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Arylnaphthalene lignan lactones belong to a class of natural lignans, and more

than 60 analogs have been isolated. Their pharmacological activities as well as

unique structural features have attracted considerable attention from medicinal and

synthetic chemists. Since the first synthesis in 1895, many synthetic methodologies

with ionic or pericyclic reaction mechanisms have been reported. Transition metal

catalysts sometimes provide exceptional synthetic versatility for the syntheses of natural

compounds. Recently, transition metal-mediated methodologies were investigated for

the construction of basic scaffolds of arylnaphthalene lignan lactones. Five kinds of

transition metal catalysts containing gold, manganese, nickel, palladium, and silver

have been explored. Most of the metal catalysts successfully created arylnaphthalene

lactones by intermolecular or intramolecular annulative cyclization. In this review, all

reports of transition metal-mediated annulative construction of arylnaphthalene lignan

lactones were compiled, and synthetic approaches, mechanistic aspects, and successful

applications were discussed.

Keywords: transition metal, arylnaphthalene, catalysis, lignan, synthesis, lactone

INTRODUCTION

Natural arylnaphthalene lignan lactones are classified as lignans and isolated from a variety
of dietary or medicinal plants, such as Phyllanthus, Justicia, Hapllophyllum, and Cleistanthus
(Anjaneyulu et al., 1981; Batsuren et al., 1981; Khalid and Waterman, 1981; Ulubelen, 1985; Lin
et al., 1995). They show broad pharmacological activities, including cytotoxic (Day et al., 2002;
Yu et al., 2010; He et al., 2012; Deng et al., 2014; Luo et al., 2014; Ren et al., 2014, 2019; Won
et al., 2015; Woo et al., 2017; Woodard et al., 2018; Yi et al., 2018; Young et al., 2018), antiplatelet
(Chen et al., 1996; Weng et al., 2004), neuroprotective (Gu et al., 2016), antiviral (Asano et al.,
1996; Cow et al., 2000), antifungal (Windayani et al., 2014), and anti-HIV (Chang et al., 1995;
Zhang et al., 2017) activities. From the biosynthetic viewpoint, oxygenated phenylpropanoids,
which are synthesized from phenylalanine or tyrosine, are condensed to bicyclic diphenyl
furofurans. Reductive ring opening and oxidative cyclization delivers dibenzylbutyrolactones and
final intramolecular Friedel–Crafts type cyclization produced arylnaphthalene lignan lactones
(Teponno et al., 2016). Structurally, these compounds can be divided into Type I and Type II
arylnaphthalene lignan lactones based on the position of lactones and phenyl groups (Figure 1).
Thus far, more than 60 arylnaphthalene congeners and glycosylated products are reported. Diverse
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FIGURE 1 | Proposed biosynthetic pathway for arylnaphthalene lignan lactone.

and significant pharmacological activities make them more
attractive, and representative natural examples are listed in
Figure 2.

Since the report of early efforts on the synthesis of
arylnaphthalene lignan lactone in 1895 by Michael and Bucher
(1895) and in 1910 by Bucher (1910) using the thermal
cyclative condensation reaction of arylpropiolic acids, many
synthetic methodologies for arylnaphthalene lignan lactones and
their applications for natural arylnaphthalene lignan lactones
have been investigated. Representative synthetic methodologies
include intramolecular Diels–Alder type ring formation of
arylpropiolic anhydride by Stevenson’s group (Brown and
Stevenson, 1964, 1965; Maclean and Stevenson, 1966; Holmes
and Stevenson, 1970, 1971; Block and Stevenson, 1971, 1973;
Stevenson and Block, 1971; Stevenson and Holmes, 1971;
Stevenson and Weber, 1989, 1991; Anastas and Stevenson,
1991; Park et al., 2014), intermolecular Diels–Alder reaction of
isobenzofurans and dimethyl acetylenedicarboxylate (De Silva
et al., 1980; Plaumann et al., 1980), sequential Blaise reaction-
intramolecular [4 + 2] reaction of 2-alkynylbenzonitriles (He
et al., 2014), and Garratt–Braverman cyclization of substituted
bis-propargyl ethers (Mondal et al., 2011, 2012). Photo-assisted

cyclization methods provide arylnaphthalene lignan lactones
efficiently (Block and Stevenson, 1971, 1973; Arnold et al.,
1973; Yamamoto et al., 2015). Tandem conjugate addition-
aldol reaction protocol (Ogiku et al., 1990; Kamal et al., 1994),
benzoin condensation-thermal cyclization (Hayat et al., 2015),
and electrophilic aromatic substitution protocols (González et al.,
1978; Ogiku et al., 1995) have also been reported. Recently,
synthetic approaches and biological activities of arylnaphthalene
lignan lactones were reviewed by Zhao et al. (2018).

Transition metals have proven to be very useful in modern
organic synthesis. The transition metal catalyzed reaction is
particularly important for the formation of carbon–carbon
bonds, and enables formation of bonds that are not possible
with conventional methods. It also allows the formation of
complex structures in a single reaction. In this review, all the
research articles in which transition metals were utilized for the
synthesis of arylnaphthalene lignan lactones are comprehensively
discussed and the main advantages in each method are
elucidated. There are five transition metals involved in the
synthesis of arylnaphthalene lignan lactones, and each one is
discussed in terms of the reactionmechanism and its applications
for synthesis of arylnaphthalene lignan lactones.
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FIGURE 2 | Selected natural arylnaphthalene lignan lactones.

TRANSITION METAL-MEDIATED
SYNTHESIS OF ARYLNAPHTHALENE
LIGNAN LACTONES

Gold-Catalyzed Cyclization
Recently, extensive studies have been devoted to gold-catalyzed
reactions in organic synthesis (Hashmi, 2007; Li et al., 2008).
Balamurugan’s group focused on the intramolecular cyclization
of alkynyl ester 1 by an Au catalyst in combination with
AgSbF6 for the synthesis of an arylnaphthalene lignan lactone
lignan scaffold (Gudla and Balamurugan, 2011). Catalysis of the
cyclization begins with coordination of the distant carbonyl and
alkyne group of 1 to a proximal position by the Au catalyst. Vinyl
cation 2was produced by subsequent attachment of the alkyne on
the carbonyl group. Arylnaphthalene lignan lactone precursor 4
was synthesized by the removal of water and Au catalyst from 3

that was obtained from the electrophilic benzannulation reaction
of 2 (Scheme 1).

Application of this methodology to the synthesis of natural
arylnaphthalene lignan lactone is summarized in Scheme 2. The
key intermediate 1 was obtained from propargyl alcohol in four
steps. Sonogashira coupling of propyn-1-ol 5 with substituted
aryl iodide provided 6 and 7 was obtained by the substitution
reaction. Boron trifluoride-mediated epoxide opening provided 8
and 1 was obtained by Swern oxidation. The ketone 1 can also be
obtained by epoxidation of cinnamyl alcohol 9, propargylation,
Cu(OTf)2-mediated Meinwald rearrangement and Sonogashira
coupling with substituted aryl iodide albeit in low yield. The
Au-catalyzed cyclization of 1a-1c was achieved in yields of
84, 68, and 73%, respectively. Regiocontrolled oxidation of 4
by CrO3/H5IO6 in acetonitrile (Yamazaki, 1999) afforded 4.5:1
mixture of type II and isomeric type I arylnaphthalene lignan
lactone. The advantage of this synthetic approach is the highly
mild reaction condition performed at room temperature and
easy derivatization with late-stage introduction of the aryl group
from intermediate 10. Two years later, Balamurugan’s group
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SCHEME 1 | Mechanism of Au-catalyzed intramolecular cyclization of alkynyl ester.

developed the one-pot sequential Meinwald rearrangement of
11 and cyclization of ketone 1 to provide 4 in yields of 79–93%
(Gudla and Balamurugan, 2013).

Manganese-Catalyzed Cyclization
Shia’s group studied Mn(OAc)3-mediated cyclization to
synthesize arylnaphthalene lignan lactone (Wong et al., 2014;
Kao et al., 2015). Initially, they investigated the feasibility of
the oxidative cyclization of model system 12. The reaction
proceeded under mild condition compared to the dehydro-
Diels–Alder reaction, which requires high reaction temperatures
of 160–300◦C. The mild reaction conditions allow diverse
functional groups, including Trimethylsilyl (TMS), ester, ketone,
amide, phosphonate, and halogen. The reaction mechanism was
proposed as follows. Abstraction of α-H in 12 produced Mn(III)
enolate, and electron transfer generated Mn(II) and radical
species 14. Then, the radical was added to the alkyne by 5-exo-dig
type cyclization to provide 15. Next, the vinyl radical reacted
with Mn(II) to form Mn(III)-vinyl complex 16, and naphthalene
core 13 can be constructed by vinyl radical addition to benzene
by 6-exo/endo type cyclization, and another electron transfer
from 17 to Mn(III) ultimately generates an aromatic ring with
loss of H+ (Scheme 3).

With these successful results in hand, they turned their
attention to the natural products synthesis as shown in Scheme 4.
Cyclization precursor 12a was synthesized by esterification

of substituted phenyl propargyl alcohol 18 with cyanoacetic
acid, one-pot Knoevenagel condensation with benzaldehyde,
and Hantzsch ester mediated reduction. Mn(OAc)3-catalyzed
cyclization provided inseparable 3:1 mixtures of 13a and its
regioisomer (67:22%). Samarium iodide mediated reductive
decyanation and air oxidation afforded retrojusticidin B at
80% yield. Synthesis of justicidin E and helioxanthin was also
achieved from 13b following the same procedure affording a
59:20% mixture. Regioselective synthesis of helioxanthin was
accomplished from 13c by introducing Br in the 2-position
of piperonal to minimize regioisomer formation. The main
advantage of this reaction may be functional group tolerance;
however, the regioselectivity is not satisfactory unless Br is
introduced in the 2-position to inhibit adverse cyclization, where
Mn(OAc)3 is used in stoichiometric amount (2.0 equivalents).

Nickel-Catalyzed Cyclization
Peng’s group developed a nickel-catalyzed cyclization to
afford dihydronaphthalene and tetrahydronaphthalene in a
diastereodivergent manner (Xiao et al., 2018a). Following on,
they investigated the construction of an arylnaphthalene core
for the synthesis of dehydrodesoxypodophyllotoxin (Xiao et al.,
2018c). Key reaction is summarized in Scheme 5 although
detailed stereochemical outcomes are not indicated here (Xiao
et al., 2018b). Ni(I) is reduced to Ni(0) by Zinc(0) metal and
the single electron transfer process produced alkyl radical 21
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SCHEME 2 | Synthesis of arylnaphthalene lignan lactone by Balamurugan’s group.

SCHEME 3 | Mechanism of Mn-mediated cyclization.
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SCHEME 4 | Synthesis of arylnaphthalene lignan lactone by Mn-mediated cyclization.

from 20. The secondary radical of 21 was added to the alkene
in 5-exo-trig type producing 22 and then, the primary radical
formed the Ni(III) species 2 following the known NiI-NiIII redox
process via 23 and 24. Finally, reductive elimination provided 26

and regenerated the Ni(I) species.
The synthesis of arylnaphthalene lignan lactones begins

with oxazolidinone imide formation, as shown in Scheme 6.
Oxazolidinone imide 28 was obtained by the Horner–Emmons
reaction of 6-bromopiperonal 27with triethyl phosphonoacetate,
saponification, and imide formation by reaction of in situ
generated pivaloyl anhydride and oxazolidinone. Gilman reagent
was added to the β-position of enone diasteroselectively at a
ratio of 97:3 affording 29 and subsequent reduction of the imide
by NaBH4, oxidation with Pyridinium ChloroChromate (PCC)
and acetal formation afforded 30. Enol ether 31 was generated
in the presence of TMSOTf as Lewis acid. 32 was obtained
as a 1.2:1 mixture by bromination with 2,4,4,6-tetrabromo-
2,5-cyclohexadienone (TBCD) (Kato et al., 1976, 1984) and

concomitant mixed acetal formation with allyl alcohol. Ni-
catalyzed reductive cyclization afforded tetrahydronaphthalene
lactol ether 33 with cis and trans mixture of 41 and 35%
yield, respectively. Then, acetal 33 was hydrolyzed and oxidized
to lactone by PCC to produce cis-34 and trans-34 in 68
and 62% yield, respectively. Dehydrodesoxypodophyllotoxin
was obtained by radical halogenation, elimination reaction,
and further oxidation from trans-34. Dihydronaphthalene
lactone can be obtained from cis-34 by phenylselenylation
at −78◦C, m-CPBA oxidation, and selenoxide elimination.
This Ni-mediated reductive cyclization is advantageous in
terms of diastereodivergent synthesis for tetrahydronaphthalene
containing diversity-oriented library synthesis.

Palladium-Mediated Cyclization
Pd-catalyzed copolymerization of diynes and arynes is well-
known for the construction of an aromatic ring depending
on the metal species (Peña et al., 1998). In continuation of
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SCHEME 5 | Mechanism of Ni-catalyzed cyclization reaction.

arylnaphthalene lignan synthesis efforts (Mori et al., 1999; Sato
et al., 1999), Mori et al. developed a newmethod for construction
of the naphthalene ring by a Pd-catalyzed cocyclization of
diyne esters and arynes (Sato et al., 2004). A plausible reaction
mechanism can be explained by the formation of palladacycle
intermediate 36 from diyne ester 35 and further reaction with
benzyne to provide arylnaphthalene lignan lactone 37 (Peña et al.,
1998; Scheme 7).

As depicted in Scheme 8, synthesis of diyne ester 40

was commenced with Pd-catalyzed coupling of N-methoxy-
N-methylcarbamoyl chloride with protected propargyl alcohol
38 (Murakami et al., 1998). After deprotection of 39 in the
acidic condition, the resulting alcohol was coupled with 3-
[benzo(d)(1,3)dioxol-5-yl]propiolic acid, which was prepared by
sequential Corey–Fuchs olefination, carboxylation under n-BuLi,
and methyl chloroformate, and hydrolysis of methyl ester to
afford diyne ester 40. Aryne precursor 41 was synthesized by
silylation of 2-bromophenol, lithiation at low temperature with
silyl group migration, and triflation of in situ generated phenol.
Arylnaphthalene lignan lactone 42 was obtained with diyne ester
40 and aryne precursor 41 in the presence of CsF and Pd catalyst
in 61% yield with only 5 mol% loading of Pd catalyst. However,
the functional group interconversion of Weinreb amide of 42
was difficult compared to the ease of core ring formation. Direct
reduction of amide with LiAl(OtBu)3H (Paris et al., 1998) and
L-Selectride with MeOTf (Tsay et al., 1990) were attempted but
were unsuccessful. Finally, it was converted to aldehyde with an
additional four steps. Lactol 43 was obtained by methanolysis
of lactone 42 and concomitant transesterification and partial
reduction with DIBAL at low temperature. Reduction of lactol 43

with NaBH4 afforded diol, which underwent transesterification
to provide primary alcohol and aldehyde 44 was obtained upon
PCC oxidation. Then, the aldehyde was converted to taiwanin C
by the Tsuji–Wilkinson decarbonylation reaction with rhodium
catalyst (Tsuji and Ohno, 1965). Taiwanin E was obtained by
Baeyer–Villiger oxidation and hydrolysis of the ester.

In 2007, Sato et al. (2007) applied the aforementioned
methodology for the synthesis of arylnaphthalene lignan lactone.
As shown in Scheme 9, Pd-catalyzed copolymerization of diyne
ester 45 and aryne precursor 41 was also successful despite
a multistep of reactions for conversion of Weinreb amide 46

to lactol 47 and aldehyde 48. The aldehyde group of 48 was
converted to O-triflate 49 by a three-step sequence of Baeyer–
Villiger oxidation, hydrolysis, and triflation of the resulting
phenolic hydroxyl group. Finally, the triflate was eliminated
by Pd-catalyzed hydrogenation to give arylnaphthalene lignan
lactone. The desired dehydrodesoxypodophyllotoxin was
synthesized from 46 in low yields of 17% through eight steps.
In these two syntheses, constructions of the core ring were
highly efficient and regioselective. Further manipulation of the
functional groups successfully delivered natural arylnaphthalene
lactone products.

In 2013, Patel and Argade (2013) further developed Pd-
catalyzed [2 + 2 + 2] cocyclization of aryne 50 and
unsymmetrical conjugated diene 51 using palladium catalyst
with N-heterocyclic carbene ligand. Initial trial of aryne 50

and diene 51 in the absence of catalyst resulted in only [2
+ 2] cycloaddition adduct in which the less substituted olefin
of 51 reacted with aryne 50. It was assumed that the desired
[2 + 2 + 2] cycloadduct was not generated because of two
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SCHEME 6 | Arylnaphthalene lignan lactone synthesis by Ni-catalyzed cyclization.

SCHEME 7 | Mechanism of Pd-catalyzed cocyclization of diyne ester and aryne.

electro-positive carbons in diene. Therefore, Argade’s group
systematically studied metal-mediated [2 + 2 + 2] cocyclization
to construct a 6-membered ring. The reaction was ultimately
optimized to 62% yield with Pd2(dba)3 and IMes.HCl as the
ligands. The mechanistic pathway involves oxidative addition
of Pd to aryne 50 and the less hindered alkene of 51 to form
a five-membered palladacycle intermediate 52, and insertion of

more substituted bonds to form a seven-membered palladacycle
53 via rearrangement. Finally, 55 was obtained by reductive
elimination of 53 and spontaneous air oxidation of 54 during
workup (Scheme 10).

By applying this methodology, the authors successfully
achieved total synthesis of Type I and Type II arylnaphthalene
lignan lactones, justicidin B and retrojusticidin B, respectively, as
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SCHEME 8 | Synthesis of taiwanin C and E by Mori’s group.

SCHEME 9 | Synthesis of dehydrodesoxypodophyllotoxin by Mori’s group.

presented in Scheme 11. The synthesis begins with methanolysis
of citraconic anhydride 56 in acidic condition and then allylic
bromination to afford 57 (Kar andArgade, 2002). Unsymmetrical

diene 58 was synthesized by further reaction with Wittig reagent
(Patel and Argade, 2007). Arylnaphthalene lignan lactone 60

was obtained in 66% yield by Pd-promoted copolymerization
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SCHEME 10 | Mechanism of Pd-catalyzed cocyclization of aryne and unsymmetrical diene.

of 58 and 59. Regioselective hydrolysis of less-hindered ester
afforded 61. Justicidin B was obtained by borane reduction of
carboxylic acid and lactonization. Retrojusticidin B was obtained
in 67% yield by selective ester group reduction in the presence of
carboxylate salt with 28% yield of justicidin B as a regioisomer.

Mitsudera’s group studied the construction of arylnaphthalene
lignan lactone by a regiospecific Pd-catalyzed benzannulation of
α, β-bisbenzylidene-γ-lactone for the synthesis of helioxanthin
(Mizufune et al., 2001; Scheme 12). Structurally, helioxanthin
is a 7,8-substituted naphthalene lignan lactone compound,
whereas most natural arylnaphthalene lignan lactones bear
6,7-oxygen substituents. Therefore, regioselectivity is the most
significant issue in this synthesis. Benzannulation precursor 65
was synthesized by Stobbe condensation of diethyl succinate
with 2-iodopiperonal 62 and Fischer esterification to afford
63. Stobbe reaction of 63 with piperonal afforded 64, and
lactone 65 was obtained by Super-Hydride-mediated ester
reduction and concomitant lactonization. The geometry of the
alkene was confirmed by analysis of the NOESY spectrum.
With this substrate in hand, helioxanthin was obtained by
benzannulation in 60% yield. The reaction mechanism can be
explained as described below. Oxidative addition of Pd to aryl
iodide 65 provided intermediate 66, which is stabilized by a

coordination of 1,3-diene to Pd even in the presence of steric
hindrance generated by the aryl group of the diene. Then syn
insertion of the palladium complex to the alkene provided σ-
dihydronaphthalene palladium complex 67 and syn β-hydride
elimination afforded helioxanthin. In the other process, the
geometry of alkene can be isomerized to (Z) in 68 specified
in red color in Scheme 6. In that case, the β-hydride, which
is positioned anti to Pd in 69 is eliminated by anti β-hydride
elimination process by way of π-allylpalladium complex 70. In
this synthesis, construction of the naphthalene ring is proceeded
in relatively mild condition with only the catalytic amount
of Pd catalyst in a concise, efficient manner with opposite
regioselectivity usually obtained as a minor product using the
Diels–Alder approach.

Silver-Catalyzed Cyclization
Narender et al. developed a novel route for regioselective
synthesis of 4-aryl substituted α-naphthols by silver(I) catalyzed
C-H functionalization of β-keto esters 71 and aryl propiolates
73 in an environmentally friendly manner (Naresh et al.,
2015). The reaction mechanism was proposed to begin with
disproportionation of persulfate dianion to persulfate radical
anion producing Ag(II) ion. Then, β-ketoester 71 is oxidized
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SCHEME 11 | Synthesis of Justicidin B and Retrojusticidin B by Argade’s group.

SCHEME 12 | Regiospecific Pd-catalyzed benzannulation by Mitsudera’s group.
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SCHEME 13 | Mechanism of Ag-catalyzed cyclization of the β-keto ester.

SCHEME 14 | Synthesis of arylnaphthalene lignan lactone by Ag-catalyzed cyclization.

by the Ag(II) ion to a highly stable radical species 72, and
the radical is added to propiolate 73 to produce vinyl radical
74, which is stabilized by the neighboring aryl group (Yan
et al., 2015). Finally, the radical 74 underwent addition to the
benzene ring and synthesis of 4-arylnaphthol 77 was achieved by
additional oxidation of 75 by Ag(II) ion, and tautomerization of
76 (Scheme 13).

Successful and efficient applications for the synthesis of
arylnaphthalene lignan lactone is summarized in Scheme 14. The
reaction of substituted ethyl benzoyl acetate 71 and substituted
ethyl phenylpropiolate 73 in the presence of silver acetate and
Na2S2O8 furnished 4-aryl α-naphthol 77a and 77b in 56 and
60% yield, respectively. Surfactant (sodium dodecyl sulfate) was
used to enhance water solubility and yield and reduced the use
of organic solvent. LithiumAluminumHydride (LAH)-mediated
reduction of ester located next to phenol and the spontaneous
lactonization afforded diphyllin and taiwanin E in 80 and 84%
yield, respectively. Justicidin A was also obtained by methylation
of diphyllin in quantitative yield. This Ag-catalyzed cyclization

proceeded in an atom economic manner, broad substrate scope,
excellent regioselectivity, and environmental friendliness albeit
with high loading of Ag catalyst.

CONCLUSION

Arylnaphthalene lignan lactones continuously intrigue synthetic
organic chemists and medicinal chemists owing to their
structural uniqueness and pharmacological activity as well as
the possibility as privileged structures. This review focused
on transition metal catalyzed approaches for the synthesis of
arylnaphthalene lignan lactones, especially on the construction
of arylnaphthalene cores by metal catalyst incorporating gold,
manganese, nickel, palladium, and silver. Compared with the
non-metal catalyzed synthesis of arylnaphthalene lignan lactones,
synthetic methodologies using transition metal catalysts provide
distinct advantages in terms of mild reaction conditions,
chemical yields, and functional group tolerance. In addition,
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single step construction of a complex core structure through
multiple bond formation is scientifically meaningful and
provides utility in chemical library synthesis for drug discovery.
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