background (Sle1.Tg7) or larger increases in

expression (>4- to 8-fold; TLR7.Tg) on a non-autoim-

mune-prone background are sufficient to drive severe dis-

ease [54, 59]. BXSB susceptibility loci are required for the

development of the disease, because Yaa is not sufficient

to cause lupus in mice that lack an autoimmune genetic

predisposition [57, 60]. BXSB-derived loci, designated

Bxsb1�6, are present on various chromosomes and

many overlap with known NZB/W-derived regions [61, 62].

A unique feature of the BXSB strain is the TLR7-

dependent expansion of circulating monocytes (monocy-

tosis) [56]. An increased proportion of monocytes,

especially non-classical CD14+ CD16++, has also been

observed in SLE patients [63, 64]. Additionally, strains

with increased TLR7 expression have reduced splenic

marginal zone cells and an expansion of T follicular helper

cells and myeloid cells [52�54, 56, 59]. Aged mice develop

GN and show increased leucocyte infiltration into the

kidney, particularly CD11b+ myeloid cells [53�56, 59].

TLR7-associated strains have rarely been used to

assess drug targets, possibly because of their male

gender bias, which is unlike human disease. However,

they have provided important insight into the immune

mechanisms driving end-organ pathology.

Human relevance

The Bxsb3 locus overlaps with Sle1 and Nba2 and has

been associated with autoantibody production and GN

[61, 62]. The genes in this region that might be of rele-

vance in human SLE are Fc�gRII and Ifi202 [65]. Human

translocations from the X to Y chromosome have not been

found; nonetheless, SLE is more prevalent in men who

have an additional X chromosome [66]. Increased TLR7

gene copies and two single nucleotide polymorphisms,

rs179008 and rs3853839, have been associated with

SLE in different ethnicities [67, 68]. Signalling pathways

downstream of TLR7 can also be affected, as exemplified

by IRF5, which is strongly associated with SLE suscepti-

bility [69, 70]. Elevated TLR7 expression appears to be a

common feature of peripheral blood mononuclear cells

from SLE patients; it can correlate with IFNa expression

and can be induced by IFNa itself in several immune cells

[71]. Immunological studies of human SLE have also

shown a role of TLR7 in neutrophil extracellular trap cell

death and generation of anti-snRNP antibodies [72, 73].

IFN dependency

The IFN signature has been observed in the kidneys of

BXSB mice [74]. Treatment with an anti-IFNAR antibody

was effective, particularly if started at early stages [20].

Thus, BXSB might represent a model for elucidating the

role of type I IFN in the early stages of the disease.

IFNa-dependent/driven mouse models

A strong IFN signature in the peripheral blood can be

induced by pristane and other hydrocarbons in non-

autoimmune-prone mice, such as BALB/c, C57BL/6 and

DBA/1 [75]. The disease in these mice is TLR7 and IFN

dependent and characterized by GN, ANAs, anti-dsDNA

antibodies, anti-snRNP antibodies and arthritis [75].

Additionally, IFNa can be used to induce rapid-onset,

severe lupus in spontaneous models, such as NZB/W,

B6.Sle123 and NZM2328. These mice represent a reliable

but stringent model to evaluate new drugs, because they

do not respond well to standard therapies [76].

Evaluation of standard-of-care SLE ther-
apeutics in mouse models

To date, only a handful of drugs have been approved for

the treatment of SLE. In the 1950s, the US Food and Drug

Administration approved aspirin, CSs and the antimalarial

drug HCQ as non-specific treatments for SLE. These

drugs were not approved following clinical trials, but

based on clinical experience and eminence-based intu-

ition. It took nearly 60 years of research before the ap-

proval of the next therapeutic and first targeted biologic,

belimumab, in 2011 [77]. Additionally, several off-label

agents were introduced to SLE therapy, predominantly

systemic immunosuppressants such as CYC, MTX and

MMF [77]. Despite being the pillars of SLE treatment

[78], their mechanisms of action are not completely under-

stood. NZB/W and MRL/lpr models have been extensively

used to study these mechanisms and to evaluate side ef-

fects, dosage regimens and response to treatment, espe-

cially the ability to delay or prevent renal disease [5].

CYC

CYC is widely used as a chemotherapeutic and immuno-

suppressant with remarkable immunodepletive properties

[79]. The first murine lupus studies involving CYC began in

the late 1960s using the NZB/W mouse model. In these

studies, CYC decreased autoantibody production and re-

pressed the progression of LN without reversing the exist-

ing abnormalities [80, 81]. Protection from severe GN was

achieved with long-term high-dose CYC and correlated

with decreased anti-DNA antibody levels [82]. Short

courses of intermittent pulse CYC did not achieve sus-

tained immunosuppression [83, 84]. The efficacy of CYC

has been confirmed in the MRL/lpr model; it prolonged

survival, decreased arthritis and nephritis, reduced ade-

nopathy and splenomegaly, reduced antibody levels and

normalized T and B cells [85, 86].

Immunological studies on NZB/W mice have shown that

CYC therapy depletes dividing, short-lived plasmablasts,

but does not delete long-lived plasma cells efficiently [87].

These persist in survival niches, which are provided by the

bone marrow and inflamed tissues, and might explain the

resistance to immunosuppressive therapy observed in

both mice and humans [88�90]. Fifty per cent of SLE pa-

tients show persistent active nephritis despite the therapy

showing apparent clinical response [91].

Long-term CYC therapy is more efficient; however, it is

associated with more side effects. Prolonged administra-

tion of CYC, especially high doses, increases the
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incidence of neoplasms in NZB/W mice [92, 93]. Long-

term CYC (>1 year) in humans is also carcinogenic, caus-

ing most frequently bladder cancer, secondary acute leu-

kaemia and skin cancer [79]. Owing to its toxicity, CYC is

commonly used at a lower dose in combination with other

drugs. In the 1970s, Steinberg et al. went on to study the

combination of CYC, AZA and methylprednisolone (Mp) in

NZB/W mice [94]. Prevention of GN was achieved either

by intermittent high doses of CYC or by daily low doses of

a combination of CYC, AZA and Mp. These treatments

were beneficial only when started early or in older mice

with mild renal disease [94]. These studies provided the

basis for human trials, which concluded that the combin-

ation of an immunosuppressant and low-dose prednisone

was superior to treatment with a high dose of CSs alone at

preserving renal function [95, 96]. However, for most of

the treatment regimens, the effect was evident only after

5�7 years from the initiation of the trial [95].

Methylprednisolone, prednisolone and prednisone

CSs have been extensively used to suppress inflamma-

tion in a variety of immune-mediated diseases [97]. CS

therapy, especially high dose and long term, is asso-

ciated with many complications, including weight gain,

hypertension, atherosclerosis, diabetes, peptic ulcer,

skin atrophy, acne vulgaris and increased risk for infec-

tions [97]. Despite their many side effects and unclear

mechanism of action, CSs (in combination with HCQ,

CYC, MTX or MMF) remain the preferred induction ther-

apy for almost all clinical presentations of lupus [78].

CSs in combined regimens have been extensively stu-

died in murine lupus; however, very few studies have

addressed the effects and mechanism of action of ster-

oids alone. Mp administered to NZB/W mice at the

onset of nephritis preserved the glomerular structure

and function by decreasing the amount of IgG, IgM

and C3 deposits. This was associated with lower

plasma concentration of IgG, but not of anti-DNA anti-

bodies, C3 and C1q-reactive materials [98]. Mp also

decreased proteinuria by preserving glomerular perme-

ability and improved survival [99]. CSs might preserve

renal function through the inhibition of nuclear factor-kB

(NF-kB) activity, which has been implied in LN patho-

genesis [100, 101]. Mp has been shown to inhibit the

lipopolysaccharide-induced activation of NF-kB in the

kidneys of MRL/lpr mice [102]. Additionally, prednisol-

one inhibited the expression of many NF-kB-inducible

genes in the glomeruli of MRL/lpr mice, such as adhe-

sion molecules, chemokines and their receptors and

proteins involved in antigen presentation [103, 104].

Both prednisolone and methylprednisolone attenuated

the expression of extracellular matrix components in

the kidneys of MRL/lpr and NZB/W mice, respectively

[103, 105].

MMF

MMF is an immunosuppressive drug used to reduce acute

and chronic transplant rejection. In SLE, it is most com-

monly used together with CSs in the induction therapy of

LN [78]. When administered to NZB/W mice, MMF (60 and

200 mg/kg/day) reduced proteinuria, albuminuria and

blood urea nitrogen concentrations, decreased autoanti-

body production and prolonged survival [106, 107]. Low

doses of MMF (30 mg/kg/day) were effective in diminish-

ing glomerular lesions and promoted qualitative changes

in autoantibody production, lowering specifically IgG2a

antibodies, but did not affect serum IgG or anti-dsDNA

antibody levels [108]. Likewise, in MRL/lpr mice, 90 mg/

kg/day MMF efficiently reduced albuminuria and GN and

caused less immunoglobulin and C3 deposition in the glo-

meruli, but did not diminish antibody formation [109].

However, when MMF was given at 100 mg/kg/day, it

reduced serum levels of antibodies in both NZB/W and

MRL/lpr mice [108, 110]. MMF at 300 mg/kg/day also ef-

fectively abrogated LN development in the IFNa-acceler-

ated NZB/W model and led to a decrease in the number of

antibody-secreting cells in the spleen, but did not affect

serum levels of anti-dsDNA antibody [111].

In the MRL/lpr renal cortex, MMF inhibits expression of

inducible nitric oxide synthase, at least in the initial stages

of disease [112, 113]. In contrast with CSs, it does not

affect the NF-kB pathway [112, 114]. In the kidneys of

NZB/W mice, MMF has been found to reduce the activa-

tion of protein kinase C, reduce fibronectin expression

and reduce the expression of urokinase receptor in podo-

cytes [115, 116].

Antimalarial agents

Use of the antimalarial agents quinacrine, chloroquine (CQ)

and HCQ in SLE has recently been extensively reviewed

[117, 118]. Their principal modes of action are thought to be

interference with lysosomal acidification and inhibition of

TLR7/9 through binding of nucleic acids [118].

Two studies have assessed HCQ for the treatment of

lupus-associated endothelial dysfunction in NZB/W mice.

Long-term treatment with 10 mg/kg/day HCQ by oral

gavage resulted in reduced hypertension, reduced endo-

thelial dysfunction and less damage of the heart and kid-

neys, without altering anti-dsDNA antibody levels [119].

Early HCQ treatment with a lower dose (3 mg/kg/day)

also reduced endothelial dysfunction, but did not de-

crease the degree of nephritis [21]. These effects have

been attributed to anti-oxidative properties of HCQ, but

further studies are needed to elucidate the exact mech-

anism. The potential for HCQ to treat lupus-related skin

lesions has been evaluated in the MRL/lpr model, showing

efficacy and safety [120].

Mouse models for the screening of tar-
geted therapeutics

B cell-targeted therapies

B cells produce antibodies (including autoantibodies), cyto-

kines and chemokines and are crucial for normal humoral

immune function. They represent an obvious and valid drug

target in autoimmune diseases, as recently proved by the

approval of belimumab for SLE treatment [121].
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Belimumab

Belimumab is a human monoclonal antibody that binds

and neutralizes the B cell-activating factor, B-lymphocyte

stimulator (BLyS, commonly known as BAFF). BAFF and

its homologue APRIL (a proliferation-inducing ligand) bind

to receptors that are expressed on B cells at different

stages of maturation [122].

Mouse experiments played an indispensable part in elu-

cidating the role of BAFF and establishing it as an effective

target for SLE treatment [121, 122]. Administration of re-

combinant BAFF to non-lupus mice results in elevated im-

munoglobulin production [123]. BAFF-transgenic (BAFF-Tg)

mice develop SLE-like manifestations, and introduction of a

BAFF transgene into autoimmune-prone B6.Sle1 or

B6.Nba2 mice accelerates the development of GN [124,

125]. BAFF inhibition reduces nephritis and prolongs sur-

vival in multiple mouse models: NZM2410, NZB/W and

BXSB [126�128]. Additionally, genetic ablation of BAFF

prevents IFNa-dependent acceleration of GN, suggesting

that therapeutic targeting of BAFF could be successful in

patients with an IFNa signature [129].

Mouse models are also being used to elucidate the exact

mechanism of action of belimumab. Older studies sug-

gested that the blockade of BAFF would delete

strongly self-reactive B cells and thus limit the autoimmune

response [130]. However, new data suggest that BAFF

blockade prevents signalling through its receptor trans-

membrane activator, calcium modulator, and cyclophilin

ligand interactor, resulting in complete protection from

autoantibody production without an extensive reduction in

the number of B cells [131]. This could partly explain the

controversial efficacy of B cell-depleting treatments, such

as rituximab (anti-CD20 monoclonal antibody) [132].

Anti-CD20 B cell-depleting therapies

In humanized MRL/lpr mice, which express hCD20, anti-

CD20 therapy effectively reduces B cell numbers and

leads to amelioration of the disease, albeit only when

used at high doses and for a prolonged time [133].

Unusually high doses (1�10 mg per mouse) have been

used because of resistance to depletion that was later

attributed to impaired IgG-mediated phagocytosis [134].

NZB/W mice also display less effective B cell depletion

compared with C57BL/6 mice that increases with age and

disease severity [135]. Nonetheless, a short course (4

weeks) of anti-CD20 therapy (10 mg/kg) in young NZB/W

mice delayed the onset of the disease and delayed the

development of nephritis in mice with advanced disease

without decreasing anti-dsDNA antibodies [135].

Reduction of autoantibodies and prevention of renal

injury and hypertension were achieved only after long-

term B cell depletion [136].

Anti-CD20 B cell depletion can be further enhanced

by concomitant BAFF blockade, leading to reduction of

autoantibodies, reduced kidney disease and prolonged

survival [135, 137]. Dual anti-CD20 and anti-BAFF therapy

has also been effective in the IFNa- or pristane-

accelerated NZB/W mice, particularly in attenuating

renal injury [137].

Despite the promising results of preclinical trials, especially

in NZB/W mice, clinical trials with the anti-CD20 mAb ritux-

imab did not meet the chosen end points [132]. However,

the cumulative data from randomized control trials, open

clinical trials and cohort studies have shown that rituximab

is a safe and effective treatment for non-renal manifestations

of SLE, such as arthritis and thrombocytopaenia, and is

currently being used off-label [132, 138]. Based on mouse

data, the dual anti-BAFF/anti-CD20 therapy might be useful

to treat renal manifestations of SLE, especially in the context

of IFN signature.

T cell CTLA-4 co-stimulation blockade

Cytotoxic T-lymphocyte antigen 4 (CTLA-4 or CD152) is

an inhibitory protein on the surface of T cells that binds

CD80/CD86 on antigen-presenting cells. By inhibiting

CD28-mediated T cell activation, CTLA-4 plays a role in

regulation of central tolerance and prevention of self-

reactivity [139]. The same effect is mediated by the

recombinant fusion protein CTLA-4-Ig (abatacept).

Abatacept has been approved for the treatment of RA

and has shown promising results in murine LN; however,

it failed in human SLE trials [139, 140].

Sustained CTLA-4-Ig treatment increases survival,

dampens autoantibody production and reduces kidney

disease in BXSB and NZB/W mice, whereas a short-

course therapy only delays disease [141�143]. Long-

term treatment regimens are not likely to be used in

clinical practice, thus short-term CTLA-4-Ig in combin-

ation with other immunosupressive reagents

(anti-CD40L, CYC) has been evaluated in NZB/W mice,

showing promising results [142, 144]. Importantly, the

combination of CTLA-4-Ig with CYC reversed proteinuria

in the majority of mice with advanced renal disease and

precluded the need for continuous administration of CYC

[144, 145].

Based on positive outcomes in mouse studies, the add-

ition of abatacept to the CYC/AZA regimen has been eval-

uated in the ACCESS trial for the treatment of proliferative

LN. Disappointingly, the randomized double-blinded

study did not show any improvement [146]. As in the

case of rituximab, the failure of abatacept trials has

been partly attributed to clinical trial design, and post

hoc analyses have shown potential benefit in patients

with active arthritis and LN [140, 147]. The IFN signature

in patients might also be considered, because IFNa ren-

ders NZB/W F1 mice relatively resistant to CYC/CTLA-4-Ig

therapy [148]. Currently, the ALLURE trial is assessing the

potential of abatacept for the treatment of advanced LN

with CSs and MMF as background therapy [146].

IFNa- and TLR-targeted therapies

A prevalent IFN signature in the peripheral blood is pre-

sent in> 80% lupus patients [8]. In BXSB and NZB/W

models with a weak IFN signature, the blockade of the

IFNa pathway either by mAb or by immunization with an

IFNa kinoid ameliorated disease [20, 149]. A human IFNa
kinoid has successfully reduced the IFNa signature in SLE

patients [150]. The efficacy of anti-IFNa (rontalizumab,
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sifalimumab) or anti-IFNAR1 (anifrolumab) antibodies

showed variable results depending on the patient IFN sig-

nature [151�153]. It has to be noted that the assessment

of the IFN signature varies greatly between these studies,

and a standardized panel of genes should be used, ideally

involving IFNa-, IFNb- and IFNg-related modules, as re-

cently described [8]. It also remains to be determined

whether a high IFN signature in patients makes them

more resistant to treatment as has been observed in

NZB/W mice following IFNa exposure [148].

In one study, the IFN signature could be normalized

transiently only with aggressive high-dose Mp pulse ther-

apy, but not by oral CSs [154]. In NZB/W and TLR7.Tg7.6

mice, this unresponsiveness was attributable to TLR7/9-

mediated chronic activation. A TLR7/9 antagonist

(IRS954) enhanced the sensitivity to CSs and could be

potentially useful as a CS-sparing drug [154]. Additional

mouse studies support TLR7/8/9 targeting as an import-

ant therapeutic venue in SLE [7, 71]. Single TLR7 antag-

onist (IRS661), dual TLR7/9 (IRS954) or triple TLR7/8/9

antagonists (IMO-8400, IMO-9200 and CPG 52364) have

all shown efficacy in MRL/lpr and NZB/W models

[155�159]. Despite the promising results in murine

models, TLR antagonist development for treating SLE pa-

tients has somewhat halted at preclinical or early clinical

phases [160]. DV1179, a dual TLR7/9 antagonist de-

veloped by Dynavax, did not reduce IFN-regulated

genes in SLE patients in a Phase 1b/2a study [161].

There might be several reasons for these failures, includ-

ing TLR antagonists being useful only for a specific sub-

population of SLE patients [71].

Summary statement

Mouse models of lupus are an indispensable tool for the

study of lupus pathogenesis, especially the pathways

involved in loss of tolerance, autoantibody production

and progression to end-organ disease, such as GN. In

the last two decades, these studies have provided many

new target molecules and triggered a revival in lupus drug

development. The same models are also used in preclin-

ical studies of new drugs to assess safety, dosage and

efficacy. Despite the promising results obtained in mouse

studies, the majority of the novel drugs, with the exception

of belimumab and IFNa-blocking agents, failed in clinical

trials. This has prompted the US Food and Drug

Administration to release special guidelines for SLE drug

development [2, 77]. Selection of the patient population

that is most likely to respond to treatment, the number of

recruited patients, defining the outcomes of treatment,

establishing the appropriate duration of the trial and the

contribution of existing treatment are the main challenges

of SLE trial design [2, 77, 146]. Better study design with a

larger number of patients and less stringent end-point

measures has probably contributed to a successful out-

come of belimumab and anti-IFNa trials [147]. The failure

of certain therapeutics in clinical trials could also be attrib-

uted to lack of efficiency, simply because the biology is

not completely understood. There are also obvious differ-

ences between the human and mouse immune system,

with lymphocyte frequencies being the most obvious one

[162]. Lastly, laboratory mice are housed in relatively

germ-free conditions, whereas humans are constantly

being exposed to pathogens that activate the immune

system in various ways, including by TLR engagement

and IFN signalling. The involvement of the microbiome in

the development of autoimmunity is currently a hot topic

of investigation [163].

To summarize, mouse models of lupus will continue to

be indispensable in multiple aspects of SLE research.

Novel drug targets should be assessed across multiple

spontaneous SLE models and, ideally, also in an IFNa-

dependent or accelerated model if the impact of the IFN

signature is expected. Improved understanding of the

biology and better clinical trial design will be likely to gen-

erate more success stories similar to belimumab and anti-

IFN treatment.
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