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Abstract: Dynamic and real-time MRI (rtMRI) of human speech is an active field of research,
with interest from both the linguistics and clinical communities. At present, different research groups
are investigating a range of rtMRI acquisition and reconstruction approaches to visualise the speech
organs. Similar to other moving organs, it is difficult to create a physical phantom of the speech
organs to optimise these approaches; therefore, the optimisation requires extensive scanner access
and imaging of volunteers. As previously demonstrated in cardiac imaging, realistic numerical
phantoms can be useful tools for optimising rtMRI approaches and reduce reliance on scanner access
and imaging volunteers. However, currently, no such speech rtMRI phantom exists. In this work,
a numerical phantom for optimising speech rtMRI approaches was developed and tested on different
reconstruction schemes. The novel phantom comprised a dynamic image series and corresponding
k-space data of a single mid-sagittal slice with a temporal resolution of 30 frames per second (fps).
The phantom was developed based on images of a volunteer acquired at a frame rate of 10 fps.
The creation of the numerical phantom involved the following steps: image acquisition, image
enhancement, segmentation, mask optimisation, through-time and spatial interpolation and finally
the derived k-space phantom. The phantom was used to: (1) test different k-space sampling schemes
(Cartesian, radial and spiral); (2) create lower frame rate acquisitions by simulating segmented k-space
acquisitions; (3) simulate parallel imaging reconstructions (SENSE and GRAPPA). This demonstrated
how such a numerical phantom could be used to optimise images and test multiple sampling strategies
without extensive scanner access.

Keywords: numerical simulations; phantoms; MRI; real-time; speech; upper vocal tract

1. Introduction

1.1. Upper Vocal Tract and Dynamic Imaging Rationale

The upper vocal tract is an anatomical region covering the neck from the vocal cords to the mouth
and nasal cavity (Figure 1). The production of speech is a complex process that involves numerous
organs, referred to as articulators, including the lips, teeth and jaw, tongue, soft palate or velum,
nasal cavity, the pharynx and vocal cords (or folds). Air from the lungs is forced through the vocal
folds; their vibration produces a frequency and harmonics that can be controlled by the vocal cords.
The other articulators form a network of connected resonant cavities that can be modified in shape and
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size allowing complex sounds to be formed [1,2]. At the back of the tongue lies the epiglottis, a flap
that is open during respiration and speech and that closes to force food and fluids along the esophagus
while preventing it from entering the trachea (Figure 1).
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Figure 1. (A) A mid-sagittal diagram of the upper vocal tract highlighting the main speech organs or
articulators. (B) A corresponding typical frame from a dynamic MRI scan during speech.

The ability to image dynamically the upper vocal tract using a non-invasive modality such as
Magnetic Resonance Imaging (MRI) allows one to gain an understanding of the dynamic processes
of speech and swallowing and this is consequently an active field of research [3,4]. The technique is
particularly interesting in the field of linguistics to understand articulations of sounds by both native
speakers (e.g., [5–9]) and learning in non-native learners (e.g., [10,11]) but also to study singing [12–14]
and air-instrument music players [15,16].

Clinically, the functionality of speech organs can be affected by both inherited and acquired
diseases [17] including cancers [18], vocal cords polyps [19], cleft lips and palates [20,21] and neurological
conditions [22]. Dynamic and real-time MRI (rtMRI) of the upper vocal tract can provide an insight into
the disease and help treatment planning. It has, for example, been used to study speech particularly
in patients with repaired cleft palate and velopharyngeal insufficiency (e.g., [23–26]), while swallow
studies have been used to study normal deglutition (e.g., [27,28]), including breastfeeding swallow [29]
and a variety of conditions, particularly tongue reconstruction post-cancer [30–33].

1.2. Overview of Dynamic and rtMRI: Sequences and Acquisition Strategies

Over the years, multiple acquisition strategies have been used to achieve dynamic and
real-time imaging of the upper vocal tract. At the onset, gated and triggered strategies were
used. These techniques required the subject to repeat the speech task many times and any variation
in its utterance could lead to synchronization issues with the acquisition [34–36]. Consequently,
most recent approaches rely on the continuous acquisition of data during a single utterance of the
speech sample [3,4]. Acquisitions are categorised as dynamic, near real time and real time depending on
the reconstruction methodologies [37,38], although it is worth noting that some publications, especially
older ones, are unfortunately referring to dynamic sequences as real time. For real-time acquisition,
each consecutive frame is reconstructed and displayed on the scanner with very low latency, while the
acquisition of the subsequent frame takes place. This type of acquisition should be preferred for
the clinical assessment of speech where a speech and language therapist usually interacts with the
patient during acquisition [25]. On the opposite end of the spectrum, dynamic implies that the raw
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data is reconstructed after the acquisition of the full speech sample has been completed. In this case,
the reconstruction can occur on the scanner or completely off-line. The latter allows for more computer
intensive reconstruction to be applied like iterative reconstructions (e.g., [39–41]) or for the user to use
reconstructions methods where the frame rate can be adjusted post-acquisition, for example, using
different sliding windows on the data (e.g., [42–44]).

Numerous image acquisition sequences have been used ranging from Turbo Spin Echo (TSE)
(e.g., [45]) to steady state (e.g., [46,47]) and spoiled gradient echo sequences (e.g., [48–51]). The current
recommendation is to use steady state sequences, balanced at 1.5T, with Cartesian acquisitions and
spoiled sequences with non-Cartesian acquisitions [4]. It is worth highlighting that, although Echo
Planar Imaging (EPI) methods are often used for fast acquisitions [52,53], their role has been so far
extremely limited in upper vocal tract imaging with only a couple of publications using a hybrid-EPI
sequence [51,54]. This is largely due to the presence of large air cavities making it hard to achieve a
good image quality with EPI.

A wide range of k-space sampling schemes has also been used, including Cartesian [46,48,52],
Cartesian with a spiral navigator [6,55], radial [41,56–59], and spiral [39,58–60]. In order to increase
frame rates and achieve the desired temporal resolution for each type of investigation, undersampling
and/or data sharing techniques need to be used. For Cartesian acquisitions, partial Fourier (e.g., [45,47])
is used as a first step but is usually insufficient on its own. As modern receiver coils are in fact a
combination or array of coils, the next approach is to utilise that signal redundancy by using techniques
known as parallel imaging [61]. They are so called because the signal of the multiple receiver coils is
recorded concurrently, in parallel. It is consequently possible to reduce acquisition time by only filling
a reduced proportion of k-space. The most common and commercially available parallel imaging
reconstructions are SENSE [62] and GRAPPA [63]. SENSE reconstruction is performed in image space.
First, low-resolution images are taken of the object to determine coil sensitivity maps, a distribution of
the signal area visible to each coil. Aliased images are then acquired by reducing the number of phase
encoding steps, and those images are un-folded by using the coil sensitivity maps and linear algebra.
GRAPPA reconstruction is performed in k-space; the non-sampled portions of k-space are estimated
using the surrounding k-space data. Those techniques are available commercially on MRI scanners
and both SENSE (e.g., [39,47,51]) and GRAPPA (e.g., [13,64–66]) have successfully been applied to
vocal tract imaging.

Finally, data sharing and sliding windows techniques can be employed to increase the temporal
resolution (e.g., [42–44]); non-Cartesian acquisitions are particularly well suited to those methodologies.

1.3. Need for Optimisation and the Use of Phantoms

The complexity of the methodology used, combined with the inherent difficulties of imaging
a moving organ necessitate extensive testing and optimisation of the imaging sequences to ensure
that adequate spatial and temporal resolutions can be achieved with sufficient signal while artefacts
are minimised to allow a correct diagnosis when developing a dynamic upper vocal tract protocol.
Furthermore, speaking or swallowing in a supine position for long sessions, as is the case in speech MRI
examinations, are by nature demanding on the subjects. Due to the extensive and expensive scanner
time required, and despite advances made by research groups, the extensive optimisation remains a
barrier and routine clinical imaging often remains at really low frame rates (1 to 3 fps [24,67]) or even
static [68]. As a consequence, it would be advantageous for numerous groups to reduce the need or
length of such sessions by carrying out some of the optimisation work on phantoms. However, moving
MRI phantoms, although achievable, are notoriously difficult to manufacture [69–71]. An alternative
is to develop a numerical phantom that can be used for initial optimisation. This approach has
been successful in cardiac MRI with the MRXCAT phantom [72] and simulations based on acquired
images [73]. Numerical phantoms have recently been created for dynamic liver imaging [74] and
the entire abdomen [75]. Most phantoms are usually composed of organs or groups of organs with
uniform signal. This approach allows to best visualise possible image artefacts, blurring and structure
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resolvability when optimising an imaging sequence while remaining anthropomorphic and retaining
all physiologically important movement. Despite the proven benefits of numerical phantoms to
develop and optimise image acquisition, this methodology has not yet been applied to the dynamic
upper vocal tract MRI.

1.4. Aim of This Work

The aim of this work is to develop a framework to create the first numerical phantom for
dynamic upper vocal tract imaging from previously acquired real-time speech images. This single
slice phantom was then used to simulate images acquired at different frame rates and using different
k-space trajectories (Cartesian and non-Cartesian). Finally, the phantom was used to simulate two
parallel imaging acquisition methods, SENSE and GRAPA.

2. Materials and Methods

2.1. Numerical Phantom Development

A dynamic 2D numerical phantom was developed following a prototyping software development
framework, which can be seen in Figure 2 [76]. The in-house software was implemented using MATLAB
version 2016b (MathWorks, Natick, MA, USA) and is included in the Supplementary Material. In a
similar way to other numerical phantoms, it is composed of a series of anatomical regions with a
uniform signal picked to be similar to the contrast on the images but not dependent on the relaxation
properties of the tissues. For this work, the following group of speech articulators were chosen: the
velum, tongue, “epiglottis” (epiglottis + vocal cord area), “mandible” (lower jaw + lower lips and
teeth) and “maxilla” (hard palate + upper incisor + upper teeth + nasal cavity). The remaining organs
form a sixth region referred to as “head” in the rest of this article.
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Figure 2. Software development framework used to develop the dynamic numerical phantom.
The phantom is developed in image space from a real-time MRI video of a healthy volunteer acquired
while speaking. The k-space numerical phantom is obtained by applying a fast Fourier transform (FFT)
to the image domain numerical simulation.
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The phantom was created in image space. The dynamic MR images of speech used as the basis of
the phantom were a mid-sagittal single-slice dynamic MR series of the upper respiratory tract, of a
volunteer performing a standard speech sample designed to capture the full range of velocities and
positions of the tongue and velum during speech for English speakers. The speech sample included:
counting from 1 to 10; phonating nonsense (“za-na-za”, “zu-nu-zu”, “zi-ni-zi”); and saying “Bob is a
baby boy”, “I saw Sam sitting on the bus” and “Tim is putting a hat on”.

The images were acquired with ethics approval at St. Bartholomew’s Hospital, London, using
a 3T Philips Achieva Tx MRI scanner in conjunction with a 16-channel head and neck coil (Philips
Medical Systems, Best, The Netherlands). The protocol used is one of the sequences recommended by
Scott et al. [47] and previously shown to adequately capture the motion of the velum and tongue [77].
The sequence details were as follows: a steady state free precession sequence, an echo time of 0.9 ms,
a repetition time of 2 ms, a flip angle of 15◦, a field of view (FOV) of 300 × 220 mm2, acquired pixel
dimensions of 2.5 × 2.5 mm2, and a native frame rate 10 frames per second (fps). The dataset was
chosen for its good image quality and included a total of 600 images.

Before segmentation, and to make this process easier and more accurate, the images were
augmented with a “Canny” edge enhancement. A script was used to create and save a composite image
of the original time series and added edges (normalised and then multiplied by 0.2 of the maximum
intensity in the original image, this being found empirically to best aid segmentation).

A semi-automatic three-step process was then used to create dynamic segmentations for five
relevant groups of speech articulators:

(1) Binary masks of the whole head with the vocal and speech organs visible were created using
thresholding from the heads and some user input to ensure the upper respiratory tract remains
distinct but that regions with zero value are filled in non-speech organs.

(2) Manually select a region containing each speech articulator. It must be sufficiently large to allow
for a full range of movement of an organ of interest (such as the velum or tongue) and is outlined
directly onto the image.

(3) Automatically segment and create a mask for each organ of interest at each time point, using the
Hadamard product of the head mask and organ of interest mask at each time point, an example
for the velum can be seen in Figure 3. This results in binary masks for each of the speech organs
of interest for each frame in the original dynamic image set.

In order to create the final uniform organs, further automated binary morphological operations
were applied in order to remove groups of isolated pixels, smooth rough protrusion and the edges
of the mask and make sure that the segmented mask included all the organ, as part of the organs
might be missing from the automatically segmented mask if artefacts (for example signal drop outs
due to susceptibility) are present. This can occur more frequently in the tongue and velum, and the
removal or isolated groups of pixels, and the filling of holes (principally in the tongue due to magnetic
susceptibility artefact caused by signal drop out) as well as smoothing rough protrusions from the
edge of the masks [78]. Finally, a structured series of logical operators are applied to the masks (such
as Mask A AND NOT Mask B) to remove any overlap between them [78]. The segmentation, masks
creation and optimisation steps for the “head” and “velum” regions are summarised in Figure 3.

The last step in the phantom creation was to interpolate the spatial and temporal resolutions.
The temporal interpolation was carried out using the Euclidian distance transform and interpolating
linearly between two given masks in the time series. A k-space version of the phantom can be created
by fast Fourier transform (FFT). For this iteration of the phantom, the final resolution was set as follows:
30 fps, a simulated square FOV of 30 cm, an image matrix size of 256 × 256, and a spatial resolution of
1.719 × 1.719 mm2.
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is multiplied on a pixel-by-pixel basis (Hadamard product) with the sagittal mask to create a binary 
image that is used to segment the velum. (D) Morphological operators are used to smooth the masks 
and fill holes. 

2.2. Numerical Phantom Testing 

The phantom developed above was used to simulate fully sampled Cartesian and non-Cartesian 
trajectories, lower frame rate segmented Cartesian acquisitions and parallel imaging methods. For all 
the tests, relative image fidelity to the original fully sampled phantom was assessed in Matlab by 
calculating the root mean squared error (RMSE). The RMSE was calculated for each frame, and, when 
a mean is stipulated, it has been calculated over all the frames. When comparing acquisitions at 
different frame rates, only the temporal points common to all acquisitions were included in the 
analysis. 

2.2.1. Cartesian and Non-Cartesian k-Space Trajectories 

In order to compare between Cartesian and non-Cartesian image reconstructions of the 
generated phantom dynamic time series, three different k-space sampling schemes were generated. 

Figure 3. Creation and optimisation of the “head” and velum masks: (A) A binary mask of the head
with the upper respiratory tract is made with some user input. (B) An area is drawn by the user that will
enclose all potential positions the speech organ may move into through time. Overlap between masks
of the different speech organs will be removed later through a combination of logical and morphological
operators. (C) Initial segmentation: The binary mask of the user-generated velum area is multiplied on
a pixel-by-pixel basis (Hadamard product) with the sagittal mask to create a binary image that is used
to segment the velum. (D) Morphological operators are used to smooth the masks and fill holes.

2.2. Numerical Phantom Testing

The phantom developed above was used to simulate fully sampled Cartesian and non-Cartesian
trajectories, lower frame rate segmented Cartesian acquisitions and parallel imaging methods.
For all the tests, relative image fidelity to the original fully sampled phantom was assessed in Matlab
by calculating the root mean squared error (RMSE). The RMSE was calculated for each frame, and,
when a mean is stipulated, it has been calculated over all the frames. When comparing acquisitions at
different frame rates, only the temporal points common to all acquisitions were included in the analysis.

2.2.1. Cartesian and Non-Cartesian k-Space Trajectories

In order to compare between Cartesian and non-Cartesian image reconstructions of the generated
phantom dynamic time series, three different k-space sampling schemes were generated.

For the Cartesian images, a fully sampled k-space for each given time-point, t, was calculated using
the FFT. A blipped EPI acquisition was also simulated, with a shift between odd and even k-space lines.
For non-Cartesian sampling trajectories, spiral and radial trajectories that satisfy the Nyquist criterion
were simulated using the non-uniform fast Fourier transform (NUFFT), respectively [79]. To create
simulated images, the k-space trajectories, phantom images and density compensation function (based
on Voronoi diagrams) [80] are used in the ‘NUFFT’ function from the ‘MRiLAB’ toolbox [81]. Noise-free
as well as noisy images series (5% additive Gaussian noise) were generated.
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2.2.2. Simulating Lower Frame Rates

Lower temporal resolutions were created in two ways; one in the image space and one in the
k-space. The former was carried out by averaging successive frames to reduce the frame rate. The latter
is more representative of an actual acquisition process. Lower frame rate Cartesian acquisitions of
2, 4, 8, and 15 fps were simulated from the k-space numerical phantom using a segmented k-space
methodology described in Figure 4. (Note that, for ease of notation, the frame rates are rounded to the
nearest integer).J. Imaging 2020, 6, x FOR PEER REVIEW 8 of 23 
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Figure 4. Segmented k-space Cartesian acquisitions can be simulated from the original 30 frames per
second (fps) phantom. For example, a frame rate of 8 fps is obtained by assembling segments from
4 consecutive images from the original phantom (A). Likewise, a 4 fps will be created by assembling
segments from 8 consecutive images from the fully sample numerical simulation (B). Segments are
selected in k-space in a reverse linear fashion.
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2.2.3. Parallel Imaging Simulations

Parallel imaging makes use of coil arrays to under-sample the acquisition [82]. The reconstruction
of the under-sampled data relies on the signal from each coil and a priori knowledge of the signal
distribution received by any coil in the array; this is known as a coil sensitivity map. Individual coil
images can be created from the numerical phantom for any coil selection. The process for an 8-element
coil is illustrated in Figure 5. Simulated coil arrays of 2, 4 and 8 elements were used in the experiments.
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Figure 5. Creation of individual coil images for an 8-element array coil. The Hadamard product of
the phantom images (A) with the coil sensitivity maps (B) and randomly generated Gaussian noise
(C) results in simulated individual coil images (D).

The GRAPPA [63] and SENSE [62] reconstructions were performed using the Berkeley Advanced
Reconstruction Toolbox (BART) toolbox, an open-source image-reconstruction framework for
computational MRI allowing efficient implementations of many calibration and reconstruction
algorithms for parallel imaging and compressed sensing [83].

In order to investigate the effects of some of the phantom parameters on the quality of the
reconstructed images, a number of simulated dynamic series parameters were investigated by varying
the acceleration factor (R), the frame rate (fps), the number of fully sampled lines for the auto-calibration
signal (ACS) and number of coils. Those were compared to a fully sampled simulated segmented
acquisition at the same frame rate created in Section 2.2.2.

In addition to the RMSE analysis, the quality of the reconstructed images was assessed qualitatively
by an experienced user (JM) using a binary scale: “Are the velum and tongue discernible?” (yes/no)
and “Are aliased image repetitions/significant artefacts are apparent?” (yes/no).
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3. Results and Discussion

3.1. Phantom Development

A framework was successfully implemented to develop the first numerical phantom for dynamic
imaging of the upper vocal tract based on previously acquired rtMRI data. The framework essentially
has three stages: (1) the creation of anatomical regions of interest throughout the original data,
(2) interpolation to create the image space phantom and (3) Fourier transformation to create the
k-space phantom.

The challenging and time-consuming stage is the creation of the anatomical regions. Those were
obtained through a semi-automated segmentation process, as the manual segmentation of such a large
number of images would have been extremely time consuming and automatic segmentation methods
of the upper vocal tract are limited to delineating articulator surfaces [84–87].

First, an automatic segmentation was run based on edge detection and contrast between tissues.
Although this gives a relatively good result, manual adjustments were required especially in regions
where signal drop-out due to off-resonance and susceptibility are known to occur. In the upper vocal
tract, this is particularly the case when the velum is in a high position and at the back of the tongue in
certain phonics [4,8]. Example images are shown in Figure 6 to illustrate this problem in the velum and
the tongue. However, all regions that were not fully anatomically correct were successfully corrected
with the extra steps described in the methodology (Figure 3). It is worth noting that the subject used
for this study did not have any dental work or orthodontics; those can impact the image quality [88]
and would lead to increased problem when segmenting the images; hence, more corrections would be
needed to create anatomically correct regions in the phantom.
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Figure 6. Varying image quality through the frames will have an effect on the initial automatic
segmentation. While the velum (blue arrow) and tongue surface (blue box) can be easily automatically
segmented in image (A), the automatic segmentation of the velum (red arrow) in image (B) and the
tongue (red box) in image (C) will need manual corrections because of the signal drop-outs and artefacts
caused by off-resonance.

Artificial-intelligence-based segmentation methods of the upper vocal tract have started to emerge
and, in the future, could represent a suitable alternative for segmentation. However, they are only
detecting the air–tissue interface [89–91], with some also detecting with which organ it is in contact
with [92–94] and one fully segmenting the airway [95]. However, currently, none fully segment
the articulators.

The next two stages are straight forward. First, various methodologies were pursued to find
the best method of interpolating between the masks to create the increased temporal resolution.
Optical flow pixel velocities were calculated but attempts to use these to create continuous deformation
of the masks led to blurring and smearing of the image [96]. This smearing effect was again seen when
attempting to perform non-rigid deformation using b-splines [97]. To avoid smearing of the masks,
image interpolation between the masks was used, utilizing the Euclidian distance transform [98].
To avoid excessive interpolation, higher native frame rates could be used; however, image quality
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tends to worsen at higher frame rates, and this would make the segmentation in the first stage more
challenging. The result of the interpolation is the image space phantom that just requires Fourier
transformation to obtain the k-space phantom.

Following the three-stage process, a dynamic numerical phantom of the upper vocal tract during
speech was successfully developed from real-time MR images acquired at 10 fps. The Matlab code for
the numerical simulation (File S1) and a movie of the dynamic phantom (Video S1) are shown in the
Supplemental Materials. Successive frames during the non-sense phonation “za-na-za” demonstrate
velopharyngeal closure and opening are shown in Figure 7.
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Figure 7. Sixteen successive frames (A–P) during the non-sense phonation “za-na-za”. The first
4 frames are during the end of the initial “za” and the soft palate is closed (A–D). The soft palate opens
in the next frame at the beginning of the sound “na” (E) and recloses at the beginning of the next
“za” (M) and remain closed thereafter (N–P). During the sound “na” (E–L), forward movement of the
tongue can also be seen.

The phantom consists of six anatomical regions, five groups of speech articulators and one
including non-speech organs, mainly the head and neck regions, each region with a homogeneous
image intensity. This implementation of the phantom has a temporal resolution of 30 fps or 33 ms
per image and a spatial resolution of 1.719 × 1.719 mm2. According to the recommendation article by
Lingala et al. [4], this temporal resolution covers most speech imaging applications, including studying
sustained sounds, velopharyngeal closures, velic motion, tongue movement, coarticulation events and
consonant constructions, while the spatial resolution is sufficient for all. Only studying closures of
the alveolar trill, a consonant sound not present in English, might require a slightly higher temporal
resolution. Recent dynamic studies of deglutition have been carried out with frame ranging from 4 to
25 fps [27,99–101].



J. Imaging 2020, 6, 86 11 of 21

At present, the signal intensity in the different regions is not based on MR tissue properties. This is
not a drawback, as most dynamic images are about analyzing timings and shapes of the different
articulators and not achieving a particular tissue contrast. However, other static [102] and dynamic [72]
numerical phantoms have successfully integrated tissue properties and this will be integrated in
future development.

The phantom is based on a speech sample devised for clinical assessment of velopharyngeal
insufficiency and a diagram of the sounds is given in Figure 8. The same process could easily be
followed to created small numerical simulations for individual phonics.
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Figure 8. Details of the speech sample used in the numerical simulation including counting (A),
non-sense phonation (B) and sentences (C–E). For each part of the speech sample, the phonetics sounds
are included along with the position of the velum (red line) and the starting (green) and ending (red)
frame number.
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3.2. Cartesian, Radial and Spiral Trajectories

An example of reconstructed images for Cartesian, spiral and radial trajectories can be viewed
in Figure 9, and the full movies of the three k-space trajectories without noise can be found in the
Supplementary Materials, Videos S1 to S3. Both spiral and radial sampling trajectories allowed the
individual speech organs to be viewed, which is the basic functional task required of these images
in clinical speech MRI. The radial images showed the intrinsic ring aliasing artefact associated to it,
as well as Gibbs artefacts near the edges of each of the speech organs, the latter of which has been
reported in clinical radial imaging and is caused by the re-gridding process [103]. In the spiral images,
a very streaked background noise was apparent across both of the images and this is again reported in
clinical imaging as an effect of re-gridding [103] and, in this case, is an effect of multiple uncorrelated
aliased images. Unlike in Cartesian imaging, correlated aliased repetitions observable in non-Cartesian
acquisitions can obscure the anatomy of interest; these aliasing artefacts would not affect the diagnostic
efficacy of the image.
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Figure 9. Example frames for a fully sampled k-space using different trajectories and noise level.
(A,D) Cartesian, (B,E) radial, (C,F) spiral acquisitions with 0% (A–C) and 5% (D–F) noise added prior
to Fourier transformation.

In quantitative terms, the RMSE was greater for radial than spiral (22.1% to 18.6%) without added
noise. However, the noise had little effect on the radial images RMSE, 22.6% corresponding to a
2.26% increase, whereas it led to a 32.80% greater RMSE for the spiral trajectory (24.7%). However,
the identification of the speech organs is not impaired; in particular, the velum is clearly visible
throughout all simulated images and all velopharyngeal closures (when the velum touches the back of
the throat) are still clearly identifiable. Consequently, despite the noise and artefacts, these images are
of equivalent diagnostic quality as the original Cartesian images.

The blipped EPI simulation clearly demonstrated Nyquist N/2 ghosts (Figure 10) observed in the
uncorrected images acquired with this method. Those are caused by differences in timing between
odd and even k-space lines causing their centres to be misaligned [104,105].
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Figure 10. A frame from the blipped Echo Planar Imaging (EPI) simulation exhibiting Nyquist N/2
ghosting due to misalignments in the centres of odd and even k-space lines.

The current numerical phantom does not include phase maps and, consequently, is not ideal for
EPI simulation as those sequences are prone to distortion artefacts and require excellent shimming [106].
Those are particularly prevalent at air tissue boundaries, and this is why EPI is hardly ever used in the
dynamic imaging of upper vocal tract [3].

3.3. Lower Frame Rates

Lower frame rates (15, 8, 4 and 2 fps) were created using two methods, one in image and one in
k-space. The former can be used to create new simulations at lower frame rates by Fourier transforming
the averaged image series; this method introduced lower level of temporal blurring and the mean
RMSE values were 0.0279, 0.0383, 0.049 and 0.0739 for 15, 8 and 4 fps, respectively. The latter simulates
a segmented k-space Cartesian acquisition at different frame rates. This introduces slightly more
temporal blurring, and, in comparison, the mean RMSE values were 0.0593, 0.1185, 0.1289 and 0.1392
for 15, 8 and 4 fps, respectively. This is expected from a segmented k-space acquisition, which is known
to suffer from temporal blurring; the lower the frame rate, the higher the number of segments needed
per image and hence the higher the blurring [107]. Example images can be seen in Figure 11 and the
movie for the 4 fps is available in the Supplementary Materials (Video S4). A lower frame rate clearly
exhibits temporal blurring.
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Figure 11. Example frames of the segmented k-space reconstruction at 8, 4 and 2 fps (B–D) exhibiting
increasing temporal blurring when compared to the 30 fps numerical phantom (A).

3.4. GRAPPA and SENSE Reconstructions

The full list of simulations and their corresponding parameters and image quality results are
given in Table 1. For this experiment, the number of elements used varied from 2 to 8. Although this is
lower than the number of coil elements in clinical head coils (typically 8 to 64); the phantom is only a
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single mid-sagittal slice and not all the elements of a commercial coil would contribute substantially to
the signal received for this slice. Example images for a simulated 8-array coils and with and increasing
acceleration factors along with the resulting mean temporal RMSE are shown in Figure 12. Videos of
GRAPPA and SENSE reconstruction with an 8-element coil and an acceleration factor of 4 are available
in the Supplementary Materials (Videos S3 and S4).

Table 1. SENSE and GRAPPA reconstructions of undersampled multi-coil images simulated from
a dynamic speech phantom. Green shading indicates that the reconstructed images passed a given
subjective fidelity criterion, whilst red shading indicates a failed subjective fidelity criterion.

Frame
Rate (fps)

Number
of Coils

Calibration
Lines

R
Lines

Sampled
MSE (%) Velum & Tongue

Discernible? Aliasing Artefacts

GRAPPA SENSE GRAPPA SENSE GRAPPA SENSE

2

2 10 2 128 14.01 4.09 Yes Yes Yes No
4 10 2 128 5.37 3.82 Yes Yes Yes No
8 10 2 128 4.13 2.46 Yes Yes Yes No
8 20 2 128 3.19 2.45 Yes Yes No No
8 40 2 128 2.91 2.46 Yes Yes No No

4

2 10 2 128 14.00 4.27 Yes Yes Yes No
4 10 2 128 5.79 4.06 Yes Yes Yes No
8 10 2 128 4.65 2.62 Yes Yes Yes No
8 20 2 128 3.35 2.62 Yes Yes No No
8 40 2 128 3.062 2.62 Yes Yes No No

8

2 10 2 128 14.16 4.35 Yes Yes Yes No
4 10 2 128 6.26 4.19 Yes Yes Yes No
8 10 2 128 4.82 2.72 Yes Yes Yes No
8 20 2 128 3.45 2.72 Yes Yes No No
8 40 2 128 3.17 2.73 Yes Yes No No

15

2 10 2 128 15.10 4.56 Yes Yes Yes No
4 10 2 128 7.40 4.45 Yes Yes Yes No
8 10 2 128 6.59 3.01 Yes Yes Yes No
8 20 2 128 3.75 3.01 Yes Yes No No
8 40 2 128 3.46 3.01 Yes Yes No No
8 20 4 64 92.69 26.66 Yes No Yes Yes
8 40 4 64 13.78 26.66 Yes Yes Yes Yes
8 20 8 32 64.41 35.44 No No Yes Yes
8 40 8 32 >99 35.41 No No Yes Yes
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Figure 12. (A) GRAPPA and SENSE reconstructions for a simulated 8-element coil with increasing
acceleration factor 2 and a 40-line auto-calibration signal (ACS) region (for GRAPPA). (B) Temporal
mean root mean squared error (RMSE) compared to R = 1 for each of the associated reconstructions.

All the results and artefacts observed are in line with what can be expected from SENSE and
GRAPPA reconstruction [62,63,82,108]. Increasing the acceleration rate hindered the ability of both the
SENSE and GRAPPA reconstruction techniques to retrieve un-aliased images; as one would expect
from theory and reconstructions, acceleration rates of 4 and above were undiagnostic. This is why
acceleration factors used clinically are lower and typically between 1.5 and 3 [3,4]. The success of
the SENSE and GRAPPA reconstructions differed depending on the parameters used. The results
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were not largely dependent on the temporal resolution despite an apparent simulated motion artefact.
The quantitative and qualitative image results are similar for 2, 4, 8, and 15 fps, when considering
just the reconstructions performed for all temporal resolutions. The temporal mean RMSE errors
were fairly consistent, with only those at 15 fps being marginally worse. This may be due to its
k-space only being comprised from two segments, and two phantom dynamic phantom k-spaces. The
GRAPPA reconstructions were fairly dependent on the size of the ACS. At an acceleration rate of 2 and
10 ACS lines (of 256 PE lines), resultant images were consistent for all temporal resolutions: for 2 coils,
the RMSE was poor (approximatively 14%) with significant aliasing artefacts apparent although the
velum and tongue are discernible, whilst for 4 and 8 coils the RMSEs were satisfactory (4–7%) and the
reconstructed images are diagnostically useful with the upper respiratory tract clearly visible, although
some aliasing artefacts did remain outside the region of interest. The SENSE reconstructions for these
same parameters were successful with no additional artefacts when compared to the fully sampled
segmented k-space dynamic images. For an ACS region of 20 and 40 lines, artefacts were not apparent
and the RMSEs are only marginally worse than those for SENSE.

4. Conclusions and Possible Directions for Future Work

We successfully devised a framework to create a dynamic numerical phantom of the upper vocal
tract during speech. The phantom has a temporal resolution of 30 fps and can be used to simulate
different acquisitions rates, k-space trajectories and reconstruction methods. The numerical phantom
behaved as expected and was successfully used to simulate different temporal resolutions, from both
image and k-space, test different Cartesian and non-Cartesian acquisition schemes as well as two
parallel imaging techniques, SENSE and GRAPPA. These successful proofs of concept demonstrate
that a numerical phantom could be used to reduce scanner time when developing and optimising new
acquisitions for dynamic imaging of the vocal tract.

The iterative software development framework used to prototype the current numerical simulation
allows for further improvement to maximise the phantom usefulness for both clinical and phonetics
studies. In order to be able to cover all phonetics applications, including the study of alveolar thrills,
the first step would be to increase the temporal resolution of the acquired segmented images up to
20 fps, which will allow the sampled k-space interpolated to be increased to 60 fps (16.7 ms temporal
resolution). As dynamic images of the upper vocal tract are known to suffer from off-resonance artefacts,
especially when the soft palate touches the posterior pharyngeal wall [4,8], a valuable addition would
be to incorporate off-resonance maps to the numerical simulation. Furthermore, in this first phantom
iteration, the signal intensity in the different regions is not based on MR tissue properties. Although
not a drawback as most dynamic images are about analyzing timings and shapes of the different
articulators and not achieving a particular tissue contrast, it would be an interesting addition for a
closer simulation of certain pulse sequences. This has been achieved in other types of numerical
phantoms [74,102] and would require the acquisition of T1 and T2 maps on the same subject as the
dynamic MRI data.

The use of a different type of sequences could be investigated to see if the segmentation could be
more automated; the use of spoiled gradient echo is currently prevalent at 3T, and hybrid EPI images
could also be investigated as it has been previously used in cases where susceptibility artefacts were
problematic [109].

As our primary interest is the clinical study of velopharyngeal closure, the speech sample used in
this prototype was a typical clinical one that include a series of words and short sentences. However,
the current software development framework can be easily used to create numerical simulations from
dynamic MRI scans of individual phonics [110] or of swallow studies [27,28]. For the latter, the bolus
would have to be segmented individually to create an extra region in the numerical simulation.

For a more advanced testing of future numerical simulations, more advanced parallel imaging
techniques, such as radial and spiral GRAPPA and SENSE, would be another logical extension.
Time parallel imaging techniques, where kernels are calculated not only from all coils but also across
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adjacent sampling times [111,112], would also be a valid extension to this model as they have started
to be used in speech MRI [64,66].

Supplementary Materials: The following are available online at https://zenodo.org/record/3909619#
.X0eWe0oRVPY. File S1: Matlab file of the numerical simulation. Please, cite this article when using it.
Video S1: Numerical simulation (Cartesian, 30 fps). Video S2: Segmented k-space simulation at 4 fps. Video
S3: A SENSE reconstruction with an acceleration of 4 for a simulated 8-element coil. Video S4: A GRAPPA
reconstruction with an acceleration of 4 for a simulated 8-element coil.
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