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REVIEW ARTICLE

Fibroblasts—a key host cell type in tumor initiation, progression,
and metastasis

CARINA STRELL, HELENE RUNDQVIST & ARNE ÖSTMAN

Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden

Abstract
Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment
and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses
some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some
clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed.
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It is now well recognized that tumor initiation,
growth, invasion, and metastasis are a consequence
of a complex interplay between the host environment
and the cancer cell. Among host cells most attention
has been given to various immune cells and cells of
the vasculature. However, it is now becoming clear
that also fibroblasts play crucial roles during various
steps in cancer development.
This review discusses some selected and recent

studies which highlight and emphasize fibroblasts as
receivers and providers of pro-tumoral paracrine sig-
naling. Special attention is given to studies that indicate
fibroblasts as critical components of tumor initiation,
early progression, and various steps of the metastatic
process (Figure 1). Some of these topics have also been
covered in other recent reviews (1–6).

Fibroblasts promote early tumor-stimulatory
inflammation and ductal carcinoma in situ
(DCIS) progression

Genetically engineered mouse models of cancer
present excellent opportunities to analyze the step-
wise progression of cancer development. Like in
human cancer, inflammation is observed in the early

stages of tumorigenesis in some of these models. An
important role of fibroblasts in driving and stimulat-
ing this early pro-tumorigenic inflammation was
recently uncovered in an analysis using an HPV16-
driven model of squamous skin cancer (7). In that
study fibroblasts from dysplastic early skin lesions
were isolated and found to be characterized by a
pro-inflammatory gene signature, including expres-
sion of a set of chemokines and interleukins. This
signature was also found in cancer-associated fibro-
blasts (CAFs) from genetic mouse models of breast
and pancreatic cancer, and in human CAF prepara-
tions. NFkappaB activation was identified as an
important factor for maintaining this pro-inflamma-
tory fibroblast phenotype. The exact mechanism(s)
inducing the pro-inflammatory fibroblast remain to be
characterized, but co-culture experiments with fibro-
blast and cancer cells indicated that the pro-
inflammatory signature in fibroblasts was induced
by paracrine signals from cancer cells.
Another highly innovative and original study also

identified fibroblasts as an important component in
the early stages of cancer (8). This study used as a
starting-point epidemiological studies which have
established that breast cancers developing close after
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child-birth are associated with worse prognosis. Since
prognosis for these cases is worse than in breast cancer
detected during pregnancy it has been suggested that
a process subsequent to pregnancy is involved.
The authors hypothesized that the host microenvi-

ronment of involuting breast tissue created a
progression-permissive microenvironment. The study
therefore compared tumor formation, in post-partum
mice and nulliparous mice, of low-malignancy breast
cancer cells injected into the mammary gland (8).
Interestingly, tumor growth was accelerated in post-
partum mice, and tumors in this group were also
characterized by larger collagen content and a more
invasive phenotype. Tissue culture experiments dem-
onstrated that collagen promoted a more aggressive
phenotype of the low-malignancy MCF10DCIS cells
used in the animal study. The in-vitro phenotype
induced by collagen was sensitive to cyclo-
oxygenase 2 (COX2) blockade, and the in-vivo phe-
notype could also be partially blocked by treatment
with COX2 inhibitors. Clinical relevance of these
observations was suggested by analyses of gene
expression data from breast cancers of younger

women, which revealed an association between bad
prognosis and high expression of both collagen
1A1 (COL1A1) and COX2 (8). Together these find-
ings suggest important role(s) of fibroblasts, as the
major source of collagen production, in the creation of
a tumor-permissive host tissue in post-partum breast.
A role for fibroblasts/CAFs in the transition of

ductal carcinoma in situ to invasive carcinoma was
also suggested by another study using co-injection of
activated fibroblasts and MCF10DCIS cells. Co-
injection of MCF10DCIS cells with either normal
human fibroblasts, invasive breast CAFs, or fibro-
blasts from rheumatoid arthritis resulted in invasive
carcinomas, whereas co-injection with myoepithelial
cells resulted in ductal carcinoma in situ (DCIS) (9).
Interestingly, triple injections of MCF10DCIS with
myoepithelial cells and fibroblasts/CAFs formed small
tumors with DCIS histology, indicating that myoe-
pithelial cells exert a tumor-suppressive effect which
cannot be overcome by fibroblasts. It was confirmed
that the invasive tumors, derived from fibroblast
co-injections, are not formed by expansion of a
pre-existing subpopulation of invasive MCF10DCIS
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Figure 1. CAF-derived factors canmodulate tumor development and progression. The figure schematically illustrates various aspects of tumor
initiation progression and metastasis where fibroblasts have been indicated as key regulators. Fibroblasts play a role in tumor initiation and the
transition of ductal carcinoma in situ towards invasive carcinoma. During tumor progression, CAF-released growth factors and cytokines
promote the proliferation of stem cell-like/mesenchymal cells. By the release of proteases and force-mediated remodeling of the extracellular
matrix CAFs also support the migration of tumor cells. Activation of fibroblasts is an important component in the formation of pre-
metastatic niches.
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cells, since reinjection of tumor cells resulted in
DCIS. The results rather indicate that the invasive
phenotype is dependent on paracrine fibroblast-
mediated signaling.
A third study, linking fibroblast-derived signaling to

progression of DCIS, used normal mammary fibro-
blasts engineered to secrete hepatocyte growth factor
(HGF), which was shown to increase the invasiveness
of MCF10DCIS cells (10). To mimic in-vivo DCIS
outgrowth and progression the group used a three-
dimensional cell culture method originally established
in the Bissell and Brugge laboratories (11,12).
MCF10DCIS cultures including HGF-expressing
fibroblasts, or conditioned medium from these fibro-
blasts, showed a more invasive growth pattern than
cultures without, or with control fibroblasts. In-vivo
relevance of these findings was confirmed by
co-injection xenograft experiments. The mechanisms
of HGF-induced aggressiveness were shown to
include an increased expression and secretion of
urokinase-type plasminogen activator (uPa) and
uPAR (13,14), increased collagen IV degradation,
and an increased migratory phenotype in the
MCF10DCIS.
Together these three studies on DCIS suggest that

fibroblasts exert important stimulatory roles in the
progression of DCIS. Future studies are likely to
investigate if fibroblasts, in addition to having direct
effects on the DCIS cells, also play an active part in
the disruption of the postulated tumor-suppressive
effects of myoepithelial cells.

Fibroblasts drive tumor progression by
modulation of biomechanical forces

Biomechanical factors are known to control tissue
development and modulate tissue homeostasis. The
extracellular matrix, predominantly derived from
fibroblasts, is one key determinant of the biomechan-
ical properties of tumors. Recent studies have dem-
onstrated how modulation of these properties can act
as a promoter of tumor progression and have also
started to uncover the signaling pathways that are
involved in conveying the mechanical alterations
into changes of cell phenotypes.
A landmark study by Levental et al. showed that

cross-linked matrix and the associated increase in
‘stiffness’ might be a key driver of tumor progression
(15). A mammary gland microenvironment with
increased matrix cross-linking was established by
implantation of fibroblasts over-expressing lysyl oxi-
dase (LOX). Following injection of H-ras expressing
premalignant cancer cells, there was an increased
tumor growth and invasion in mice with cross-
linked matrix. Furthermore, treatment with a LOX

inhibitor reduced tumor growth in the MMTV-
neu breast cancer model. Subsequent tissue culture
studies using untransformedmammary epithelial cells
revealed that culture on cross-linked matrix was asso-
ciated with disruption of well-organized gland-like
structures. Also, cells with activated ErbB2 formed
invasive structures only on chemically cross-
linked matrix. Together these findings indicate mod-
ulation of extracellular matrix stiffness as a potential
mechanism whereby fibroblasts can regulate tumor
initiation and progression.
This notion recently received additional support

through careful analyses of fibroblasts from caveolin
(cav) knock-out mice (16). It was demonstrated that
cav-/- fibroblasts formed an extracellular matrix char-
acterized by reduced stiffness and reduced fibronectin
fiber parallelism. Culture of cancer cells in extracel-
lular matrix (ECM) from wild-type (wt) or cav-/-

fibroblast demonstrated that the cav-/- ECM was
less permissive for tumor cell migration and invasion.
Studies were expanded to in-vivo experiments, which
showed reduced tumor invasion when cancer cells
were implanted in cav-/- animals. Furthermore, co-
injection studies showed that tumors derived from
cancer cells co-injected with cav-/- fibroblasts dis-
played reduced ability to form metastases. Associa-
tions between reduced caveolin expression and bad
prognosis were also demonstrated, in agreement with
previous larger studies on stromal caveolin and breast
cancer prognosis (17).

CAF-dependent support of cancer stem cells
(CSCs)

Emerging evidence for a strong niche dependency of
normal stem cells has prompted studies on the roles
of mesenchymal cells in the regulation of cancer stem
cells. Such studies are also motivated by recent
demonstrations that soluble factors, such as Wnt,
Notch, bone morphogenetic proteins (BMPs),
hedgehog and various cytokines, support cancer
stem cells (CSCs) (18,19). Further, CAF-stimula-
tory effects on CSCs are also suggested by the
recent demonstration that CSCs can obtain an
‘autonomous’ state by exposure to certain combina-
tions of growth factors (20). Finally, previous anal-
yses of clinical samples have demonstrated that the
CSC marker nuclear beta-catenin is predominantly
observed in tumor cells at the invasive margins
where CAFs are located at high density and in close
proximity to tumor cells (21).
In accordance with these ideas Vermeulen et al.

recently described a colon cancer stem cell niche
involving HGF released by colon CAFs, which
induced a beta-catenin-dependent gene transcription
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and CSC clonogenicity (22). This study used primary
human CAFs isolated from different primary resected
human colon carcinomas and also a colonic myofi-
broblast cell line. Colon CSCs were identified using a
TCF/LEF reporter directing Wnt-dependent expres-
sion of EGFP. High reporter gene activity was also
associated with high expression of colon CSC mar-
kers like CD133+, CD166+/CD44+, and up-
regulation of the c-Met receptor. Importantly,
CAF-induced CSCs showed higher clonogenicity
and increased tumor-forming capacity in subcutane-
ous xenograft mouse models. HGF was implied as a
key mediator of this process since the Wnt-reporter-
stimulatory activity of myofibroblast conditioned
medium was blocked by neutralizing HGF antibo-
dies. This is in agreement with previous studies
which have shown that HGF is a potent inducer of
epithelial to mesenchymal transition (EMT) (23,24)
and recent studies highlighting the overlap of EMT
and CSC phenotypes (20). Myofibroblasts secreting
HGF could also induce a CSC phenotype in differ-
entiated tumor cells, indicating a bidirectional path
between CSCs and more differentiated tumor cells.
This finding agrees with other recent data showing
that a subpopulation of basal-like human mammary
epithelial cells can spontaneously dedifferentiate into
stem-like cells (25).
An important effect of CAFs on CSCs was also

emphasized in a recent study describing bone-
marrow-derived CAFs in gastric cancer (26). This
study used as a starting-point clinical findings
demonstrating that CAFs of gastric cancer are, at
least partially, of bone-marrow origin (27). Using
different mouse models for inflammation-induced
gastric cancer, the study of Quante et al. showed
that CAF precursors appeared in the bone-marrow
already during chronic inflammation and increased
during carcinogenesis. These smooth muscle actin
(ASMA)-positive cells, possibly derived from mes-
enchymal stem cells in a TGFb-dependent manner,
were more potent than non-bone-marrow-derived
fibroblasts in promotion of tumor growth and dis-
semination (26). An important effect of these cells
on CSCs was inferred by their high secretion
of stemness-factors such as Wnt5a, gremlin-1, and
IL-6 (18,20,28,29).
Studies from the Kuperwasser group have also

recently demonstrated the ability of fibroblasts to
enhance tumorigenicity and stemcellness of cancer
cells (30). Using primary fibroblasts isolated from
human breast tumors or from normal breast tissue,
it was shown that fibroblasts, which have a high
prostaglandin E2 (PGE2) secretion in vitro, exhibit
a strong tumor-promoting ability in vivo when ortho-
topically co-injected with MCF7 cells into SCID

mice. The PGE2 expression seemed to be related
to the stem cell-inducing capacity of fibroblasts
through autocrine mechanisms, including induction
of IL-6 in fibroblasts, which would then act on cancer
cells and promote the expansion of cells expressing a
breast CSC signature (EpCAM+/CD24-/CD44+).
An interesting and somewhat surprising finding in
this study was that PEG2 expression and the ability to
induce CSCs were not strongly associated with the
origin of the fibroblasts.
Taken together, these studies indicate CAFs as

important components of a cancer stem cell niche
providing regulating factors such as IL-6, BMP
antagonists, and factors activating canonical and
non-canonical Wnt signaling. Based on the strong
evidence for a niche-dependent regulation of CSCs,
it is justified to suggest targeting of these interactions
as a strategy for therapeutic CSC depletion.

Involvement of fibroblasts in invasion

Elegant in-vitro studies from the Sahai laboratory have
suggested that fibroblasts act as important compo-
nents in cancer tissue invasion. Advanced imaging of
cancer cell in-vitro invasion, using co-cultures of
fibroblasts and cancer cells, demonstrated that fibro-
blasts acted as leading cells during invasion (31).
Formation of invasion-permissive tracks was con-
cluded to be a major mechanism whereby fibroblasts
in this model system promoted invasion. These tracks
were formed by a combination of protease and force-
mediated matrix remodeling. In the original study
integrin alpha and Rho-mediated regulation of
myosin light chain activity were identified as critical
components of the pro-invasive effects of fibroblasts.
More recent studies have further explored the cell
biology underlying this phenomenon and also explo-
red the possibility to target this process with chemical
libraries.
A chemical screen designed to identify agents

that blocked fibroblast-mediated matrix remodel-
ing demonstrated activity of lovastatin and simstatin.
Their activity was shown to be related to the ability to
interfere with the function of Rab proteins (32). Sub-
sequent analyses identified Rab21, through its impact
on integrin alpha5 cell surface localization, as a par-
ticularly important factor for the ability of fibroblasts
to support and stimulate invasion of squamous cell
carcinoma. Using a siRNAscreen approach, LIM
kinases were also shown to be critical for the ability
of fibroblasts to lead invasion. Recently, cytokine
dependent track formation of fibroblasts was sug-
gested. Implied pathways ultimately affecting actomy-
osin contractility, include the receptor gp130-IL6ST,
JAK1, and rho-kinases (33).
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Involvement of fibroblasts in the
pre-metastatic niche and as targets
for instigating signaling

Recent studies have suggested that activation of
fibroblasts is a key event in formation of the pre-
metastatic niche. The concept of such a niche was
introduced in 2005 by Lyden and colleagues follow-
ing findings that systemic signals, involving humoral
factors, from the primary tumor prepare a niche in
target organs that become primed for subsequent
settlement and growth of metastasis (34). A number
of steps in this process were identified, including an
increased deposition of fibroblast-derived fibronec-
tin in the host microenvironment (Figure 2).
Interestingly, mouse lung carcinoma (LLC) and
B16 melanoma initiated such clusters in different
organs in a manner which paralleled their respective
metastatic patterns. Also, pre-injection of mice
with melanoma-conditioned media redirected
LLC metastasis, following tail-vein injection of
such cells, to a more melanoma-like pattern of
spreading.

One of the tumor-secreted factors suggested to
initiate the metastatic niche is LOX. The amine
oxidase LOX was identified when screening for genes
associated with hypoxia-induced metastasis (35).
LOX was previously known to cross-link collagens
and elastins in the ECM but had also been associated
with increased breast cancer cell invasion in vitro (36).
In a mouse model of breast cancer, inhibition of LOX
reduced cancer cell motility and invasiveness and
prevented metastasis (37). High expression of LOX
correlates with poor prognosis in ER-negative breast
cancer patients and in patients with head and neck
cancer (37). The pro-metastatic effect of LOX, in the
pre-metastatic niche, appears to be secondary to the
activation of fibroblasts, since LOX deposition and
enzymatic activity are concentrated to areas of fibro-
nectin deposits (38,39). The niche-promoting effects
of LOX include cross-linking of collagen IV that
recruits first myeloid cells and then bone-marrow-
derived cells and tumor cells (39). A more recent
study has provided further support for a link between
the fibroblast-initiated pre-metastatic niche and the
therapeutic effects of LOX inhibitors, by showing that
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Figure 2. Fibroblast involvement in the formation of a metastasis-permissive microenvironment. A: Local fibroblasts respond to systemic
signals by depositing fibronectin in the target organ and thereby priming it for homing of myeloid cells and subsequent metastatic settlement. In
an alternative pathway of metastatic initiation, LOX is secreted from the primary tumor to cross-link collagen IV in fibronectin-rich areas of the
target organ. B: The ‘primed’microenvironment of the pre-metastatic site promotes recruitment of myeloid cells and subsequently also bone-
marrow-derived cells and tumor cells. C: In response to systemic signaling, mobilized bone-marrow cells are recruited to the secondary site.
Through a granulin-dependent mechanism they can then activate local fibroblasts. Presence of activated fibroblasts, producing VEGF-A and
tenascin, supports angiogenesis in metastasis growth.
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LOX inhibitors have no effect on established metas-
tasis (40).
Another member of the lysyl oxidase family,

LOXL2, also shows tumor-promoting effects. Like
LOX it can cross-link fibrillar collagen and contribute
to invasion (41). An experimental study recently
investigated the effects of a LOXL2-specific mono-
clonal antibody on tumor characteristics (42). The
antibody showed inhibitory effects on LOXL2-in-
duced EMT-like remodeling of MCF7 cells and
fibroblast-induced tube formation in HUVECs. It
also inhibited tumor growth in an orthotopic breast
cancer model. Histological analyses of tumors showed
less cross-linked collagen matrix, fewer ASMA-
positive fibroblasts, and reduced microvessel density.
Analyses of growth factor production showed lower
amounts of VEGF-A, CXCL12, and TGFb1 in
tumors of mice treated with the monoclonal antibody.
Treatment also reduced metastasis formation in two
different mouse models of metastasis (42).
The group of McAllister recently described another

mechanism of systemic activation of the local stroma
and subsequent progression of an idle tumor cell
population (43). Using the instigator–responder
model, they showed that the instigating effects of
activated bone-marrow cells include activation and
stimulation of fibroblasts (Figure 2). Granulin, acting
on fibroblasts, was identified as a key mediator in the
instigating activity of the activated bone-marrow cells.
Expression analyses of the activated fibroblasts
revealed a pro-inflammatory profile. The authors
thus concluded that the instigating effect of the
granulin-expressing bone-marrow-derived cells
involves activation of fibroblasts at distant sites (43).
Mice engineered to express a suicide gene in a

certain cell type allow studies where the importance
of a particular cell type in a given process can be
investigated. The Kalluri group has used this strategy
and made a panel of mice where thymidine-
kinase (TK) is expressed under various promoters,
including S100A4, that are active in different fibro-
blast subsets. This group recently used the orthotopic
4T1 breast cancer model to show that depletion of
S100A4 cells reduced the metastatic area, increased
apoptosis in metastases, and reduced CD31 staining
(44). A similar dependence of S100A4-positive cells
was identified in experiments with tail-vein injections
of 4T1 cells and in a metastatic colorectal cancer
model.
Analyses of control breast metastases in the lung

revealed that S100A4-positive cells normally are pres-
ent in low numbers in lung tissue but accumulate after
orthotopic injection. Some of these S100A4-positive
cells were CD45 + bone-marrow cells, but a majority
was considered to be activated resident fibroblasts.

This fibroblast population was shown to express
fibronectin, tenascin-C, and VEGF-A. S100A4-posi-
tive cells, which did not express the CD45 immune
cell marker, were also detected in the metastatic
microenvironment of human breast cancers (44).

Clinical correlations

An obvious implication of the studies discussed above
is that cancer prognosis is determined by character-
istics of cancer-associated fibroblasts. This notion is
presently being supported by a large number of stud-
ies that have explored the prognostic ability of various
CAF proteins or signatures. A few studies are dis-
cussed below to exemplify different approaches
that have been used to identify fibroblast-derived
prognostic factors.
Platelet-derived growth factor (PDGF) receptors

are well-established regulators of CAFs. Innovative
and early studies from the Westermark group pro-
vided the first evidence that activation of stromal
PDGF receptors could support tumor growth (45).
Studies in animal models have demonstrated that
targeting of PDGF receptors in CAFs has major
effects on tumor growth and drug delivery (46–48).
Analyses of larger series of clinical material have now
also implied PDGF receptor signaling in metastasis,
since significant associations were detected between
stromal PDGF beta-receptor expression and prognosis
in breast and prostate cancer (49,50).
The last-mentioned analyses, which relied on

immunohistochemistry, have now received further
support through a gene expression-based study. In
this study a gene signature, reflecting activation of
stromal PDGF receptors, was used as a classifier of
high score predicted survival? Unclear whether good
or poor survival multiple large breast cancer gene
expression data sets (Frings et al., in preparation).
Interestingly, a high PDGFR signature score emerged
as a significant predictor of breast cancer survival in
multivariate analyses, including standard clinical
characteristics such as hormone receptor status,
grade, and tumor size.
An alternative stroma gene expression signature

was published in 2009 that predicted prognosis in
breast cancer. This signature was established by
comparing gene expression in the stroma of bad
and good prognosis cases of breast cancers (51).
A related, but distinct, approach was recently used
to generate a prognostic fibroblast-related signa-
ture in lung cancer. In this case gene expression
was compared in a panel of 15 matched pairs of
normal lung fibroblasts and non-small cell lung
cancer (NSCLC) CAFs, and a number of consis-
tently up-regulated genes were identified (52).
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A classifier was subsequently made, composed of a
subset of these genes, that demonstrated prognostic
capacity in multiple NSCLC data sets. In this case
the underlying biology remains to be fully charac-
terized, but it was noted that many of the genes of
the classifier were up-regulated upon TGFb stimu-
lation of fibroblasts. In another lung cancer study
stromal expression of the transcription factor
FoxF1, shown to act as a potent inducer of a
CAF-like phenotype of fibroblasts, was found to
separate patients with large cell lung cancer into
groups with different prognosis (53).

Concluding outlook

Fibroblasts have found a solid position as a cell type to
be considered in analyses of cancer cell–host interac-
tions. However, a series of challenges remain. In
general, an improved classification of functionally
relevant fibroblast subsets remains a key issue. Also,
it is highly motivated to establish standardized model
systems where in-situ characteristics of such functional
subsets are preserved and possible to monitor.
A number of emerging areas can be identified,

including studies of circulating fibroblasts and their
role in metastasis (54,55), the roles of chemokines in
regulation of fibroblasts (56), and possible metabolic
interactions between CAFs and e.g. hypoxic cancer
cells (57,58). Recent experimental and clinical studies
also indicate fibroblasts as key regulators of cancer cell
drug sensitivity (59,60). Most likely this field of
research will expand.
In the future it will also be important to analyze

interactions between host fibroblasts and early
tumor-initiating cells. Such interactions are likely to
involve both tumor-inhibitory and -promoting effects
(61). Enhancement of potential fibroblast-derived
tumor-inhibitory effects appears as a highly attractive
and yet unexplored strategy for chemoprevention.
During preparation of this manuscript additional

support for important CAF/cancer stem cell cross-
talk has been provided in articles by Lonardo et al.,
Cancer Cell, 2011 (DOI 10.1016) and Malanchi et al,
Nature, 2011 (DOI 10.1038).
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