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Abstract

Summary: Sequence comparison of genetic material between known and unknown organisms

plays a crucial role in genomics, metagenomics and phylogenetic analysis. The emerging long-

read sequencing technologies can now produce reads of tens of kilobases in length that promise a

more accurate assessment of their origin. To facilitate the classification of long and short DNA se-

quences, we have developed a Python package that implements a new sequence classification

model that we have demonstrated to improve the classification accuracy when compared with

other state of the art classification methods. For the purpose of validation, and to demonstrate its

usefulness, we test the combined sequence similarity score classifier (CSSSCL) using three differ-

ent datasets, including a metagenomic dataset composed of short reads.

Availability and implementation: Package’s source code and test datasets are available under the

GPLv3 license at https://github.com/oicr-ibc/cssscl.

Contact: ivan.borozan@oicr.on.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One important problem in computational molecular biology is the

correct classification of unknown DNA sequences, given a database

of sequences of known origin. Next-generation sequencing technolo-

gies have dramatically accelerated the study of microbial and viral

genomes with the promise of uncovering thousands of previously

unknown species. These high-throughput studies have, however,

produced mostly short-read data (i.e. reads between 100 and 400 bp

in length) that present a great challenge for phylogenetic classifica-

tion (and other related metagenomic analysis (Brady and Salzberg,

2009; Rosen et al., 2011; Wood and Salzberg, 2014) or automated

genome assemblies (Koren and Phillippy, 2015). Emerging long read

sequencing technologies such as PacBio RS and Oxford Nanopore

MinION can already generate sequences over tens of kb in length

that for the first time allow highly accurate automated assemblies of

finished bacterial genomes (Koren and Phillippy, 2015; Loman et

al., 2015). In this article, we introduce the CSSSCL package for

taxonomic classification of DNA sequences that implements the

classification model presented in our recent paper (Borozan et al.,

2015), we describe its features and show its effectiveness at classify-

ing sequences using three different datasets.

2 Package description

The CSSSCL package consists of two modules (i) the build_dbs

module that creates all the necessary databases and (ii) the

classify module that performs the classification.

2.1 Database creation
Before sequence classification can be performed, the user needs first

to specify the collection of reference genomes composing the
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training set. Using sequences in the training set, the build_dbs

module then creates three different databases (i) the BLAST data-

base (using the blast algorithm), (ii) the kmer database [using the

Jellyfish (Marais and Kingsford, 2011) multi-threaded k-mer coun-

ter] and (iii) the compression database (using the multi-threaded

plzip compression algorithm). During this stage, the taxon informa-

tion (from the NCBI taxonomy flat files) for each sequence is stored

in the CSSSCL’s MongoDB a scalable, high-performance, open

source document-oriented database allowing for fast retrieval and

analysis of taxonomic information.

2.2 Sequence classification
The classify module classifies sequences in the test set using the

combined sequence similarity scores (CSSSs) (as described in

Borozan et al., 2015) calculated based on the information stored in

its pre-computed databases. The four measures implemented in the

package are (i) the BLAST (BLASTN or MEGABLAST) -based

measure (expressed in terms of the BLAST bit scores), (ii) the

Euclidean distance (based on the relative abundance of kmers in

each sequence), (iii) the Jensen Shannon Divergence (based on the

relative abundance of kmers in each sequence) and (iv) the compres-

sion-based measure. The classify module allows users to specify

one of the taxonomic levels (such as species, genus, family, order,

class or phylum) at which the classification of sequences is to be per-

formed. Prior to performing the classification, the module finds opti-

mum values for its parameters [such as the optimum k-mer size and

removes sequence similarity measures with the low predictive power

(Borozan et al., 2015)] based on the information obtained from the

sequences in the training set and provides an estimate of the overall

accuracy with which sequences are to be classified using a leave-

one-out cross-validation procedure. Note that the module also

allows users to specify which measures should be used by the model

prior to the optimization phase. Finally, the module assigns the

taxonomic label to each sequence in the test set by using the nearest

neighbor algorithm and the CSSSs (Borozan et al., 2015). CSSSCL is

written in Python, is fully parallelized and should run on most

UNIX-like systems.

3 Results

We use three different datasets (one viral and two bacterial) to dem-

onstrate the ability of the CSSSCL program to accurately classify

DNA sequences. The first dataset consists of viral nucleotide se-

quences that due to their considerable variability are expected to

pose a greater challenge to most phylogenic classification algo-

rithms. The entire set of viral genomes was downloaded from the

NCBI RefSeq database. From a total of 5808 viral genomes, we se-

lected 263 different genera with at least three different sequence

entries per taxon label, producing a total of 3917 different complete

viral sequences. This set of sequences was then split into two using

the 2/3 (training) and 1/3 (test) splits (we also required that the

training set contains at least two entries per taxon label at the genus

level). The training and test sets produced in this way contained, re-

spectively, 2900 and 1017 viral sequences. The second dataset con-

sists of bacterial nucleotide sequences (Bacterial dataset I). The

entire set of 5242 bacterial sequences was downloaded from the

NCBI RefSeq database containing 2647 RefSeq complete genomes.

From the entire set, we selected 277 different genera with at least

three different sequence entries per taxon label, producing a total of

4601 different microbial sequences. These sequences were then split

into the training and test sets (as explained above) containing, T
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respectively, 3420 and 1181 bacterial sequences. To demonstrate

that our program can also classify short reads, we use the metage-

nomic dataset Bacterial dataset II (MiSeq) introduced in Kraken

(Wood and Salzberg, 2014) consisting of 10 000 reads with an aver-

age read length of 156 bp (the training set for this dataset is com-

posed of the entire set of 5242 bacterial sequences mentioned

above). In Table 1, we compare the performance of CSSSCL to two

other classifiers namely NBC (Rosen et al., 2011) and Kraken using

the identical training and test sets. We chose NBC for its high accur-

acy and for being the most sensitive metagenomics classifier accord-

ing to Bazinet and Cummings (2012) and Kraken for being currently

the fastest metagenomics classifier according to Wood and Salzberg

(2014). The results presented in Table 1 show that CSSSCL achieves

higher precision and recall (or sensitivity) than either NBC or

Kraken when classifying viral genomes and higher recall (or sensitiv-

ity) when classifying bacterial genomes. For short reads, CSSSCL

outperforms in recall/sensitivity both NBC, Kraken and Kraken-GB

(Sensitivity: 86.23 as presented in Wood and Salzberg, 2014) and

achieves identical high precision as Kraken but a slightly lower pre-

cision than Kraken-GB (Precision: 98.84 as presented in Wood and

Salzberg, 2014) that uses a much larger database.

4 Conclusion

We propose a new Python package called CSSSCL to facilitate the

accurate taxonomic classification of long and short DNA sequences.

By using three new datasets, we confirm the results of our previous

findings and show that the implementation of our model presented

in Borozan et al. (2015) is correct and capable of classifying both

viral and bacterial sequences with high precision and recall and

within a reasonable time frame. Future work will include assessing

the performance of additional similarity measures that could be

added to the CSSSCL package.
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