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Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell
genetic mutation disease that causes defective erythrocyte membrane hemolysis. Its
pathologic basis is the mutation of the PIG-A gene, whose product is necessary for the
synthesis of glycosylphosphatidylinositol (GPI) anchors; the mutation of PIG-A gene
results in the reduction or deletion of the GPI anchor, which leads to the deficiency of
GPI-anchored proteins (GPI-APs), such as CD55 and CD59, which are complement
inhibitors. The deficiency of complement inhibitors causes chronic complement-mediated
intravascular hemolysis of GPI-anchor-deficient erythrocyte. PIG-A gene mutation could
also be found in bone marrow hematopoietic stem cells (HSCs) of healthy people, but they
have no growth advantage; only the HSCs with PIG-A gene mutation in PNH patients have
this advantage and expand. Besides, HSCs from PIG-A-knockout mice do not show
clonal expansion in bone marrow, so PIG-Amutation cannot explain the clonal advantage
of the PNH clone and some additional factors are needed; thus, in recent years, many
scholars have put forward the theories of the second hit, and immune escape theory is
one of them. In this paper, we focus on how T lymphocytes are involved in immune escape
hypothesis in the pathogenesis of PNH.
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INTRODUCTION

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell (HSC) genetic
mutation disease, causing defective erythrocyte membrane hemolysis. It is a benign clonal disease,
characterized by intravascular hemolysis, hemoglobinuria, venous thrombosis, and bone marrow
failure (1). In 2007, the incidence of PNH was reported to be 1.59 per 100,000 people in the United
Kingdom (2). According to a recent study, the incidence rate of PNH and aplastic anemia (AA)-
PNH syndrome was about 0.35 cases per 100,000 people per year, and the overall prevalence rate
was 3.81 per 100,000 (3). If not diagnosed or treated well, it can cause a 35% death rate within 5
years (4). Due to the low incidence rate of PNH, the disease may be ignored easily, which often leads
to misdiagnoses and missed diagnoses.

The pathophysiology of PNH is the genetic mutation of Phosphatidylinositol glycan anchor
biosynthesis, class A(PIG-A) gene on chromosome Xp22.1, whose gene product is necessary for the
synthesis of glycosylphosphatidylinositol (GPI) anchors; the reduction or deletion of the GPI
anchor is the result of mutation of PIG-A gene, which leads to the deficiency of GPI-anchored
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proteins (GPI-APs) (Figure 1) (5). There are a large number of
GPI-APs on the cell surface, including complement regulatory
proteins like complement decay-accelerating factor (DAF,
CD55) and membrane inhibitor of reactive lysis (MIRL,
CD59), both of which are complement inhibitors; the primary
function of CD55 is to dissociate and inactivate the C3
convertases, and CD59 prevents the formation of membrane
attack complex (MAC or C5b–9 complex). The deficiency of
these complement inhibitors causes chronic complement-
mediated intravascular hemolysis of GPI-anchor-deficient
erythrocyte (2, 6, 7). Early this century, the use of the anti-C5
antibody eculizumab has changed the management of PNH
patients and may further improve their life (8). Noval
complement inhibitors, like ravulizumab, a long-term C5
inhibitor, and pegcetacoplan, a C3 inhibitor, have also been
now approved with PNH. New drugs like factor D and factor B
inhibitors are in development (9, 10). Allogeneic hematopoietic
stem cell transplantation (Allo-HSCT) is an option for PNH
patients, which can effectively and safely eliminate the PNH
clone with satisfactory overall survival (11).

PIG-A gene mutation could also be found in bone marrow
hematopoietic stem cells (HSCs) of normal people, but they have
no growth advantage under normal conditions; only the PIG-A
gene mutation-HSCs in patients with PNH have this advantage,
as well as clonal expansion (12), and HSCs from PIG-A-
Frontiers in Immunology | www.frontiersin.org 2
knockout mice do not show clonal expansion in the bone
marrow (13), so PIG-A gene mutation alone cannot explain
how the PNH clone can expand. Thus, in recent years, many
scholars have put forward the theories of the second hit (2), and
immune escape theory is one of them, which considers that HSCs
expressing GPI-APs are killed by autoimmune cytotoxic
lymphocytes (CTLs); however, GPI-APs-deficient HSCs can
escape (14). This idea was first proposed 2 decades ago and is
supported by several studies. Therefore, this paper focuses on
how T lymphocytes are involved in immune escape hypothesis in
the pathogenesis of PNH.
T LYMPHOCYTES’ IMMUNITY IS
ABNORMAL IN PNH PATIENTS

Abnormal T lymphocytes’ Clones Were
Found in Patients With PNH
Luzzatto L summarized their findings and then found that
T-lymphocyte populations clonally expanded in many
PNH patients (15). Fragments of peptides on major
histocompatibility complex (MHC) molecules can activate T
cells of the same MHC alleles. The subsequent cloning of the
two chains of T-cell receptor (TCR), including a chain and b
chain, which can specifically recognize the peptide/MHC, was
found in the human body, supporting a model in the process of
T-cell activation, in which proteins are digested and become
short peptides, which combine with the MHC molecule,
and then T cells of the same MHC alleles recognize these
peptide/MHCs via the mutual effect between TCR and peptide/
MHC. TCRs have three variable regions. Complementary
determining region-3 (CDR-3) of the beta variable (Vb) chain
is one of them; as the main driver of recognition between TCR
and peptide/MHC, it can regulate the specificity of the TCR/
MHC interaction (16). T-cell activation requires two signals:
TCR’s recognition of the MHC/peptide and the co-signal
delivered by the interaction between the co-signaling molecule
and its receptor. Risitano et al. found an overexpression of Vb
families in PNH and AA patients compared to normal control by
Vb cytometry (17). They used TCR flow cytometry and CDR-3
analysis to assess clonality of T lymphocytes and found that
TCR-Vb-specific expansions were detected in 10 PNH patients
and 14 AA/PNH patients, and among four of them, extreme
expansions of one Vb-subset of CD8+/CD28-/CD56+(effector)
phenotype were found, which is very similar to large granulocytic
lymphocytic (LGL) leukemia (18); these lines of evidence support
the idea that T lymphocyte is involved in the pathogenesis
of PNH.

PNH Is Closely Related to AA, Which Is an
Autoimmune and Bone Marrow
Destructive Disease
Clinical features of PNH include severe hemolysis, thrombosis,
and cytopenia; bone marrow failure is regarded as its clinical
manifestation, which is very similar to AA (19), and analysis of
the databases found that about half of the PNH patients had a
FIGURE 1 | Biosynthesis of GPI molecules: PIG-A gene is located on
chromosome Xp22.1, whose product is necessary for the synthesis of GPI.
In endoplasmic reticulum (ER), the assembly of phosphatidylinositol,
acetylglucosamine, and glycan consisting of three mannose molecules and a
phosphoethanolamine is the first step of GPI synthesis. GPI and protein form
a complex, then the GPI–protein complex transfers to the cell surface, and
the GPI molecule becomes the anchor of the protein. The mutation of PIG-A
gene causes the deficiency of GPIs and GPI-APs, or none at all. Figure was
created in BioRender.com.
December 2021 | Volume 12 | Article 777649

https://biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. T Lymphocytes’ Role in PNH
previous history of AA (20). Frickhofen et al. found in several
clinical studies that Ham test results of AA patients turned
positive after several months of immunosuppressive therapy
(IST) with anti-thymocyte globin (ATG) and cyclosporine-A
(CsA); it turns out that patients with AA may evolve into PNH
(21). Colony analysis results of PNH patients were similar to
those of AA patients (22). Some experts think that PNH is a
unique subset of the AA. Increasing lines of evidence show that T
lymphocytes cause HSC damage in AA patients and that the IST
can overcome AA; therefore, autoimmune-mediated HSC
destruction plays an important role in the pathogenesis of AA
(23). Autoimmune response requires the participation of CD4+,

CD8+ T cells, natural killer (NK) cells, and so on (24), and it is
widely recognized that dysregulated CD4+ T cells, CD8+ T cells,
and NK cells, and the production of various cytokines, such as
interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-
a), and transforming growth factor-beta (TGF-b), induce
autoimmune-mediated apoptosis of HSCs in AA patients (25).
All of these support the immune escape model of PNH,
indicating that the autoimmunity in which T lymphocytes are
involved in may play an important role in the pathogenesis of
the disease.
Immunosuppressive Therapy Is Effective in
Some Patients With PNH
Kulagin et al. evaluated the influence that PNH clones may exert
on 125 AA patients treated with IST; they were divided into two
groups: the patients with the PNH clone group (PNH+ group)
and the patients with no PNH clone group (PNH- group). After
6 months of IST, the response rate was higher in the PNH+
group than that in the PNH- group (26). Ren et al. found that the
PNH clone predicts a faster response to IST in severe AA patients
(27). ATG is an immunosuppressant that mainly acts on
activated T lymphocytes, which can reduce the number of T
lymphocytes. Seven PNH patients were treated with ATG in
Paquette’s research, and three of them experienced improvement
(28). Nakasone et al. applied ATG in the treatment of 4 patients
with PNH; ATG was administered at a dose of 15 mg/kg and
continued for 5 days. During the treatment, the patients showed
aggravation of hemolysis and thrombocytopenia, and they all
received blood transfusion of components such as RBCs and
platelets, but no renal failure or thrombosis occurred during the
therapy, and the anemia symptoms of the patients were all
improved within 1 year (29). IST is effective in some PNH
patients, further suggesting that the autoimmunity that T
lymphocytes are involved in may play a role in the
pathogenesis of the disease. However, Schubert et al. found
that PNH clones appeared in some AA patients after IST (30);
does that mean IST can drive PNH? Li et al. found in their study
of 678 AA patients that, after IST, only 43 cases’ PNH clone
switched from negative to positive and the PNH clone
disappeared in 47 cases (31). Zhang et al. found that after IST,
the PNH clone switched from negative to positive in 24 AA
patients, remained positive PNH in 22 AA patients, and
disappeared in 10 AA patients; these changes had no
significant influence on overall responsive rates and survival
Frontiers in Immunology | www.frontiersin.org 3
rates (32). So far, IST is indeed effective for some PNH patients,
but whether IST can drive PNH is still controversial.
DIFFERENCES BETWEEN GPI- AND GPI+

CELLS IN PATIENTS WITH PNH

The Proliferation Ability of GPI- Cells
and GPI+ Cells in Patients With PNH
Is Different
Han Bing et al. found that, compared to PNH CD34+CD59+

cells, PNH CD34+CD59- cells had a higher ability of plating
efficiency, colony formation, and cell expansion (33). CD160 is a
kind of GPI-AP, which is mainly expressed on the surface of
some cells with cytotoxic activity, such as CD8+T, natural killer T
(NKT) cells, and NK cells (34). As for the function of the CD160
molecule, it is recently believed that CD160 plays a co-inhibitory
role by strongly binding to herpes virus entry mediator (HVEM)
(35). CD160 inhibits proliferation of human T cells upon ligation
to HVEM (36). Liu et al. separated CD160 +(GPI+)CD8+ T cells
and CD160-(GPI-) CD8+ T cells into two different groups,
stimulated the cells in the two groups by IL-2, respectively, and
observed the proliferation of cells in the two groups after 12,
24, 48, and 96 h; the results showed that the proliferation of
cells in the two groups is approximately the same after 12 h
and 24 h, but after 48 h and 96 h, the proliferation capacity of
CD160-(GPI-) T cells is much higher than that of CD160+(GPI+)
T cells, and the cytotoxicity mediated by CD160-(GPI-)CD8+

T cells was significantly higher than that mediated by
CD160+(GPI+)CD8+ T cells (37). Katagiri et al. found that
HVEM significantly inhibited the proliferation of GPI+

memory T cells, but it did not affect the proliferation of GPI-

memory T cells; in their point of view, memory T cells act like
HSCs in some ways (38). The most possible explanation is that
HSCs expressing some GPI-APs are very similar to memory
T cells in Katagiri’s experiment, which express CD160; both
of them may become invulnerable to some inhibitory proteins
(e.g., HVEM) if they lack GPI-APs.

The Apoptosis of GPI- Cells Differs From
the Apoptosis of GPI+ Cells in Patients
With PNH
Kunyaboon et al. found that CD59+ granulocytes showed more
apoptosis than CD59- granulocytes in PNH patients after being
in the liquid growth culture system for 0 h and 4 h (39). FasL
binds to Fas, which results in cell apoptosis (40). Ismall et al.
found that the apoptosis rate of CD34+CD59- cells was
significantly lower than that of CD34+ CD59+ cells from the
same PNH patient, and Fas expression was lower in CD59- cells
than that in CD59+ cells in 3 PNH patients (41). The CD34+/
CD59+ cells in PNH patients seem to act similarly to the CD34+

cells in AA in terms of higher apoptosis with higher expression of
Fas (42); however, the CD34+/CD59− cells did not. Liu et al.
separated CD160+(GPI+) CD8+ T cells and CD160-(GPI-) CD8+

T cells into two different groups and then stimulated cells in the
two groups by IL-2; they found that after 48 h and 96 h, the
December 2021 | Volume 12 | Article 777649
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apoptosis rate of CD160+(GPI+) T cells is much higher than that
of CD160-(GPI-) T cells (37). These suggest a further hypothesis
that GPI- HSCs are resistant to apoptosis caused by cytokines,
which may be related to the Fas/FasL pathway.

The Relationship Between the Differences
Mentioned Above and T Lymphocytes
Kunyaboon et al. found that CD8+ T lymphocytes inhibited
CFU-GM and BFU-E colony formation of PNH patients (39).
This suggests that T lymphocytes may play a role in the
pathogenesis of PNH. Based on the immune escape hypothesis,
Murakami et al. found that compared to mice without CD4+ T
cells, ratios of fetal liver-derived cells in polymorphonuclear cells
(PMNCs) and monocytes were smaller in CD4+ T cells co-
transplanted mice; however, ratios of GPI− cells in PMNCs
and monocytes in CD4+ T cells co-transplanted mice were
significantly increased, suggesting that GPI+ cells were
selectively killed and GPI- cells survived (14). Ikeda et al.
found that the number of Wilms’ tumor gene (WT1) peptide-
specific cytotoxic CD8+ T lymphocytes and the number of
interferon (IFN)-g-producing mononuclear cells (MNC)
stimulated by WT1 in peripheral blood of 5 patients with PNH
were significantly increased compared with 8 normal controls.
WT1 peptide-specific and human leukocyte antigen (HLA)-
restricted CTL clone (TAK-1) cells inhibited the formation of
both CD34+CD59+ cells and CD34+CD59- cell colonies. After
co-culture with TAK-1 cells, the inhibition rate of CD34+CD59-

cell colony formation in 5 PNH patients was significantly lower
than that of CD34+CD59+ cells, suggesting that WT1 peptide-
specific and HLA-restricted cytotoxic T cells may play an
important role in immune escape of PNH, which may be
related to interferon-g (43). These lines of evidence indicate
Frontiers in Immunology | www.frontiersin.org 4
that T lymphocytes may kill the GPI+ cells selectively, while GPI-

cells can escape from immunologic attack.
THE POSSIBLE ROLE OF T
LYMPHOCYTES IN THE
PATHOGENESIS OF PNH

T Lymphocytes May Play a Role Through
GPI Molecule
Rotoli et al. proposed the hypothesis that in the pathogenesis of
PNH, autoimmune T lymphocytes attack GPI+ HSC cells through
GPI molecules, while GPI- HSC cells can escape and survive (44).
CD1d is a kind of MHCmolecule that presents sugars/glycolipids
that can induce T-cell immune responses; it is involved in the
pathogenesis of a variety of diseases (45). Joyce et al. found that
CD1d can present GPI anchor molecules (46). Thus, Karadimitris
hypothesized that CD1d would present GPI molecule as antigen
to T lymphocytes and then activate them. These T cells kill target
cells that express GPI molecule; however, the PNH HSC, which
lacks GPI molecules or has none at all, can escape from this attack
(5). Gargiulo et al. analyzed the sequence of CDR-3 of TCR-b,
and they found that identical or similar TCR-b chains were
enriched in CD57+CD8+ T cells in PNH patients but not in
normal controls, suggesting that auto-reactive T lymphocytes
share a common target in most PNH patients (47). They also
found that both exogenous and endogenous GPI molecules can
activate CD1d restrictive T cells. This kind of T cells, known as
the GPI specificity, CD1d-restrictive T cells, increased 10 times in
PNH patients compared to normal control (48); this proof further
supports the idea that T lymphocytes play the role of CTL by
A B

FIGURE 2 | Two possible ways that T lymphocytes are involved in the pathogenesis of immune escape. (A) CD1d presents GPI molecule as antigen to T
lymphocytes and then activates them, these T lymphocytes kill the GPI+HSC; however, the GPI- HSC can escape from this attack. (B) GPI-AP mediates the
activation of T lymphocytes and promotes the release of its cytokines (e.g., IL-2), then T lymphocytes kill HSCs expressing GPI-APs; however, HSCs do not express
GPI-APs escape from this effect. Figures were created in BioRender.com.
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targeting GPI molecule by the CD1d(MHC)–TCR complex, and
the GPI- HSCs can escape from immune attack, although the
specific mechanism is still unclear (Figure 2A).

T Lymphocytes May Play a Role
Through GPI-APs
Deckert et al. found that there are at least two pathways in the
activation of T cells through CD59, resulting in the production of
IL-2 (49); this suggests that GPI-AP as a co-stimulator mediates
the cytotoxicity of T lymphocytes (Figure 2B). NT4.2 is a unique
CD4+ T cell clone isolated by Nakao et al. from the bone marrow
of AA patients, which strongly inhibited colony formation by
HSPC (50). Takami et al. found that NT4.2 began to lyse LCL
cells within 2 h and exhibited maximum cytotoxicity within 3 h.
Anti-DR, CD2, CD3, CD58, and CD59 monoclonal antibodies
(mAbs) were used to block the cytotoxic effect, and the results
showed that all of the mAbs block the cytotoxic effect to the same
degree, indicating that CD59 on the LCL surface, as a kind of
GPI-APs, is required by T lymphocytes to produce a cytotoxic
effect on target cells (51). CD4+ CTL produces cytotoxicity
mainly via the Fas/FasL pathway (52). Ismall et al. studied 10
patients with PNH, and the expression of Fas in CD59+ cells were
significantly higher than that in CD59- cells in 3 patients (41).
The Fas/FasL pathway is one of the apoptotic membrane
receptor pathways (53). It is not difficult to speculate that T
lymphocytes exerted cytotoxic effects through GPI-AP molecule
via the Fas/FasL pathway, and CD59+ cells exhibited more
apoptosis, while CD59- cells could escape this cytotoxic effect.
PERSPECTIVES

According to the results of the present studies, PIG-A gene
mutation is widely considered as one of the pathogenesis of
PNH, but there are at least 20 genes that are involved in GPI
Frontiers in Immunology | www.frontiersin.org 5
biosynthesis in addition to PIG-A, and additional genetic
changes occurring in PIG-A-mutant HSCs could give these
HSC clones a benign growth advantage (2). PIG-A gene
mutation alone cannot explain the survival advantage of PNH
clones, and it is not the only difference between the PNH clone
and the non-PNH clone. Some researchers believe that it is the
immunity of abnormal T lymphocytes that may be involved in
the pathogenesis of PNH. The occurrence of PNH is due to the
escape of GPI- HSCs from the T cell-mediated autoimmune
attack on GPI+ HSCs, which is known as immune escape
hypothesis. IST therapy towards T lymphocyte is effective in
some patients with PNH. However, PNH patients are rare and
IST or other treatments have only been applied in very few cases,
and the idea of immune escape still lacks evidence. The specific
role that T lymphocytes play is still unclear, which requires
further study until it can be discovered. Fully understanding the
role of autoimmunity in that T lymphocytes are involved in the
pathogenesis of PNH may provide more new and accurate
strategies in treatment, which may slow down the attack from
T lymphocytes on HSCs without PIG-A gene mutation and
improve the quality of life of patients.
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