Vulnerability to memory decline in aging – a mega-analysis of structural brain change.

Didac Vidal-Piñeiro¹⁺, Øystein Sørensen¹, Marie Strømstrad¹, Inge K. Amlien¹, William Baaré², David Bartrés-Faz^{3,4,5}, Andreas M. Brandmaier^{6,7,8}, Gabriele Cattaneo^{4,9}, Sandra Düzel⁶, Paolo Ghisletta¹⁰, Richard N. Henson¹¹, Simone Kühn^{6,12,13}, Ulman Lindenberger^{6,8}, Athanasia M. Mowinckel¹, Lars Nyberg^{1,14,15,16}, Alvaro Pascual-Leone^{17,18}, James M. Roe¹, Javier Solana-Sánchez^{4,9}, Cristina Solé-Padullés^{3,5}, Leiv Otto Watne^{19,20}, Thomas Wolfers²¹, for the Vietnam Era Twin Study of Aging (VETSA)*, the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL)**, the Alzheimer's Disease Neuroimaging Initiative (ADNI)***, Kristine B Walhovd^{1,22}, and Anders M. Fjell^{1,22}.

- 1) Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
- 2) Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.
- 3) Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- 4) Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.
- 5) Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- 6) Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- 7) Department of Psychology, MSB Medical School Berlin, Berlin, Germany.
- 8) Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berling, Germany, and London, UK.
- 9) Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.
- 10) Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.
- 11) MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom.
- 12) Department of Psychiatry and Psychotherapy, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Germany.

- 13) Center for Environmental Neuroscience, Max Planck Institute for Human Development, Germany.
- 14) Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
- 15) Department of Medical and Translational Biology, Umeå University, Sweden.
- 16) Department of Diagnostics and Intervention, Umeå University, Sweden.
- 17) Hinda and Arthur Marcus Institute for Aging Research, Deanna and Sidney Wolk Center for Memory Health, Harvard Medical School, Hebrew SeniorLife, Boston, MA, United States.
- 18) Department of Neurology, Harvard Medical School, Boston, MA, United States.
- 19) Oslo Delirium Research Group, Institute of Clinical Medicine, Campus Ahus, University of Oslo, Norway.
- 20) Department of Geriatric Medicine, Akershus University Hospital, Norway.
- 21) Department of Psychiatry and Psychotherapy, German Center for Mental Health, University Clinic Tübingen, Tübingen, Germany.
- 22) Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway.
- † Address correspondence to: Didac Vidal-Pineiro, Center for Lifespan Changes in Brain and Cognition, University of Oslo. Forskningsveien 3a, 0373 Oslo, Norway. e-mail: d.v.pineiro@psykologi.uio.no
- *More information about the Vietnam Era Twin Study of Aging (VETSA), including a list of VETSA investigators, is available at: https://psychiatry.ucsd.edu/research/programs-centers/vetsa/index.html.
- **Some of the data used in the preparation of this article were obtained from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), which were made available at the ADNI database (www.loni.usc.edu/ADNI). The AIBL researchers contributed data but did not participate in the analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au.
- *** Parts of the data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete

listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List. Pdf

Corresponding author:

Didac Vidal Pineiro

Department of Psychology, Pb. 1094 Blindern

Oslo, Norway, 0317

d.v.pineiro@psykologi.uio.no

Tel: +47 471 44 514

Running title: coupled memory and brain decline.

Abstract

Brain atrophy is a key factor behind episodic memory loss in aging, but the nature and ubiquity of this relationship remains poorly understood. This study leveraged 13 longitudinal datasets, including 3,737 cognitively healthy adults (10,343 MRI scans; 13,460 memory assessments), to determine whether brain change-memory change associations are more pronounced with age and genetic risk for Alzheimer's Disease. Both factors are associated with accelerated brain decline, yet it remains unclear whether memory loss is exacerbated beyond what atrophy alone would predict. Additionally, we assessed whether memory decline aligns with a global pattern of atrophy or stems from distinct regional contributions. Our mega-analysis revealed a nonlinear relationship between memory decline and brain atrophy, primarily affecting individuals with above-average brain structural decline. The associations were stronger in the hippocampus but also spread across diverse cortical and subcortical regions. The associations strengthened with age, reaching moderate associations in participants in their eighties. While APOE &4 carriers exhibited steeper brain and memory loss, genetic risk had no effect on the change-change associations. These findings support the presence of common biological macrostructural substrates underlying memory function in older age which are vulnerable to multiple age-related factors, even in the absence of overt pathological changes.

Introduction

Episodic memory declines with age^{1,2}, although individual trajectories vary significantly, with some experiencing marked cognitive decline and others maintaining relatively stable memory function over time³. Brain atrophy is considered a key contributor of these changes^{4,5}. However, key questions remain poorly understood such as whether the *change – change* associations are dependent on age and genetic risk for Alzheimer's disease (AD) or if the patterns are driven exclusively by a subset of individuals with severe atrophy. Further, extant research remains inconclusive on whether the effects reflect global patterns of brain atrophy^{6,7} or regional structural vulnerabilities, particularly in the hippocampus^{8,9}. To examine these questions, we leveraged 13 datasets with more than 3,700 cognitively healthy adult participants who underwent repeated MRI scans and cognitive assessments together with simulations to guide results interpretation.

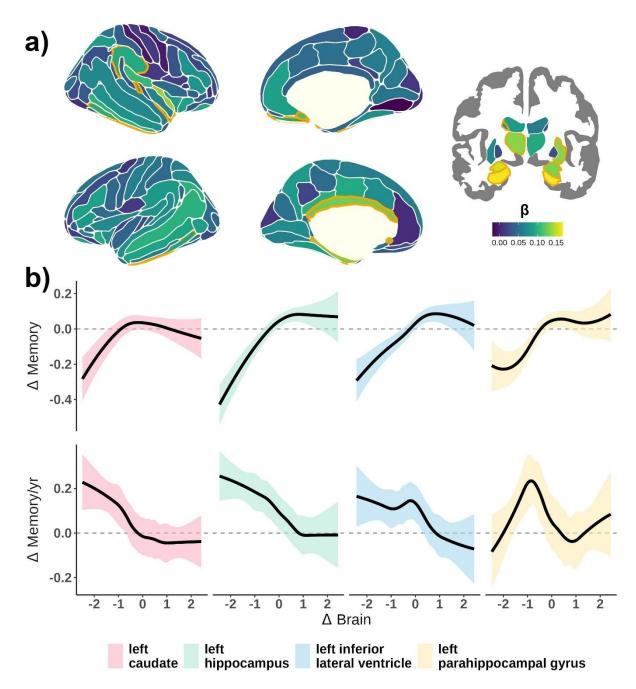
Both episodic memory and medial temporal lobe (MTL) structures tend to show relative stability across early adulthood and middle age in longitudinal studies, with a more marked decline from about 60 years^{1,2,10–12}. In contrast, trajectories of cortical thickness outside the MTL tend to follow largely monotonic declines across adulthood, likely with subtle acceleration in thinning late in life^{10,13–15}, and a relatively large degree of heterogeneity for the remaining subcortical structures^{11,16,17}. Aging is also associated with increased interindividual variability in cognition and biological measures, including memory performance and brain structure^{16,18} and, even more importantly, the variability of brain and memory change also increases with age^{19–21}.

Initial evidence for a relationship between memory function and brain structure in cognitively healthy aging came from cross-sectional research^{22,23}, which indicated that differences in brain structure, particularly in the MTL, explained a modest amount of age-related variability in episodic memory function. Yet, it is now widely recognized that only longitudinal designs can effectively link co-occurring within-person changes in brain and cognition throughout the lifespan²⁴. Indeed, longitudinal research has corroborated the association between memory decline and loss of grey matter in medial temporal features such as hippocampal atrophy^{25–29} and entorhinal thinning^{8,30}. The findings align with the key role of these structures in episodic

memory and their susceptibility to aging and AD^{31–33}. Outside this region, associations have also been reported, albeit less consistently, in the frontal, parietal and temporal lobes^{34,35}, as well as in global grey matter^{6,27}. These results are consistent with the complex cortico-subcortical circuitry supporting episodic memory function^{33,36–38}. Debate remains on whether these change-change associations are driven by a *main* factor of brain decline or by one or more of these memory-sensitive structures^{6,26,29,34,39}. Current research shows evidence of both domain-general dimensions of cortical and cognitive change^{6,40} and domain-specific associations between MTL and episodic memory change³⁹.

Since age affects both individual trajectories of brain structure and memory – and their variability across individuals - it is likely that age also moderates their relationship, such that the associations strengthen with increasing age. However, limited data exist on this topic and, when available, this data primarily concern the hippocampus. Cross-sectional evidence suggests stronger associations between hippocampus volume and memory performance in late life^{41,42}. Using longitudinal data, Gorbach and colleagues²⁵ found an association between hippocampal atrophy and memory decline that was significant in older (65 – 80 years) but not in middle-aged (55 – 60 years) individuals, and further suggested that steeper declines in memory and hippocampal volume facilitate detection of these associations.

The Apolipoprotein (APOE) ϵ 4 allele represents the strongest known genetic risk factor for late-onset AD. In individuals with AD, ϵ 4 carriers exhibit steeper brain atrophy, especially in limbic regions, and greater memory loss compared to non-carriers^{43,44}. This pattern has also been observed in cognitively healthy older individuals^{45,46}, although not universally⁴⁷. Some theoretical models propose distinct AD subtypes based on the APOE ϵ 4 allele⁴⁸. In this account, the ϵ 4 carrier subtype represents a more severe, limbic-dominant form of AD, characterized by steeper loss of memory and stronger links to amyloid pathophysiology. The non-carrier subtype is thought to represent a milder form, more heterogeneous, and more associated with environmental factors⁴⁹. This model also predicts stronger associations between memory change and atrophy, particularly in the MTL, in ϵ 4 carriers. Supporting this, some studies report a stronger brain-memory association amongst APOE ϵ 4 carriers, in AD samples⁵⁰ and, crucially, in a longitudinal sample of cognitively healthy older adults⁹.


Not all observed changes in brain structure in older individuals reflect long-term changes, i.e. $brain\ aging$, but also short-term variations due to known, e.g., physical or cognitive training programs^{51,52}, and unknown factors, i.e., noise²⁰. Hence, only a fraction of the observed changes occurring in brain structure over time may relate to memory decline. Thus, it is possible that most variation in brain structure over time is not *degenerative*, and that only individuals with severe atrophy show memory loss, leading to non-linear *change* – *change* associations.

Given the inherent heterogeneity in brain and cognitive trajectories, study samples, and analytical approaches – along with partially conflicting findings and the need to sample diverse populations for broad conclusions -, large-scale mega-analyses across cohorts are essential to accurately investigate change - change relationships between episodic memory and structural brain decline⁵. Here, we conduct such a study to address key questions in the field: 1) Do brain change-memory change associations become more pronounced with increasing age? 2) Are these relationships consistent with a global factor of brain structural decline, MTL vulnerability, or multiple regional contributions? 3) Are change-change associations more pronounced in atrisk individuals, namely those with above-average brain decline and/or carriers of the APOE ε4 allele? We used a normative modeling framework to harmonize 13 datasets with longitudinal MRI scans and cognitive assessments, resulting in a final sample of 3,737 cognitively healthy adults (10,343 MRI scans; 13,460 memory assessments) (Table 1, Supplementary Figure 1). We estimated individual change in memory (Δmemory) and 166 brain cortical and subcortical regions (Δbrain), with a particular focus on the hippocampus. We focused on thickness as a measure of cortical change given its susceptibility to age^{53,54}, used a mega-analytical approach to maximize statistical power⁵⁵, and general additive mixed models (GAMMs) to enable greater analytical flexibility. Still, for simplicity, throughout the text, we refer to individuals with aboveand below-average brain decline – related to their age and sex peers – as brain decliners and maintainers. Finally, we provide complete statistics and visualizations in a Supporting App (https://vidalpineiro.shinyapps.io/brain mem change/) and simulate data to aid the interpretation of results.

Results

Association between brain change and memory change. Main effects.

We used GAMMs to assess the relationship between brain change (Δbrain) (cortical thickness and subcortical volume) and memory change (Δmemory). Δbrain was modelled as a smooth term and dataset as random intercept. Sex and age trends were regressed out during normative modelling-based preprocessing and thus not included in the higher-level model. Henceforth, change in brain and memory for a given individual is relative to their age and sexpeers. Control analyses with age, sex, or intracranial volume (ICV) as covariates, or with random slopes per dataset did not substantially affect the outcome of the main results (Supporting App). Data were weighted to account for differences in reliability of change, as longitudinal data with fewer observations and shorter follow-up time contain more uncertainty²⁰. Regions were defined based on the *Destrieux*⁵⁶ cortical and *aseg*⁵⁷ subcortical atlas within FreeSurfer. Nineteen regions showed significant, False Dscovery Rate (FDR) corrected (p_{FDR} < 0.05) (**Figure 1a**), mostly subcortical structures and temporal regions. The relationship for all these regions was non-linear, generally showing an association between Δ brain and Δ memory only when Δ brain was steeper than average (i.e. in *brain decliners*). When brain decline was milder than average (i.e. in brain maintainers), the association between Δ brain and Δ memory disappeared. Left and right hippocampus ($\beta_{\text{weighted[w]}}[I] = .168$, pFDR < 0.001); $\beta_w[r] = .168$, $p_{FDR} < 0.001$), left amygdala ($\beta_w = .155$, $p_{FDR} < 0.001$), left thalamus $(\beta_w = .135, p_{FDR} = 0.03)$, right long insular gyrus $(\beta_w = .135, p_{FDR} = 0.02)$ and left parahippocampal gyrus (β_w = .131, p_{FDR} = 0.02) were amongst the regions showing strongest change – change associations in above-average brain decliners. See **Figure 1b** for visualization of selected regions. See Supplementary Table 1 for statistics in significant regions. See Supporting App for complete statistics and visualization in all regions. No strong evidence for left – right asymmetry in change – change associations was found (Supplementary Figure 2; SI).

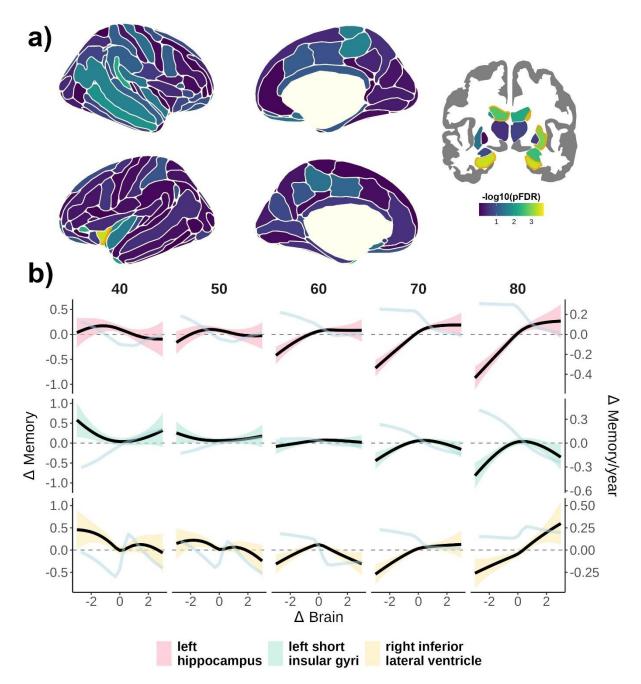


Figure 1. Memory change – brain change associations. a) Estimates (θ_w) for associations between Δbrain and Δmemory with orange color line representing $p_{FDR} < 0.05$. Δbrain represents atrophy in subcortical and thinning in cortical regions. Weighted betas were estimated as the density-weighted mean correlation between Δbrain and Δmemory, using the derivative function. b) Change – change association for selected regions. Upper plots display the smooth associations while lower plots show their derivative (i.e. association between Δbrain and Δmemory for each Δbrain value). Shaded ribbons represent 95% Cls. See **Supplementary Table 1** and **Supporting app** for more information.

Association between brain change and memory change. Age interactions.

Next, we assessed whether the association between Δ brain and Δ memory varied with increasing age using tensor smooths (i.e. interactions between marginal smooth terms) as

implemented in GAMM. For 7 regions, age significantly moderated the change - change associations ($p_{FDR} < .05$) (Figure 2a) namely left ($p_{FDR} = 0.02$) and right hippocampus ($p_{FDR} = 0.02$) 0.02), right inferior lateral ventricle ($p_{FDR} < 0.001$), left lateral ventricle ($p_{FDR} = 0.05$), right caudate ($p_{FDR} = 0.03$), right putamen ($p_{FDR} = 0.03$), and left short insular gyrus ($p_{FDR} = 0.02$). In most of these regions we found that change – change associations increased with higher age and progressively included brain maintainers. Change – change associations in some regions begin to be apparent between 50 and 60 years. These regions differ in the specific shape of the interaction. For example, change – change associations in brain decliners are first apparent at ≈50 years in the right hippocampus, at ≈60 years for the left hippocampus and the right lateral inferior ventricle and at ≈70 years for the short insular gyrus and the right caudate. Similarly, associations between Δ brain and Δ memory in brain maintainers are apparent from ≈70 years in the left hippocampus and the right lateral inferior ventricle but not in other regions such as the short insular gyrus or the right hippocampus. We use the left hippocampus to illustrate these effects: the relationship between Δbrain and Δmemory in brain decliners is β_w = -.04 at age 40 years, β_w = .02 at 50 years, β_w = .13 at 60 years, β_w = .23 at 70 years, and β_w = .29 at 80 years. In contrast, the relationship between Δ brain and $-\Delta$ memory in brain maintainers is non-existent until age 70 (β_w = .13), with a small increase at age 80 (β_w = .19). See Figure 2b for visualization of selected regions. See Supplementary Table 2 for statistics in significant regions and complete statistical outcomes in the Supporting App.

Figure 2. Effect of age on Memory change – brain change associations. a) -log10(p_{FDR}) values of the effect of age on Δ brain – Δ memory associations modeled as GAMM-based tensor interaction terms. Orange color line represents p_{FDR} < 0.05. Δ brain represents atrophy in subcortical and thinning in cortical regions. **b)** Change – change association for selected regions at specific ages. Black line - and colored 95% Cls ribbons - display Δ brain – Δ memory associations at a given age. The lightblue line represents their derivative (i.e. association between Δ brain and Δ memory for each Δ brain value). See **Supplementary Table 2** and **Supporting app** for more information. Note that both Δ brain is derived from normative data and thus does not necessarily reflect the same amount of decline at each age.

Dimensionality of brain change.

Next, we explored the dimensionality of those regional brain changes associated with memory decline. Is memory loss associated with a single global effect of brain decline, or does it reflect

region-specific contributions? We computed the correlation of brain change across brain regions (**Figure 3a**, mean r = .14 [0.10]; range = -.04 - .58) and carried out a PCA and a consensus clustering analysis to investigate this question. On the one hand, the PCA revealed that the first principal component (PC1) accounted for – a somewhat modest - 20.7% of the total variance, with all its loadings pointing in the same direction, and a significant, \approx two-fold, fall in the variance explained by subsequent components (**Figure 3b**). This suggests a pattern of brain change that to some degree aligns with the presence of a global pattern of brain decline.

On the other hand, consensus clustering analysis was performed to explore whether the effects were regional. Importantly, we tested using Monte-Carlo simulations whether the clustering solution rejected the null hypothesis of K = 1 cluster. Several clustering solutions rejected the null hypothesis, with 8 clusters being the best solution (Figure 3c; Supplementary Figure 3, Supplementary Table 3). Three clusters were subcortical (clusters #1 - #3) - one comprised of the left and right hippocampus and the left lateral ventricle - and 5 were cortical. Further, we assessed whether change in any of these clusters was associated with memory change, by respectively controlling for the hippocampus-based cluster, the main factor of brain decline, and by introducing all clusters together in a single model. Five clusters showed significant Δbrain – Δmemory associations controlling for the hippocampal-based cluster (cluster #1): cluster #3, the left and right amygdala (β_w = .11, p = 0.01); cluster #5, left pericallosal sulcus, right gyrus rectus, and right subcallosal gyrus (β_w = .16, p = 0.002), cluster #6, right long insular gyrus and planum polare ($\beta_w = .06, p = 0.01$); cluster #7, right temporal transverse sulcus ($\beta_w = .05, p = 0.02$); and cluster #8, left parahippocampal gyrus ($\beta_w = .05, p = .05, p$.03). Similar results were found when using the main component of brain decline and when all clusters were added in a single model. See SI and Supplementary Table 4 for detailed information. Altogether, the results suggest both global and regional factors influence the associations between brain and memory change.

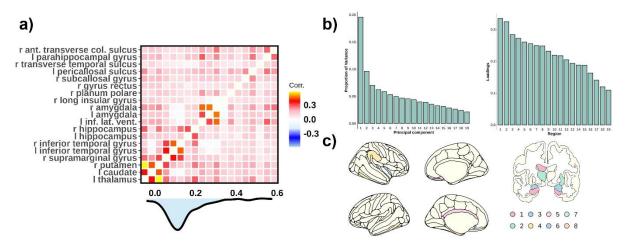
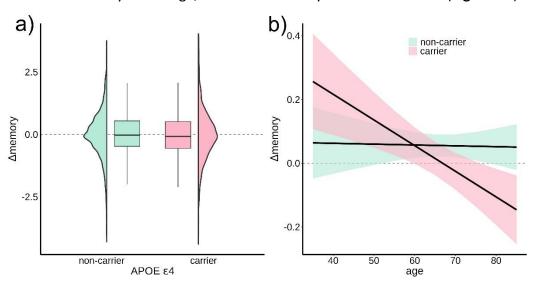
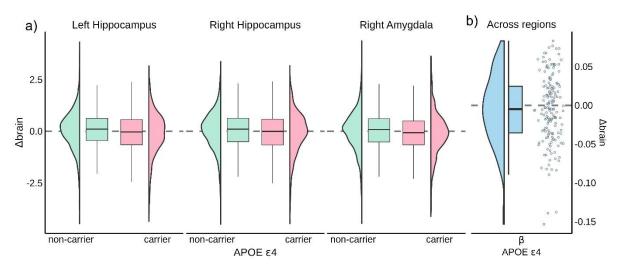



Figure 3. Dimensionality of brain change. a) Cross-correlation matrix of brain change across regions with significant ($p_{FDR} < .05$) Δ memory – Δ brain associations. Below, a density plot of the correlation coefficients. b) Variance explained by the principal PCA components and loading of the first component on the brain regions showing significant Δ brain – Δ memory associations. See ID to region name correspondence in **Supplementary Table 3**. c) Optimal consensus clustering solution (K = 8 clusters).


Association between brain change and memory change. APOE $\varepsilon 4$ effects

A total of 3,149 subjects had APOE data available. Of these, 27.8 % were carriers of the APOE $\varepsilon 4$ allele (carriers vs. non-carriers). First, we assessed whether carriers of the APOE $\varepsilon 4$ allele showed steeper decline in brain or memory and whether this relationship was associated with age. For the main effects, we used linear mixed models with APOE $\varepsilon 4$ allele as predictor and dataset as random intercept. For the interaction, we used GAMM with age as a smooth term by APOE $\varepsilon 4$ allele as an ordered factor. APOE $\varepsilon 4$ was not significantly related to memory decline ($\beta = -.035$, t[p] = -0.95[0.34]) (**Figure 4a**) but the relationship between APOE status and memory change increased with age (p = 0.03), that is, APOE $\varepsilon 4$ carriers showed less memory decline until ≈ 60 years of age, and more memory decline thereafter (**Figure 4b**).

Figure 4. APOE ε 4 associations with memory change. a) Association between APOE ε 4 (carriers, non-carriers) and memory change. b) Association between APOE ε 4 (carriers, non-carriers) and memory change as a function of age. Ribbons represent 95% CI.

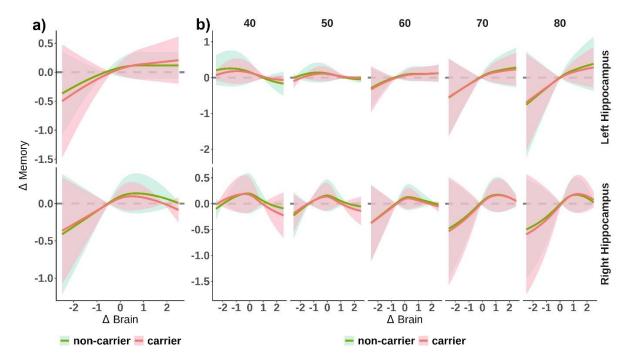
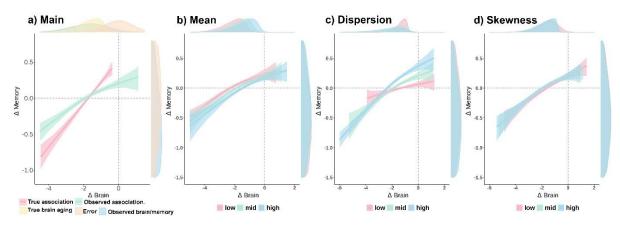

APOE $\epsilon 4$ was associated with steeper left and right hippocampal atrophy ($\beta_I = -.135$, $p_{FDR} = 0.004$; $\beta_r = -.138$, $p_{FDR} = 0.003$) as well as right amygdala atrophy ($\beta = -.154$, $p_{FDR} < .001$) (**Figure 5a**). Considering all regions together, no global effect of the APOE $\epsilon 4$ allele on brain decline was found ($\beta = -.004$, t = -1.30, p = .20) (**Figure 5b**). APOE $\epsilon 4$ was not significantly associated with steeper brain decline ($p_{FDR} > .10$) with higher age. However, at an uncorrected level, APOE $\epsilon 4$ associated with a higher degree of hippocampal atrophy with increasing age (p = 0.01, 0.04, respectively) (**Supplementary Figure 4**).

Figure 5. APOE ε 4 associations with brain change. a) Association between APOE ε 4 (carriers, non-carriers) and brain change in the left and right hippocampus, and the right amygdala (p_{FDR} < 0.05). b) Effect of APOE ε 4 on brain change across all regions. Each point represents a region. Note that three regions with more negative effects of APOE ε 4 correspond to those displayed in panel a).

Next, we assessed whether being an APOE $\varepsilon 4$ carrier had any influence on the association between Δ memory and Δ brain. No region showed moderating effects of APOE $\varepsilon 4$ on Δ brain – Δ memory associations ($p_{FDR} > .50$). APOE $\varepsilon 4$ did not significantly moderate the relationship between Δ brain and Δ memory in the left and right hippocampus ($p[I]_{unc} = .44$, $p[r]_{unc} = .61$) (**Figure 6a**). Finally, no regions showed a significant interaction between APOE $\varepsilon 4$, age, and Δ brain on Δ memory ($p_{FDR} > .15$). Left and right hippocampus showed comparable Δ brain - Δ memory associations with age regardless of APOE $\varepsilon 4$ status ($p[I]_{unc} = .66$, $p[r]_{unc} = .66$) (**Figure 6b**). When using a sample of only APOE $\varepsilon 4$ non-carriers, the *change – change* effects and the moderator effects of age were comparable to those for the main sample (**SI**).

See complete statistics and additional visualization for all APOE $\varepsilon 4$ analyses in the <u>Supporting App</u>. Altogether, the results show that cognitively healthy carriers of the APOE $\varepsilon 4$ allele have steeper rates of brain and memory decline, specifically in old adulthood, but no evidence of stronger Δ brain – Δ memory associations. The regional associations between brain change and memory change exist independently of an increased presence of pathological processes, and of cognitive changes associated with genetic risk of AD.


Figure 6. APOE ε **4 effect of brain change – memory change associations.** a) Δ brain - Δ memory associations as a function of APOE ε 4 (carriers vs. non-carriers) for the left and right hippocampus. b) Δ brain - Δ memory associations as a function of APOE ε 4 (carriers vs. non-carriers) and age for the left and right hippocampus. None of the terms were significant (p > 0.40).

Mechanisms behind brain change and memory change associations. A post-hoc simulation analysis.

Finally, we aimed to provide potential explanations for the empirical findings, focusing on the non-linear *change* – *change* associations, the moderating effect of age, and the absence of APOE £4 effects. We used a simplified schematic model using the *sn* package⁵⁸ where *observed* brain data was the result of two underlying sources. The first source represented *brain aging*, characterized by a negatively skewed distribution with mean decline indicative of long-term, *degenerative* changes. This component is universal, as most individuals exhibited some degree

of decline, with negative skewness arising from a subset of individuals undergoing accelerated brain aging 16,20,22,32,59 . The second source was modeled as a Gaussian distribution centered around zero, representing measurement error and other short-term influences 20,51,52 . Memory decline was modeled as linearly related to the *brain aging* component, plus random Gaussian noise. To explore the moderating effects (or lack thereof) of age and APOE ϵ 4, we adjusted the parameters of the *brain aging* component, including mean, dispersion (e.g. variability), and skewness.

The simulation results revealed that *observed* brain decline was non-linearly associated with memory decline, with the relationship flattening among *brain maintainers* (**Figure 7a**) mimicking the empirical *change* – *change* associations. Increasing the variance of the *brain aging* component strengthened the *change* – *change* associations and affected *brain maintainers*, replicating the moderating effect of age (**Figure 7c**). Conversely, increasing mean decline and skewness did not alter the *change* – *change* associations despite leading to steeper mean decline in both brain and memory measures (**Figure 7b, d**). See details in **SI**.

Figure 7. Theoretical basis for brain change – memory change associations. a) The main simulations demonstrate how a skewed true (latent) distribution of brain decline, which has a linear association with memory decline (red line) results in non-linear observed associations between observed (measured) brain decline and memory decline (green line) due to the measurement noise. Density plots illustrate different distributions: yellow represents true brain and memory decline, orange measurement error, and blue observed brain and memory. b-d) The impact of distribution moments on true brain distribution on observed Δ brain – Δ memory associations. Specifically, the effect of b) mean decline, c) dispersion, and d) negative skewness. Density plots correspond to the underlying distribution of true brain and memory decline. Ribbons indicate the 95% CIs across N = 1000 simulations. GAMs were used to fit the associations. See **SI** for more details.

Discussion

By mega-analyzing data from over 3700 cognitively healthy adults and 13 independent longitudinal studies, we found that changes in brain structure are associated with changes in episodic memory across several cortical and subcortical areas, with the strongest associations in the MTL. These associations became more pronounced with increasing age, while no evidence was found for stronger relationships in APOE £4 carriers. We argue for common macrostructural systems supporting memory function, where multiple factors converge to increase vulnerability in older age. The implications of these findings are discussed below.

Brain decline - Memory loss associations; a generalized phenomenon? The case of aboveaverage decliners. Observed brain decline is non-linearly associated with memory decline, with stronger associations in brain decliners, i.e. individuals exhibiting above-average brain decline relative to their age and sex, compared to brain maintainers. This novel finding within the context of cognitively healthy aging differs from previous research, which may have over relied on linear regression models and modest sample sizes. At first sight, it suggests change – change associations are constrained to a specific population of individuals with steeper brain decline, at-risk for pathological neurodegeneration. Yet, our simulations challenge this interpretation rather suggesting the non-linear trends result from the presence of multiple sources contributing to noisy measures of brain change. Amongst these, one component, i.e. brain aging, has linear associations with memory decline and is characterized by a negative mean and skewness. These assumptions align well with current evidence, including, critically, the skewed distribution of brain aging ^{16,20,22,32,59,60}. The findings suggest that changes in *brain* aging are dimensional, skewed, and inherent process, which is an important determinant of memory loss in cognitively unimpaired elderly. Rather than a categorical view, where a degenerative component of brain change is limited to vulnerable individuals, it is the combination of noise and a skewed distribution that limits our ability to observe empirical associations in individuals with less brain change. These results likely underpin other categorical distinctions in neurocognitive aging¹².

Brain decline – Memory loss associations; a generalized phenomenon? The case of APOE $\epsilon 4$ carriers. APOE $\epsilon 4$ is associated with steeper brain decline and memory decline but does not

affect the change – change associations between brain structure and memory. Carrying the APOE £4 allele is the strongest genetic risk for sporadic AD, with dose-dependent effects^{61,62}. Older carriers of the APOE &4 allele exhibited steeper memory and brain decline, particularly in the hippocampi and the right amygdala, aligning with many other studies^{45,46}. It is plausible that a higher proportion of APOE &4 carriers are on a path to clinical disease manifestation of AD, putatively driven by the spreading of Tau deposition – which is strongly linked to steeper brain atrophy, memory decline, and short-term clinical diagnosis⁶³. However, the change – change associations and the moderating effects of age were not influenced by APOE ε4 status, nor are they likely affected by preclinical AD. First, in some regions, the change - change associations were evident before age 60, when prevalence of Tau deposition is generally very low^{63,64}. Aβ deposition before age 60 is slightly more common, but when controlling for Tau, the influence of Aβ on brain and memory decline is modest at best^{63,65–67}. Second, the associations are not constrained to the MTL, where earlier preclinical changes are observed in AD. Third, if preclinical AD were to influence the Δbrain - Δmemory associations, APOE ε4 noncarriers would display attenuated or age-delayed associations between brain and memory decline. One study using linear models reported stronger associations between hippocampal change and memory decline in cognitively healthy APOE ε4 carriers⁹, arguing that APOE ε4 carriers had a more hippocampal-centric pattern of atrophy in line with categorical aging and disease models. The current results align with a more hippocampal-centric pattern of atrophy, but also fit well with a dimensional view of aging, where APOE ε4 contributes to accelerated brain aging, without changing the mechanisms underlying the *change – change* associations. This is captured by the simulation analyses, which illustrates that a brain aging distribution with either steeper mean decline or higher skewness in APOE ε4 carriers would lead to both steeper brain and memory decline but similar strength of the change – change associations. Altogether, these results fit with a dimensional view of aging, where APOE £4 and early preclinical change in AD are one of many pathways affecting common biological substrates that determine memory function in older age, namely regional and global macrostructural atrophy.

Brain decline – Memory loss associations; a generalized phenomenon? The case of age. Age strengthens the associations between brain decline and memory decline, gradually extending to *brain maintainers* across most significant regions. The hippocampi are among the earliest regions to exhibit these associations, emerging in the late fifties. This finding aligns with

previous indirect evidence that the relationship between brain and memory decline strengthens with age^{25,41,42}. Simulated data identified dispersion - greater variability in brain change across individuals - as the key factor driving stronger associations with age. This aligns with prior research indicating increased variability in both brain levels and brain change 16,20, a pattern also observed in cognition, including episodic memory^{18,19}. Interestingly, mean decline did not significantly affect the strength of the brain - cognition associations. The steeper memory and MTL declines from around 60 years of age^{10,11,15,16} are therefore not direct causes of these associations but rather serve as indirect markers. Since brain aging follows a unidirectional trajectory - where everyone experiences some degree of decline over time greater variability in brain aging gives rise to steeper rates of brain decline. Overall, age is the primary determinant of degenerative brain change, and henceforth of change - change associations. Below a certain age, brain aging – or better said, population-level variability – is minimal, making it unlikely to be a key factor behind episodic memory loss; if a meaningful decline in episodic memory occurs in young adulthood^{1,2,68}. What makes age the prime risk factor for brain decline and which age-related factors may explain variations in brain (and memory) decline, remain amongst the most critical questions in the field. All points out towards a multidimensional view, were brain systems, even in the absence of overt pathological changes, are highly vulnerable to several aging factors³².

Regional associations between brain change and memory change. Hippocampal atrophy unsurprisingly showed the strongest associations with memory decline over time. This is consistent with earlier studies in the context of cognitively healthy elderly^{25–29}, the key role of hippocampus in episodic memory^{33,37}, and its vulnerability to aging³². In contrast, ventricular associations likely reflect global, non-specific patterns of brain atrophy and have also been reported elsewhere^{27,34}. The mechanisms underlying observed caudate, thalamus, putamen, and amygdala *change* – *change* associations remain unclear and require experimental approaches to move beyond speculation. One possibility is altered coupling between these regions and the hippocampus, as they all exhibit connectivity changes with the hippocampi during aging and episodic memory tasks^{69–72}. Associations between cortical thinning and memory decline were weaker than those observed for subcortical structures²⁹. Cortical thinning was chosen due to its high sensitivity to change; however, this sensitivity may render it more susceptible to influences unrelated to aging and long-term memory decline. Among

the regions surviving multiple comparisons correction, the left parahippocampal gyrus stood out. It's anterior portion encompasses the entorhinal cortex, which serves as the main interface between the neocortex and the hippocampus, and is critically involved in memory^{37,73,74}. Six additional regions in the temporal lobe were associated with memory decline, likely reflecting their roles in auditory, visual, or multimodal processing and integration. Most of the remaining regions, such as the pericallosal sulcus, the supramarginal gyrus, and the long insular gyrus, pertain to an action-mode network involved in task-positive, goal-directed behavior⁷⁵. The overall pattern consists of relatively higher-order regions associated with both goal-directed and internal self-referential processing which manifest the particular requirements that memory encoding and retrieval impose on the brain, that is orchestrating dynamics amongst – often antagonistic - large-scale networks⁷⁶.

Dimensionality of brain change: Global decline or regional contributions? Previous research has suggested the associations between brain atrophy and memory decline are driven either by a global factor of brain decline or are constrained to the MTL^{6,25,39}. Our findings partially support both views, as we found evidence for a global factor of brain decline, while hippocampal atrophy showed the strongest regional associations with memory decline. However, the results reveal a more nuanced picture, with evidence for clustering observed. While the clustering solution made both topological and functional sense, caution is warranted regarding the specific solution obtained, as multiple solutions were plausible, and the input data were selected based on the somewhat arbitrary criterium of statistical significance. Nonetheless several clustering solutions outperformed the one-factor solution with some of these remained associated with memory decline even after controlling for hippocampus or global decline. Most existing research, including this study, does not fully disentangle crossregional correlations in brain aging from correlated errors. In any case, the current results indicate that a decline in regions critical to lower-order functions, such as attention, or indirectly related to memory via reward or executive control systems, contribute to memory loss independently of the integrity of medial lobe structures. Note also that the relationship between some observed regions and memory decline may be explained by change in global cognition³⁹.

Technical considerations and limitations. The study required considerable analytical flexibility, which may influence the outcome. A multiverse approach⁷⁷ was unfeasible due to data availability, technical, and computing constraints. Key considerations include: I) Normative modeling-based normalization using Hierarchical Bayesian Regression^{78,79}, a flexible technique that often outperforms other harmonization methods⁸⁰. It standardizes Z-scores based on age and sex, making data relative and somewhat challenging to interpret. However, it eliminates most age-related homoscedasticity and facilitates comparisons with other research, since data are aligned to an openly available norm. II) Bootstrapped p-values were estimated to better control the false positive rate in GAMMs⁸¹, leading to somewhat reduced power compared to linear models when the observed relationship is linear, although it can be argued that it hardly ever is. III) Estimation of change scores via linear changes over time per individual, with weighting applied to control for differences in longitudinal reliability as individuals with longer follow-up times and more observations contribute with more reliable data^{20,82}. This represents a compromise choice, balancing data quality, flexibility, and interpretability; yet other approaches based, e.g., in standard equation modeling or use of random slopes as measures of individual change have also its strengths. IV) Inclusion of covariates representing other variables (e.g. neurochemical measurements) may account for unexplained variance and uncover further associations.

Here, we combined datasets to increase sample size and statistical power. However, we also inherited the idiosyncrasies of these datasets, such as inclusion/exclusion criteria, sample unrepresentativeness, and recruitment methods. Also, analytical compromises were made to ensure compatibility across all datasets. Memory function was harmonized independently within each dataset, and thus memory function reflects the specific tests used rather than a common construct. The Item-response framework is a more robust approach for harmonisation, placing all individuals in the same *space*; yet unfeasible in practice, as some datasets lacked shared tests. Estimating non-linear trajectories within individuals was also unfeasible given the relatively limited number of observations and follow-up durations per participant. The two-source model proposed in the discussion remains speculative, while the specific mechanisms underlying *brain aging* remain elusive. Young APOE £4 carriers showed less memory change. We remain cautious of these results as the youngest segment of our sample had limited availability of APOE information, and thus emphasize the need for further

research. Finally, this study is limited to regional cortical thickness and volume. Other macrostructural markers of brain aging such as neuromodulatory brainstem nuclei⁸³, or even indices of brain function⁸⁴, may provide additional insights.

Conclusions

Regional brain decline over time, particularly, but not limited to, the hippocampus, was associated with memory loss with age, but APOE $\epsilon 4$ status was not a key factor behind these *change-change* associations. These associations strengthened with age from around 60 years. Methodologically, the findings underscore the necessity for methods and approaches that capture non-linear dynamics and put focus on the variability across individuals rather than mean change. Theoretically, the results support a multidimensional view of memory, aging and disease, where multiple factors converge to increase the vulnerability of common macrostructural systems supporting memory function in older age.

Methods

Participants.

In this study we combined 13 ongoing or retrospective datasets that included a) cognitively healthy adult individuals with longitudinal assessments of brain structure (T1-weighted [T1w] sequence) and of memory function. All the main analyses were carried out using only longitudinal information from both brain structure and memory function. Individuals with only 1 observation, or uncoupled memory – brain data, were used only in preprocessing stages: for calibration purposes in MRI preprocessing and for principal component extraction, and Z-scoring of memory scores (see *below*). See **Supplementary Tables 5** and **6**, for information on the *initial MRI and memory samples*. Unless otherwise stated, we focus on the longitudinal-coupled samples used in the main analyses.

3,737 cognitively healthy adults, with – at least, partially – overlapping longitudinal follow-ups of brain structure and memory function, with a minimum total span of 1.5 years were included in the analyses. In total, 10,343 MRI observations and 13,460 memory observations contributed to the analyses (Table 1, Supplementary Figure 1). The datasets include the LCBC⁸⁵, Betula⁸⁶, UB^{87,88}, and BASE-II^{89,90} datasets (from the Lifebrain Consortium)⁹¹ as well as the COGNORM⁹², the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu)93, AIBL94, BBHI95, the Harvard Aging Brain Study (HABS)96, the UKB (https://www.ukbiobank.ac.uk/)97, PREVENT-AD98,99, OASIS3100, and VETSA101 datasets. In addition to cohort-specific inclusion and exclusion criteria, observations concurrent with cognitive impairment and Alzheimer's dementia were excluded. Individuals with baseline age <18 years, or with severe neurological or psychiatric disorders were additionally excluded. Based on preprocessing requirements, MRI data from scanners with fewer than 25 observations were excluded as well as individuals with less than 1.5 years of follow-up either of memory function or brain structure. Individuals without partially overlapping follow-up periods of brain and memory assessment were excluded, as well as those with nonoverlapping periods >10 years. See **Supplementary Table 7** for data availability, ethical standards, and contact information and SI for more sample details. A total of 3,149 subjects had APOE data available. Of these, 27.8 % were carriers of the APOE ε4 allele.

Memory function

For each sample, we first z-normalized all measures based on the first time point and the different available memory tests. When multiple measures were available, we estimated a main component using Principal Component Analysis (PCA; prcomp) with all measures at the first time point as inputs. Missing values were imputed using imputePCA from the missMDA r-package¹⁰². Only for OASIS3, the imputed number of values was not negligible (> .5%). See **Supplementary table 8** for information of memory data for each sample. For each dataset, we regressed-out age as a smoothing term, sex, and one or two dummy test-retest regressors using GAMMs (mgcv R-package)¹⁰³. Individual identifiers were used as random intercepts and the number of dummy test-retest regressors depended on whether the dataset had 2 or >=3 waves with memory function data. We retained individuals with at least 2 observations and a minimum follow-up of 1.5 years. For each individual, we then estimated yearly change by regressing memory observations on follow-up time, which were Z-standardized by site and fed to higher-level analyses.

MRI preprocessing and brain structure

MRI acquisition and preprocessing. Structural T1w MPRAGE and FSPGR scans were collected using 1.5 and 3T MRI scanners. See information on scanner parameters and scanners across datasets in **Supplementary Table 9**. Data was converted to BIDS¹⁰⁴ and preprocessed using the longitudinal FreeSurfer v.7.1.0 stream¹⁰⁵ for cortical reconstruction and volumetric segmentation of the structural T1w scans^{106,107}. See details in **SI**. Data was tabulated based on the *Destrieux* (cortical)⁵⁶ and *aseg* (subcortical) atlases⁵⁷.

<u>Data harmonization.</u> Brain regions were harmonized using a normative modelling framework resulting in site-agnostic deviation scores (*z*-scores) adjusted for age, and sex^{59,79} based on a Hierarchical Bayesian Regression technique⁷⁸ as implemented in the *PCNtoolkit* (0.30.post2), in *Python3* environment¹⁰⁸ (version 3.9.5). Calibration to the model was performed iteratively (N = 100) to avoid losing longitudinal observations. This step was carried out with the *initial MRI sample*, i.e. regardless of availability of longitudinal MRI data or paired memory function assessments. Calibrated data, across iterations, showed high reliability. See **SI** for more normative modelling harmonization details. Next, we selected individuals with at least 2

observations and a minimum follow-up of 1.5 years. For each individual and region, we estimated yearly change by regressing normative MRI values on follow-up time, Z-standardized data by site, and fed the output on higher-level analyses.

Higher-level analyses

All the analyses were carried out in the R environment (version 4.2.1)¹⁰⁹. Visualizations were made with the $ggplot2^{110}$ and the $ggseg^{111}$ R-packages. Analyses were mostly carried out using gamm models as implemented in the mgcv R-package¹⁰³. Derivatives were estimated based on finite differences as implemented in the gratia package¹¹². Linear mixed models as implemented in lme4, $lmerTest^{113,114}$ were also used to assess the effect of APOE $\epsilon4$ on brain and cognition.

To test the regional association between brain change and memory change, we carried out univariate weighted GAMMs, with a smooth term of Δbrain predicting Δmemory. An Δbrain × age tensor interaction term was added, as well as a smooth term of age, to assess the effect of age on Δbrain – Δmemory associations. The effect of APOE ε4 on memory and brain regions was tested using weighted linear mixed effects models, with APOE ε4 status predicting either Δbrain or Δmemory. The age \times APOE ε4 status interaction was tested using GAMMs with age as a smooth term by APOE ε4 status as ordered factor, in addition to APOE ε4 status as fixed effect, and age as smooth term. This effectively models the smooth term of age for APOE ε4 non-carriers as reference while the smoothed term for APOE ε4 carriers models the difference with respect to the reference. Similarly, the Δ brain \times APOE ϵ 4 status was used to assess the effect of APOE ϵ 4 on Δ brain – Δ memory associations. Finally, age \times Δ brain \times APOE ϵ 4 status with their simple effects) was used to test a triple interaction of age, APOE £4 status, and Abrain on Δmemory. All models included dataset as random intercept. We tested the dimensionality by performing PCA and clustering on those regions (N = 19) showing significant Δbrain – Δmemory associations. The clustering was based on the M3C, Monte-Carlo Reference-based Consensus algorithm, implemented in the M3C package¹¹⁵ which, critically, tests whether the desired solution is better than K = 1. We used a spectral clustering algorithm and PAC criteria, while the remaining parameters were set to the default. As post-hoc analyses we tested whether the resulting clusters of brain change were related to memory change controlling for the effect on memory of other brain regions such as the hippocampus or a

general factor of brain decline using GAMMs as described above. See more details on **SI** along with pseudocode.

Note that in all analyses we have one observation per individual (e.g. \(\Delta memory \)) as we are using change scores. Note also that age (and sex) trends are removed and thus the model captures only interindividual associations - relative change - and age trends are uninterpretable. Prior to any analysis, outlier values, defined as values >4.5 SD from the mean, were removed from the analyses (based on a p < 0.05 of observing, at least, one outlier value given a normal distribution and our sample size). In GAMMs, we estimated p-values using a wild bootstrapping (n = 5000) as the out-of-the-box p-values, as implemented in mqcv, are anticonservative⁸¹. Wild bootstrapping generates a null distribution of p-values by a) estimating a *null* model without the regressor of interest, b) extracting predicted values from the model and its residuals, c) adding the predicted value to the residuals multiplied by a random vector of 1 and -1s, and d) re-estimating a new model using this score as your predicted variable. When appropriate, p-values were corrected for multiple comparisons using FDR¹¹⁶. All models used weights to account for unequal reliability of longitudinal data. That is, individuals with short follow-up periods and less observations contribute with more unreliable, high-variance data and thus should produce an unequal spread of residuals. We used the square of reliability as weights as estimated elsewhere²⁰. Weights < .09, corresponding to longitudinal reliability < .3, were set at .09. For tensor interactions, we estimated the derivatives along Δ brain at specific ages (40, 50, 60, 70, 80 years) using a finite differences approach. The degree of association between Δbrain and Δmemory is estimated only in for Δ brain < 0 – as most associations are constrained in *brain decliners*, estimating the mean association across the Δbrain weighted by the density of data-points. Data from ventricles was sign reversed. We slightly trimmed the x-axis in the figures – removing ≈1 of the observations – to exclude high uncertainty fittings from visualization.

Funding and Acknowledgements

This work was supported by the Department of Psychology, University of Oslo (to K.B.W., A.M.F.), the Norwegian Research Council (to K.B.W. [325001, 301395, 239889], A.M.F. [325878, 262453], D.V.P [324882]), the project has received funding from the European Research Council's Starting Grant scheme under grant agreements 283634, 725025 (to A.M.F.) and 313440 (to K.B.W.), and the University of Oslo through the UiO:Life Science convergence environment [AHeadForLife: Societal and environmental determinants of brain and cognition] (to A.M.F). R.N.H. was supported by the UK Medical Research Council [SUAG/046/G101400]. A.P.-L. was partly supported by grants from the National Institutes of Health (R01AG076708), Jack Satter Foundation, and BrightFocus Foundation.

The different sub-studies are supported by different sources. LCBC: the Norwegian Research Council (to A.M.F., K.B.W.), and the National Association for Public Health's dementia research program (A.M.F.). Umeå (betula): a scholar grant from the Knut and Alice Wallenberg (KAW) foundation to L.N. UB: D.B.F. was funded by ICREA Academia Award (2019) and 2014 awards from the Catalan Government. He acknowledges the CERCA Programme/Generalitat de Catalunya and is supported by María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona) MDM-2017-0729, Ministry of Science, Innovation and Universities. BASE-II (mpib). BASE-II has been supported by the German Federal Ministry of Education and Research under grant nos 16SV5537, 16SV5837, 16SV5538, 16SV5536K, 01UW0808, 01UW0706, 01GL1716A and 01GL1716B and by the European Research Council under grant agreement no. 677804 (to S.K.). BBHI. The data from BBHI was obtained with funding from "la Caixa" Foundation (grant agreement n° LCF/PR/PR16/11110004), and also from Institut Guttmann and Fundació Abertis. COGNORM is funded by the South-Eastern Norway Regional Health Authorities (#2017095) The Norwegian Health Association (#19536) and by Wellcome Leap's Dynamic Resilience Program (jointly funded by Temasek Trust) #104617). The funding sources had no role in the study design. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information, see https://adni.loni.usc.edu/. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found http://adni.loni.usc.edu/wpat: content/uploads/how to apply/ADNI Acknowledgement List.pdf. Data collection and sharing for this project were funded by the ADNI (NIH Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database (www.loni.usc.edu/ADNI). The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au. Parts of the data used in the preparation of this article were obtained from the Harvard Aging Brain Study (HABS - P01AG036694; https://habs.mgh.harvard.edu). The HABS study was launched in 2010, funded by the National Institute on Aging. and is led by principal investigators Reisa A. Sperling MD and Keith A. Johnson MD at Massachusetts General Hospital/Harvard Medical School in Boston, MA." OASIS data were provided [in part] by OASIS 3: Longitudinal Multimodal Neuroimaging: Principal Investigators: T. Benzinger, D. Marcus, J. Morris; NIH P30 AG066444, P50 AG00561, P30 NS09857781, P01 AG026276, P01 AG003991, R01 AG043434, UL1 TR000448, R01 EB009352. AV-45 doses were provided by Avid Radiopharmaceuticals, a wholly owned subsidiary of Eli Lilly. PREVENT-AD was funded by the Canadian Institutes of Health Research, McGill University, the Fonds de Recherche du Québec - Santé, Alzheimer's Association, Brain Canada, the Government of Canada, the Canada Fund for Innovation, the Douglas Hospital Research Centre and Foundation, the Levesque Foundation, an unrestricted research grant from Pfizer Canada. Private sector contributions are facilitated by the Development Office of the McGill University Faculty of Medicine and by the Douglas Hospital Research Centre Foundation (http://www.douglas.qc.ca/). UK Biobank is generously supported by its founding funders the Wellcome Trust and UK Medical Research Council, as well as the Department of Health, Scottish Government, the Northwest Regional Development Agency, British Heart Foundation and Cancer Research UK. The organisation has over 150 dedicated members of staff, based in multiple locations across the UK. VETSA Parts of the data are from VETSA, which is funded by the National Institute of Aging grants R01s AG018384, AG018386, AG050595, AG022381, AG076838. The content is the responsibility of the authors and does not necessarily represent official views of the NIA, NIH, or VA. U.S. Department of Veterans Affairs, Department of Defense; National Personnel Records Center, National Archives and Records Administration; Internal Revenue Service; National Opinion Research Center; National Research Council, National Academy of Sciences; and the Institute for Survey Research, Temple University provided invaluable assistance in the conduct of the VET Registry. The Cooperative Studies Program of the U.S. Department of Veterans Affairs provided financial support for development and maintenance of the Vietnam Era Twin Registry. We would also like to acknowledge the continued cooperation and participation of the members of the VET Registry and their families.

Author Contributions

D.V.P. Conceptualization, Methodology, Formal analysis, Writing - Original Draft; Ø.S. Methodology, Software, Formal analysis, Writing - Review & Editing; M.S. Resources, Data Curation, Writing - Review & Editing; W.B. Writing - Review & Editing; I.K.A. Software, Writing - Review & Editing; D.B-F. Resources, Writing - Review & Editing; A.B. Writing - Review & Editing; G.C. Resources, Writing - Review & Editing; S.D. Resources, Data Curation, Writing - Review & Editing; P.G. Methodology, Writing - Review & Editing; R.N.H. Conceptualization, Writing - Review & Editing; S.K. Writing - Review & Editing; U.L. Resources, Writing - Review & Editing; A.M.M. Software, Writing - Review & Editing; L.N. Conceptualization, Resources, Writing - Review & Editing; J.S.S. Resources, Writing - Review & Editing; J.M.R. Data Curation, Writing - Review & Editing; J.S.S. Resources, Writing - Review & Editing; T.W. Methodology, Software, Formal analysis, Writing - Review & Editing; K.B.W. Conceptualization, Resources, Writing - Review & Editing; T.W. Methodology, Software, Formal analysis, Writing - Review & Editing; K.B.W. Conceptualization, Resources, Writing - Review & Editing; T.W. Methodology, Software, Formal analysis, Writing - Review & Editing; K.B.W. Conceptualization, Resources, Writing - Review & Editing; A.M.F. Conceptualization, Resources, Writing - Review & Editing.

Declaration of Competing Interests

A.P.-L. serves as a paid member of the scientific advisory boards for Neuroelectrics, Magstim Inc., TetraNeuron, Skin2Neuron, MedRhythms, and AscenZion. He is co-founder of TI solutions and co-founder and chief medical officer of Linus Health. **A.P.-L.** is listed as an inventor on several issued and pending patents on the real-time integration of transcranial magnetic stimulation with electroencephalography and magnetic resonance imaging, and applications of noninvasive brain stimulation in various neurological disorders; as well as digital biomarkers of cognition and digital assessments for early diagnosis of dementia. The remaining authors declare no conflict of interest.

Materials & Correspondence

Correspondence should be addressed to Didac Vidal Pineiro (d.v.pineiro@psykologi.uio.no).

Data availability

The raw data were gathered from 13 different datasets. Different agreements are required for each dataset. Most dataset are openly available with prespecified data usage agreements. For some datasets, such as UKB, fees may apply. Requests for Lifebrain cohorts (LCBC, Umeå, UB) and COGNORM, should be submitted to the corresponding principal investigator. See data availability and contact details for all datasets in **Supplementary Table 7.**

Code Availability

Statistical analyses in this manuscript are available alongside the manuscript and will be made available at https://github.com/daidak/memory-brain-change. All analyses were performed in R. The scripts were run on the Colossus processing cluster, University of Oslo. MRI preprocessing and feature generation scripts were performed with FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) software.

References

- Rönnlund, M., Nyberg, L., Bäckman, L. & Nilsson, L.-G. Stability, Growth, and Decline in Adult Life Span Development of Declarative Memory: Cross-Sectional and Longitudinal Data From a Population-Based Study. *Psychology and Aging* 20, 3–18 (2005).
- 2. Salthouse, T. A. Trajectories of normal cognitive aging. *Psychol Aging* **34**, 17–24 (2019).
- 3. Josefsson, M., de Luna, X., Pudas, S., Nilsson, L.-G. & Nyberg, L. Genetic and lifestyle predictors of 15-year longitudinal change in episodic memory. *J Am Geriatr Soc* **60**, 2308–2312 (2012).
- 4. Fjell, A. M. & Walhovd, K. B. Structural brain changes in aging: courses, causes and cognitive consequences. *Rev Neurosci* **21**, 187–221 (2010).
- 5. Oschwald, J. *et al.* Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. *Rev Neurosci* **31**, 1–57 (2019).
- 6. Cox, S. R. *et al.* Three major dimensions of human brain cortical ageing in relation to cognitive decline across the eighth decade of life. *Mol Psychiatry* **26**, 2651–2662 (2021).
- 7. Schmidt, R. *et al.* White matter lesion progression, brain atrophy, and cognitive decline: The Austrian stroke prevention study. *Annals of Neurology* **58**, 610–616 (2005).
- 8. Fjell, A. M. *et al.* Accelerating cortical thinning: unique to dementia or universal in aging? *Cereb. Cortex* **24**, 919–934 (2014).
- Gorbach, T. et al. Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. Alzheimers Dement (Amst) 12, e12110 (2020).
- Fjell, A. M. et al. Development and aging of cortical thickness correspond to genetic organization patterns. Proc. Natl. Acad. Sci. U.S.A. 112, 15462–15467 (2015).
- 11. Fjell, A. M. *et al.* Critical ages in the life course of the adult brain: nonlinear subcortical aging.

 Neurobiol. Aging **34**, 2239–2247 (2013).
- 12. Lindenberger, U. Human cognitive aging: corriger la fortune? Science 346, 572–578 (2014).
- 13. Bethlehem, R. a. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

- 14. Frangou, S. *et al.* Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. *Hum Brain Mapp* **43**, 431–451 (2022).
- Vidal-Pineiro, D. et al. Cellular correlates of cortical thinning throughout the lifespan. Scientific Reports 10, 21803 (2020).
- 16. Dima, D. *et al.* Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years. *Hum Brain Mapp* **43**, 452–469 (2022).
- 17. Fjell, A. M. *et al.* The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. *Elife* **10**, e66466 (2021).
- 18. Nelson, E. A. & Dannefer, D. Aged heterogeneity: fact or fiction? The fate of diversity in gerontological research. *Gerontologist* **32**, 17–23 (1992).
- Christensen, H. et al. An analysis of diversity in the cognitive performance of elderly community dwellers: individual differences in change scores as a function of age. Psychol Aging 14, 365– 379 (1999).
- 20. Vidal-Piñeiro, D. *et al.* Reliability of structural brain change in cognitively healthy adult samples. 2024.06.03.592804 Preprint at https://doi.org/10.1101/2024.06.03.592804 (2024).
- 21. de Frias, C. M., Lövdén, M., Lindenberger, U. & Nilsson, L.-G. Revisiting the dedifferentiation hypothesis with longitudinal multi-cohort data. *Intelligence* **35**, 381–392 (2007).
- 22. Raz, N. & Rodrigue, K. M. Differential aging of the brain: patterns, cognitive correlates and modifiers. *Neurosci Biobehav Rev* **30**, 730–748 (2006).
- 23. Van Petten, C. Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. *Neuropsychologia* 42, 1394–1413 (2004).
- 24. Raz, N. & Lindenberger, U. Only time will tell: cross-sectional studies offer no solution to the age-brain-cognition triangle: comment on Salthouse (2011). *Psychol Bull* **137**, 790–795 (2011).
- 25. Gorbach, T. *et al.* Longitudinal association between hippocampus atrophy and episodic-memory decline. *Neurobiol. Aging* **51**, 167–176 (2017).

- 26. Kramer, J. H. *et al.* Longitudinal MRI and cognitive change in healthy elderly. *Neuropsychology* **21**, 412–418 (2007).
- 27. Leong, R. L. F. *et al.* Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort. *Neuroimage* **147**, 852–860 (2017).
- 28. Mungas, D. *et al.* Longitudinal volumetric MRI change and rate of cognitive decline. *Neurology* **65**, 565–571 (2005).
- 29. Sele, S., Liem, F., Mérillat, S. & Jäncke, L. Age-related decline in the brain: a longitudinal study on inter-individual variability of cortical thickness, area, volume, and cognition. *Neuroimage* **240**, 118370 (2021).
- 30. Rodrigue, K. M. & Raz, N. Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. *J. Neurosci.* **24**, 956–963 (2004).
- 31. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol* **82**, 239–259 (1991).
- 32. Fjell, A. M. *et al.* What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. *Prog Neurobiol* **117**, 20–40 (2014).
- 33. Squire, L. R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. *Psychological Review* **99**, 195–231 (1992).
- 34. Armstrong, N. M. *et al.* Associations between cognitive and brain volume changes in cognitively normal older adults. *Neuroimage* **223**, 117289 (2020).
- 35. Nyberg, L., Andersson, M. & Lundquist, A. Longitudinal change-change associations of cognition with cortical thickness and surface area. *Aging Brain* **3**, 100070 (2023).
- 36. Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. The parietal cortex and episodic memory: an attentional account. *Nat. Rev. Neurosci.* **9**, 613–625 (2008).
- 37. Dickerson, B. C. & Eichenbaum, H. The episodic memory system: neurocircuitry and disorders.

 *Neuropsychopharmacology** 35, 86–104 (2010).

- 38. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. *Annu Rev Psychol* **67**, 105–134 (2016).
- 39. Johansson, J. et al. Model of brain maintenance reveals specific change-change association between medial-temporal lobe integrity and episodic memory. *Aging Brain* **2**, 100027 (2022).
- 40. Tucker-Drob, E. M., Brandmaier, A. M. & Lindenberger, U. Coupled cognitive changes in adulthood: A meta-analysis. *Psychological Bulletin* **145**, 273–301 (2019).
- 41. Kaup, A. R., Mirzakhanian, H., Jeste, D. V. & Eyler, L. T. A review of the brain structure correlates of successful cognitive aging. *J Neuropsychiatry Clin Neurosci* **23**, 6–15 (2011).
- 42. Langnes, E. *et al.* Anterior and posterior hippocampus macro- and microstructure across the lifespan in relation to memory-A longitudinal study. *Hippocampus* **30**, 678–692 (2020).
- 43. Schuff, N. *et al.* MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. *Brain* **132**, 1067–1077 (2009).
- 44. Wolk, D. A. *et al.* Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional–executive network function in Alzheimer's disease. *Proc Natl Acad Sci U S A* **107**, 10256–10261 (2010).
- 45. Caselli, R. J. *et al.* Longitudinal Growth Modeling of Cognitive Aging and the APOE e4 Effect. *N Engl J Med* **361**, 255–263 (2009).
- 46. Roe, J. *et al.* Brain change trajectories in healthy adults correlate with Alzheimer's related genetic variation and memory decline across life. *Nature Communications* (2024).
- 47. Walhovd, K. B., Lövden, M. & Fjell, A. M. Timing of lifespan influences on brain and cognition. *Trends in Cognitive Sciences* **27**, 901–915 (2023).
- 48. Frisoni, G. B. *et al.* The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. *Nat Rev Neurosci* **23**, 53–66 (2022).
- 49. Vogel, J. W. *et al.* Four distinct trajectories of tau deposition identified in Alzheimer's disease.

 Nat Med **27**, 871–881 (2021).

- 50. Saeed, U. *et al.* APOE-ε4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer's disease and dementia with Lewy bodies. *Alzheimers Dement* **14**, 1137–1147 (2018).
- 51. Bråthen, A. C. S. *et al.* Cognitive and hippocampal changes weeks and years after memory training. *Sci Rep* **12**, 7877 (2022).
- 52. Erickson, K. I. *et al.* Exercise training increases size of hippocampus and improves memory. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 3017–3022 (2011).
- 53. Hoagey, D. A., Rieck, J. R., Rodrigue, K. M. & Kennedy, K. M. Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: A partial least squares correlation analysis. *Hum Brain Mapp* **40**, 5315–5329 (2019).
- 54. Storsve, A. B. *et al.* Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and Decelerating Change. *J. Neurosci.* **34**, 8488–8498 (2014).
- 55. Costafreda, S. G. Pooling FMRI data: meta-analysis, mega-analysis and multi-center studies.

 Front Neuroinform **3**, 33 (2009).
- 56. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. *Neuroimage* **53**, 1–15 (2010).
- 57. Fischl, B. *et al.* Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. *Neuron* **33**, 341–355 (2002).
- 58. Azzalini, A. A. The R Package \textttsn: The Skew-Normal and Related Distributions Such as the Skew-t and the SUN (Version 2.1.1). (Università degli Studi di Padova, Italia, 2023).
- 59. Rutherford, S. *et al.* The normative modeling framework for computational psychiatry. *Nat Protoc* **17**, 1711–1734 (2022).
- 60. Wen, W. & Sachdev, P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. *Neuroimage* **22**, 144–154 (2004).

- 61. Belloy, M. E. *et al.* APOE Genotype and Alzheimer Disease Risk Across Age, Sex, and Population Ancestry. *JAMA Neurology* **80**, 1284–1294 (2023).
- 62. Corder, E. H. *et al.* Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. *Science* **261**, 921–923 (1993).
- 63. Ossenkoppele, R. *et al.* Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. *Nat Med* **28**, 2381–2387 (2022).
- 64. Jack, C. R. *et al.* Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities

 Using the National Institute on Aging-Alzheimer's Association Research Framework. *JAMA*Neurol 76, 1174–1183 (2019).
- 65. Harrison, T. M., Du, R., Klencklen, G., Baker, S. L. & Jagust, W. J. Distinct effects of beta-amyloid and tau on cortical thickness in cognitively healthy older adults. *Alzheimers Dement* **17**, 1085–1096 (2021).
- 66. Sperling, R. A. *et al.* Amyloid and Tau Prediction of Cognitive and Functional Decline in Unimpaired Older Individuals: Longitudinal Data from the A4 and LEARN Studies. *J Prev Alzheimers Dis* **11**, 802–813 (2024).
- 67. Vidal-Piñeiro, D. *et al.* Relationship between cerebrospinal fluid neurodegeneration biomarkers and temporal brain atrophy in cognitively healthy older adults. *Neurobiology of Aging* **116**, 80–91 (2022).
- 68. Park, D. C. et al. Models of visuospatial and verbal memory across the adult life span. *Psychol Aging* **17**, 299–320 (2002).
- 69. Logothetis, N. K. *et al.* Hippocampal–cortical interaction during periods of subcortical silence.

 Nature **491**, 547–553 (2012).
- 70. Ness, H. T. *et al.* Recalled through this day but forgotten next week?—retrieval activity predicts durability of partly consolidated memories. *Cerebral Cortex* **34**, bhae233 (2024).
- 71. Ness, H. T. *et al.* Reduced Hippocampal-Striatal Interactions during Formation of Durable Episodic Memories in Aging. *Cerebral Cortex* **32**, 2358–2372 (2022).

- 72. Yang, M., Logothetis, N. K. & Eschenko, O. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus. *J. Neurosci.* **39**, 434–444 (2019).
- 73. Hargreaves, E. L., Rao, G., Lee, I. & Knierim, J. J. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. *Science* **308**, 1792–1794 (2005).
- 74. Van Hoesen, G. W., Pandya, D. N. & Butters, N. Cortical afferents to the entorhinal cortex of the Rhesus monkey. *Science* **175**, 1471–1473 (1972).
- 75. Dosenbach, N. U. F., Raichle, M. E. & Gordon, E. M. The brain's action-mode network. *Nat. Rev. Neurosci.* 1–11 (2025) doi:10.1038/s41583-024-00895-x.
- 76. Das, A. & Menon, V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall revealed through multi-experiment iEEG replication. *eLife* **13**, RP99018 (2024).
- 77. Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing Transparency Through a Multiverse Analysis. *Perspect Psychol Sci* **11**, 702–712 (2016).
- 78. Kia, S. M. *et al.* Hierarchical Bayesian Regression for Multi-site Normative Modeling of Neuroimaging Data. in *Medical Image Computing and Computer Assisted Intervention MICCAI 2020* (eds. Martel, A. L. et al.) 699–709 (Springer International Publishing, Cham, 2020). doi:10.1007/978-3-030-59728-3_68.
- 79. Rutherford, S. et al. Charting brain growth and aging at high spatial precision. eLife **11**, e72904 (2022).
- 80. Bayer, J. M. M. *et al.* Accommodating site variation in neuroimaging data using normative and hierarchical Bayesian models. *Neuroimage* **264**, 119699 (2022).
- 81. Simonsohn, U. Interacting With Curves: How to Validly Test and Probe Interactions in the Real (Nonlinear) World. *Advances in Methods and Practices in Psychological Science* **7**, 25152459231207787 (2024).

- 82. Rast, P. & Hofer, S. M. Longitudinal design considerations to optimize power to detect variances and covariances among rates of change: simulation results based on actual longitudinal studies.

 *Psychol Methods 19, 133–154 (2014).
- 83. Dahl, M. J., Kulesza, A., Werkle-Bergner, M. & Mather, M. Declining locus coeruleus—dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. *Neuroscience & Biobehavioral Reviews* **153**, 105358 (2023).
- 84. Mooraj, Z. *et al.* Toward a functional future for the cognitive neuroscience of human aging.

 *Neuron 113, 154–183 (2025).
- 85. Walhovd, K. B. *et al.* Neurodevelopmental origins of lifespan changes in brain and cognition. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 9357–9362 (2016).
- 86. Nyberg, L. *et al.* Longitudinal evidence for diminished frontal cortex function in aging. *Proc.*Natl. Acad. Sci. U.S.A. **107**, 22682–22686 (2010).
- 87. Rajaram, S. *et al.* The Walnuts and Healthy Aging Study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging. *Front Aging Neurosci* **8**, (2017).
- 88. Vidal-Piñeiro, D. *et al.* Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging. *Brain Stimul* **7**, 287–296 (2014).
- 89. Bertram, L. *et al.* Cohort profile: The Berlin Aging Study II (BASE-II). *Int J Epidemiol* **43**, 703–712 (2014).
- 90. Gerstorf, D. et al. Editorial. *Gerontology* **62**, 311–315 (2016).
- 91. Walhovd, K. B. *et al.* Healthy minds 0-100 years: Optimising the use of European brain imaging cohorts ('Lifebrain'). *Eur. Psychiatry* **50**, 47–56 (2018).
- 92. Idland, A.-V. *et al.* Biomarker profiling beyond amyloid and tau: cerebrospinal fluid markers, hippocampal atrophy, and memory change in cognitively unimpaired older adults. *Neurobiol. Aging* **93**, 1–15 (2020).
- 93. Mueller, S. G. *et al.* The Alzheimer's disease neuroimaging initiative. *Neuroimaging Clin. N. Am.* **15**, 869–877, xi–xii (2005).

- 94. Ellis, K. A. *et al.* The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. *Int Psychogeriatr* **21**, 672–687 (2009).
- 95. Cattaneo, G. *et al.* The Barcelona Brain Health Initiative: A Cohort Study to Define and Promote Determinants of Brain Health. *Front. Aging Neurosci.* **10**, (2018).
- 96. Dagley, A. *et al.* Harvard Aging Brain Study: dataset and accessibility. *Neuroimage* **144**, 255–258 (2017).
- 97. Miller, K. L. *et al.* Multimodal population brain imaging in the UK Biobank prospective epidemiological study. *Nature Neuroscience* **19**, 1523–1536 (2016).
- 98. Breitner, J. C. S., Poirier, J., Etienne, P. E. & Leoutsakos, J. M. Rationale and Structure for a New Center for Studies on Prevention of Alzheimer's Disease (StoP-AD). *J Prev Alzheimers Dis* **3**, 236–242 (2016).
- 99. Tremblay-Mercier, J. et al. Open science datasets from PREVENT-AD, a longitudinal cohort of pre-symptomatic Alzheimer's disease. *Neuroimage Clin* **31**, 102733 (2021).
- 100. LaMontagne, P. J. et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. 2019.12.13.19014902 Preprint at https://doi.org/10.1101/2019.12.13.19014902 (2019).
- 101. Kremen, W. S., Franz, C. E. & Lyons, M. J. Current Status of the Vietnam Era Twin Study of Aging (VETSA). *Twin Res Hum Genet* **22**, 783–787 (2019).
- 102. Josse, J. & Husson, F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. *Journal of Statistical Software* **70**, 1–31 (2016).
- 103. Wood, S. N. *Generalized Additive Models: An Introduction with R*. (Chapman and Hall/CRC, 2017).
- 104. Gorgolewski, K. J. *et al.* The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. *Sci Data* **3**, 160044 (2016).

- 105. Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. *Neuroimage* **61**, 1402–1418 (2012).
- 106. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. *Neuroimage* **9**, 179–194 (1999).
- 107. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. *Neuroimage* **9**, 195–207 (1999).
- 108. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual. (CreateSpace, Scotts Valley, CA, 2009).
- 109. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2023).
- 110. Wickham, H. *Ggplot2: Elegant Graphics for Data Analysis*. (Springer International Publishing, 2016). doi:10.1007/978-3-319-24277-4.
- 111. Mowinckel, A. M. & Vidal-Piñeiro, D. Visualization of Brain Statistics With R Packages ggseg and ggseg3d. *Advances in Methods and Practices in Psychological Science* **3**, 466–483 (2020).
- 112. Simpson, G. L. *Gratia: Graceful 'Ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'Mgcv'*. (2020).
- 113. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using Ime4. *Journal of Statistical Software* **67**, 1–48 (2015).
- 114. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. ImerTest Package: Tests in Linear Mixed Effects Models. *Journal of Statistical Software* **82**, 1–26 (2017).
- 115. John, C. R. et al. M3C: Monte Carlo reference-based consensus clustering. *Sci Rep* **10**, 1816 (2020).
- 116. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)*57, 289–300 (1995).

Tables

Dataset	Subjects	Apoe ε4	Age		Obs. Memory			Obs. Brain			Time Brain		Time Memory	
	N (m)	NC:C	M (SD)	range	N	M (SD)	range	N	M (SD)	range	M (SD)	range	M (SD)	range
adni	223 (92)	158:65	72.4 (6.3)	55.8 – 89.9	1118	5.0 (2.7)	2 - 13	984	4.4 (2.2)	2 - 12	3.9 (2.1)	1.6 - 9.6	4.6 (2.8)	2.0 - 13.5
aibl	142 (70)	94:78	71.5 (6.4)	60.0 - 87.0	564	4.0 (1.1)	2 - 5	493	3.5 (1.1)	2 - 5	4.2 (1.6)	2.0 - 8.0	4.9 (1.6)	2.0 7.0
bbhi	256 (141)	30:3	54.0 (7.2)	41.2 - 66.1	512	2.0 (0)	2 - 2	512	2.0 (0)	2 - 2	2.4 (0.2)	1.6 - 3.0	2.4 (0.2)	1.6 - 3.0
habs	223 (94)	157:63	73.3 (6.1)	62.5 - 89.3	1180	5.3 (1.0)	3 - 6	615	2.8 (0.6)	2 - 4	4.4 (1.2)	2.0 - 8.5	4.5 (1.1)	2.0 - 8.5
mpib	214 (127)	133:39	64.8 (15.0)	24.5 - 83.1	572	2.7 (0.5)	2 - 3	428	2.0 (0)	2 - 2	2.3 (0.4)	1.5 - 3.1	4.5 (1.5)	1.6 - 6.4
oasis3	431 (171)	287:137	67.2 (8.9)	43.5 – 95.6	3502	8.1 (4.0)	2 - 23	1458	3.4 (1.5)	2 - 8	6.4 (3.4)	1.5 - 15.8	9.9 (4.2)	2.0 - 24.0
ous	93 (42)	54:38	73.2 (6.0)	64.7 - 90.0	596	6.4 (1.0)	3 - 7	366	3.9 (1.3)	2 - 6	6.0 (2.6)	1.8 - 9.5	5.8 (0.9)	2.1 - 6.9
preventad	184 (53)	115:69	63.6 (5.0)	55.1 – 83.3	874	4.8 (1.0)	3 - 6	1061	5.8 (1.0)	4 - 7	3.3 (0.8)	1.9 - 4.7	3.2 (0.8)	1.6 - 4.5
ub	77 (28)	67:10	68.6 (5.0)	51.7 – 78.1	214	2.8 (0.4)	2 -3	208	2.7 (0.5)	2 - 3	3.5 (1.0)	1.6 - 5.0	3.7 (1.0)	1.6 - 5.2
uio	304 (120)	100:72	47.9 (19.1)	20.0 - 85.5	781	2.6 (0.7)	2 - 4	799	2.6 (0.8)	2 - 7	6.2 (2.8)	2.4 - 11.5	6.0 (2.7)	2.4 - 11.5
ukb	106 6 (525)	775:272	62.3 (7.0)	47.0 – 79.5	2132	2.0 (0)	2 - 2	2132	2.0 (0)	2 - 2	2.3 (0.1)	2.0 - 2.7	2.3 (0.1	2.0 - 2.7
umu	47 (27)	26:15	43.8 (12.8)	25.0 - 75.0	94	2.0 (0)	2 - 2	94	2.0 (0)	2 - 2	4.3 (0.4)	4.0 - 5.0	4.3 (0.4)	4.0 - 5.0
vetsa	477 (477)	354:122	58.0 (3.9)	51.1 – 70.1	1321	2.8 (0.4)	2 -3	1193	2.5 (0.5)	2 - 3	9.3 (2.7)	4.5 - 13.4	10.0 (2.4)	4.5 - 14.4
all	3737 (1967)	2350:953	62.5 (11.6)	20.1 – 95.6	13460	3.6 (2.6)	2 - 23	10343	2.8 (1.3)	2 - 12	4.5 (3.0)	1.5 – 15.8	5.1 (3.6)	1.6 - 24.0

Table 1. Main Sample sociodemographics. Main sociodemographic and observational detail of the main sample used in all main analyses. N = Total number of individuals or observations. NC = Non-carriers. C = Carriers. M = mean. SD = Standard Deviation. Obs. = Observations