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ABSTRACT The budding yeast Saccharomyces cerevisiae has many traits that make it useful for studies of
quantitative inheritance. Genome-wide association studies and bulk segregant analyses often serve as first steps
toward the identification of quantitative trait loci. These approaches benefit from having large numbers of
ascospores pooled by mating type without contamination by vegetative cells. To this end, we inserted a gene
encoding red fluorescent protein into theMATa locus. Red fluorescent protein expression caused MATa and a/
a diploid vegetative cells and MATa ascospores to fluoresce; MATa cells without the gene did not fluoresce.
Heterozygous diploids segregated fluorescent and nonfluorescent ascospores 2:2 in tetrads and bulk popula-
tions. The two populations of spores were separable by fluorescence-activated cell sorting with little cross
contamination or contamination with diploid vegetative cells. This approach, which we call Fluorescent Asco-
spore Technique for Efficient Recovery of Mating Type (FASTER MT), should be applicable to laboratory,
industrial, and undomesticated, strains.
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Mapping and identification of quantitative trait loci (QTL) are the keys
to understanding complex traits in humans, animals, plants, and eu-
karyotic microorganisms (Lander and Schork 1994; Darvasi 1998;
Gianni et al. 2009; Jing et al. 2010; Jimenez-Gomez et al. 2011). Such
studies often use hundreds or even thousands of individuals (Churchill
and Doerge 1994) to detect associations or linkages between genetic
markers, such as single nucleotide polymorphisms, and traits of interest.
Saccharomyces cerevisiae (yeast) is well suited for QTL mapping studies.
Its facile genetic system, small genome size, and lack of extensive re-
peated DNA make it ideal for developing strategies to detect the many
loci contributing to complex traits in eukaryotes. Furthermore, precise
control of the cellular environment when growing yeast minimizes non-
genetic variability and thereby increases the ability to detect quantitative
variation caused by genetic differences. The potential for yeast to help
solve basic problems in quantitative genetics has been, for example,
exploited in studies of sporulation (Deutschbauer and Davis 2005), heat
tolerance (Steinmetz et al. 2002), and chemical tolerance (Ehrenreich
et al. 2010).

In yeast, meiotic segregants can be isolated by micromanipulation of
individual tetrads to separate the four ascospores or as random spores,
where ascus walls are enzymatically removed and the population of
released spores is plated. Because tetrad analysis is time consuming and
not automated it is ill suited to produce sufficient numbers of
recombinant progeny for QTL studies. Isolation of large numbers of
random spores without micromanipulation is straightforward but has
at least two technical shortcomings. First, a diploid culture subjected to
meiosis-inducing conditions contains contaminating diploids that failed
to undergo meiosis in addition to the desired haploid meiotic spores.
Second, the population of haploid meiotic cells consists of equal
numbers of the two mating types, which when plated could mate to
form diploids. Without a method for removing diploids and separating
haploids into a and amating types, the random spore population is not
useful for QTL mapping. Thus, simple, rapid, and efficient methods for
bulk isolation of pure ascospores sorted by mating type are needed.

Rapid separation of haploids and diploids has been accomplished
by incorporation of genetic markers that allow for selection by (1)
insertion of a gene-promoter construct expressed only in haploids of
one mating type and (2) the use of a recessive resistance marker [e.g.,
canavanine resistance (Whelan et al. 1979)] to select against diploids
(Tong and Boone 2007; Ehrenreich et al. 2010). Although effective,
these approaches require the introduction of engineered cassettes via
multiple manipulations and entail selections that could bias some anal-
yses. Further, they may not be applicable to wild strains, which are rich
sources of quantitative variation but are diploid, often homothallic, and
lack genetic markers needed for introduction of some engineered cas-
settes (Timberlake et al. 2011).
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Thacker et al. 2011 demonstrated the feasibility of obtaining asco-
spore-autonomous expression of fluorescent protein constructs and
used these to visualize meiotic events. Fluorescently tagged ascospores
would be well suited for preparation of QTL mapping populations if
expression of the tag could be limited to one mating type. The ap-
proach we describe here is based on the integration of a red fluorescent
protein (RFP) gene at the MATa locus, with selection provided by
a hygromycin-resistance gene so that the cassette can be introduced
into any transformable, haploid or diploid, hygromycin-sensitive
strain. MATa vegetative cells and ascospores thus tagged contain a vis-
ible marker useful for separation of cells by hand or fluorescence-
activated cell sorting (FACS).

MATERIALS AND METHODS
We used standard yeast molecular genetic techniques (Guthrie and
Fink 2004; Amberg et al. 2005) to obtain the S. cerevisiae

P
1278b

(http://wiki.yeastgenome.org/index.php/History_of_Sigma) strains
given in Table 1.

Plasmid pBC58 (Figure 1A) was constructed as follows: A BamH1
fragment from plasmid yEpGAP-Cherry (Keppler-Ross et al. 2008) con-
taining a yeast-optimized red fluorescent protein gene and promoter
(TDH3pyEmRFP) was cloned into pAG35 (Goldstein and McCusker
1999). A polymerase chain reaction (PCR) product (BCP538-539; Table
2) encompassing the RFP-hygMX genes and adding approximately
50 bp of homology at the 59 end of MATa2 was used to direct integra-
tion at MATa. A second PCR product (BCP569-571; Table 2) spanning
MATa and adding terminal StuI sites was then made from genomic
DNA and cloned into pCR TOPO2.1 (Invitrogen) to produce pBC58,
which is available upon request.

Cells were examined with a 40·/0.75 M/N2 dry objective or 100·/
1.30 H/N2 oil immersion objective at room temperature. Fluorescence
was monitored at 590 nm with a G-2E/C blocking filter (Nikon).
FACS was performed with either a BD Biosciences FACS AriaIIU
SORP or LSRII SORP with the 561 nm laser and 610/20 filter.

Growth curves were performed in microtiter plates with 150 mL of
medium/well. Wells were inoculated with 10 mL of 1 OD600/mL aque-
ous suspensions of cells. Plates were incubated at 30� and OD600 meas-
urements were taken at 30-min intervals after shaking for 15 sec.

Ascospores were isolated by scraping well-sporulated colonies from
SM plates, suspending them in 1 mL of phosphate-buffered saline, and
adding 1000 units of lyticase (Sigma-Aldrich). After incubation at 30�
for 8 hr, sodium dodecyl sulfate was added to 1%. The ascospores were
washed twice with 0.1% Tween-20, 5 mM EDTA, and suspended at
approximately 109/mL.

RESULTS AND DISCUSSION
Transformation of haploid MATa strains with the StuI fragment of
pBC58 (Figure 1A) resulted in the formation of hygromycin-resistant
(hygR), pink colonies. The intensity of the color increased upon in-
cubation at 4�. We crossed one transformant to produce heterozygous
diploid ML1 (Table 1), whose color was approximately one-half as
intense as that of the haploid. Figure 1, B2D shows that segregation of
the marker in ML1 tetrads was 2 RFP+:2 rfp2. PCR analysis of trans-
formants indicated that a single copy of RFP-hygMX had integrated at
MATa. Moreover, mating type was completely linked to RFP in 20
tetrads. These results indicate that transformation was due to integra-
tion by homology at MATa.

Transformation of a diploid strain with the StuI fragment also
resulted in formation of hygR, pink colonies. Of these, approximately
10% were converted from a/a to a/a diploids, as evidenced by acqui-
sition of mating competence with a MATa tester lawn. This is pre-
dicted by transplacement of the MATa locus by the pBC58 StuI
fragment, which contains homologous sequences flanking MAT
(BUD5/TAF2; Figure 1A). The ability to make RFP+/rfp2 diploids by
transformation speeds up analysis because strains can be sporulated

n Table 1 S. cerevisiae strains used in the study

Strain Genotype

ML1 ura3-52/ura3-52 his3::hisG/HIS3
leu2::hisG/LEU2 trp1::hisG/TRP1
tec1::KANMX/TEC1 MATa
(mata2::yEmRFP–HYGMX)/MATa

ML2 ura3-52/URA3 his3::hisG/his3::hisG
leu2::hisG/LEU2 trp1::hisG/trp1::hisG
tec1::KANMX/TEC1 MATa/MATa

ML3 ura3-52 leu2::hisG MATa
(mata2::yEmRFP-HYGMX)

ML4 ura3-52 leu2::hisG MATa
ML5 his3::hisG trp1::hisG tec1::KANMX MATa
ML6 his3::hisG trp1::hisG tec1::KANMX MATa

Figure 1 Transformation with the RFP Cassette. (A) Plasmid pBC58. The
RFP-hygR cassette was inserted between the first and second codons of
HMRa2. The figure retains the HMRa notation because the MATa se-
quence was first inferred from the sequence of the silenced locus. How-
ever, the cassette’s homology extends to the flanking TAF2 and BUD5
genes so transformation with the StuI fragment is directed to the MAT
locus. (B) and (C) Fluorescence phenotype of asci. Most of the intact asci
we observed contained two fluorescent and two nonfluorescent spores.
The RFP appeared to accumulate in vacuoles. (D) Growth of tetrads.
Dissected tetrads were grown at 30� on YPD medium, incubated at 4�
for several days to enhance fluorescence, and photographed under
ambient light. Normal segregation of fluorescent ascospores shown in
(B) and (C) was replicated in these and all other tetrads we observed. We
confirmed that a mating type, fluorescence, and hygromycin resistance
were completely linked. By contrast, the variations in colony morphol-
ogy shown in the figure were unlinked to fluorescence.
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without intermediate steps to obtain segregants. Further, Klar (1980)
showed that a/a diploids could be induced to sporulate after transient
mating with a MATa haploid containing a kar1 mutation that inter-
fered with karyogamy (Conde and Fink 1976). This approach, which is
expected to produce equal numbers of MATa spores containing and
lacking the RASTER insert, could be used to obtain untagged MATa
populations.

We subjected vegetative cells and ascospores to FACS to assess the
feasibility of separating them by mating type. Figure 2A shows that con-
trol haploid cells (nontransformed or MATa derivatives of transformed
diploids) and transformed haploids are separated by approximately 3
logs of intensity, whereas heterozygous diploids are intermediate. Gat-
ing permitted separation of the three classes: diploids and MATa and
MATa haploids. Separation of ascospores is more relevant to most
studies. Figure 2B shows that forward and side scatter analysis sepa-
rated a crude ascospore preparation into four populations, one of which
contained equal numbers of individual fluorescent and nonfluorescent
cells. Microscopic examination of these cells showed that they were
unaggregated ascospores. Figure 1C shows that this population could
be sorted into nonoverlapping, nonfluorescent and fluorescent subpo-
pulations, present in equal proportions.

We tested each population for viability and cross-contamination
(MATa/MATa and converse). Table 3 shows that spore viability
was high (60%–70%) even after the rigorous enzymatic and detergent
treatments used to eliminate ascus walls and vegetative cells, and
FACS. For theMATa (nonfluorescent) population, the contamination
with hygR cells was ,0.2%, which should be acceptable for most
purposes. Moreover, as the contaminating cells, which we presume
are the result of aggregation, are RFP+, they can be removed without
much effort after plating because the colonies are red. The MATa
(fluorescent) population was contaminated with approximately 0.2%
of fluorescent diploid cells (Table 3). These could be removed by
further enzymatic and detergent treatments.

These results lead to the following conclusions:

1. Large, pure populations of MATa and MATa spores can be
obtained by FACS. These have high viability making them suitable
for GWAS and BSA.

2. RFP is expressed at high enough levels to be detected visually in
colonies. Therefore, because RFP and hygR are completely linked to
MATa, haploid colonies can be separated into mating types by
fluorescence or drug resistance.

3. The ability to use both MATa and MATa populations lacking the
introduced marker provides a way to get around potential distor-
tions arising from linkage of genes of interest to MAT.

Although the deletion of MATa2 has been reported to have no
effect on growth, mating, or sporulation (Dranginis 1989), we assessed
the growth characteristics and mating competence of some of our
MATa2 transplacement strains. Figure 3 shows growth curves of
strains ML1-4 (Table 1). ML1, a diploid containing the RFP cassette,
and ML2, a related diploid lacking the cassette, had similar growth
profiles on either YPD or supplemented SD, although ML1 reproduc-
ibly grew a little slower. By contrast, ML3, a haploid containing the
cassette, grew much more slowly and to a lower final OD in YPD than
isogenic ML4 lacking the cassette. However, this difference was mod-
erated and reversed in SD. These differences could be a consequence

Figure 2 FACS. (A) Vegetative cells. Top: nontransformed MATa hap-
loids; middle: transformedMATa haploids; bottom: heterozygous diploid.
(B) Separation of ascospores. An ascospore suspension was subjected to
FACS. We determined that the population of cells centered at approxi-
mately 150 FSC-A and approximately 90 SSC-A (·1000) contained single
cells, whereas the other populations contained either aggregates or de-
bris. (C) Separation of fluorescent and nonfluorescent ascospores. The
target population from (B) was further separated into cells with low and
high fluorescence (characterized in Table 3).

n Table 3 Characteristics of sorted ascospores

Parameter Tested Sorted Ascospores

RFP2 RFP+

Physical counta 6.7 · 106 6.3 · 106

Viable countb 4.2 · 106 4.5 · 106

Viability, % 63 71
Contamination with HygR cells, %c 0.16 N/A
Contamination with diploid cells, %d N/A 0.21
a
Counted in a hemocytometer.

b
Serial dilutions were spread onto YPD plates and colonies were counted after
2 days at 30�.

c
RFP-negative cells (2 · 103 CFU/plate) were spread onto YPD plates contain-
ing 200 mg/mL of hygromycin-B. Colonies were counted after 3 days at 30�.

d
RFP-positive cells (20250 CFU/plate) were grown on YPD for 2 days at 30� and
replica-plated onto lawns of aMATa tester strain. After 2 days at 30�, the colonies
were scored for halo formation. Diploids were implicated by lack of halo formation.

n Table 2 Primers used in the study

Primer Sequence

BCP538 59-TGCAAACAACATCTCAACTCACTACTACCATTACTGTATT ACTCAAAGAAGAAGCTTCGTACGCTGCA
BCP539 59-TTTTTCTGTGTAAGTTGATAATTACTTCTATCGTTTTCT ATGCTGCGCATATCGATGAATTCGAGCTCG
BCP569 59-AGGCCTGTTAGAAAAGTGGAAAAACAAAT
BCP571 59-AGGCCTTATCAGTTAGACCAATGTAATGAA
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of the insertion of two strong promoters at MATa2 and suggest that
controlled measurements of growth rates (or other traits of interest) are
required for strains containing the RFP cassette. Of course this caution
applies to any strains carrying residual markers, selection cassettes,
chromosome abnormalities, etc., introduced to facilitate QTL studies,
because they might modify or bias traits of interest directly or indirectly.

We found that RFP strains mated as well as non-RFP strains in
routine strain constructions. However, in a mating assay where congenic
RFP+ and rfp2 strains were in competition for a common mating part-
ner the RFP+ strain mated somewhat less efficiently than the rfp2 strain.
This disadvantage decreased with increased mating time. Dranginis,
1989, reported that strains containing a complete deletion of MATa2
had normal mating characteristics, but this conclusion was not based on
the sensitive competitive assays employed here. Whatever the function of
MATa2 and the effect of the insertion, RFP strains in which it is dis-
rupted mate well under the standard, noncompetitive conditions used
for strain construction.

These results lead to the following conclusions:

1. Integration of the RFP cassette atMATa does not influence growth
rate on one medium but does on another. Growth rates of selective
markers should be assessed in QTL studies.

2. The RFP cassette does not interfere with standard genetic manip-
ulations, but may reduce mating efficiency in more sensitive assays.

Summary
Integration of a cassette containing RFP and hygR into theMATa locus
provides a simple, robust means for marking mating type so that a and
a ascospores can be separated and purified by FACS. The fact that the
cassette can be transformed into most haploid or diploid S. cerevisiae
strains without introduction of other mutations means that it should be
useful for studies of quantitative inheritance in laboratory, industrial,
and wild strains. Moreover, it can serve as a mating type indicator
without compromising other genotypic or phenotypic features.
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Figure 3 Growth characteristics of RFP+ and
RFP2 strains. Strains ML1-4 (Table 1) were grown
in a microtiter plate and theOD600 was recorded
every 0.5 hr. ODs were converted to natural
logs, and the zero-time values were subtracted
from each time point. YPD, yeast extract, pep-
tone, glucose medium; SD, synthetic glucose
medium supplemented for the requirements of
the strains used (Amberg et al. 2005).
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