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Abstract: COVID-19 posed a major challenge to the healthcare
system and resources worldwide. The popularization of vaccines
and the adoption of numerous prevention and control measures
enabled the gradual end of the COVID-19 pandemic. However,
successive occurrence of autoimmune diseases in patients with
COVID-19 cannot be overlooked. Long COVID has been the major
focus of research due to the long duration of different symptoms
and the variety of systems involved. Autoimmunity may play a
crucial role in the pathogenesis of long COVID. Here, we
reviewed several autoimmune disorders occurring after
COVID-19 infection and the pathogenesis of long COVID.
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Introduction

COVID-19 is an infectious disease caused by the SARS-CoV-2
coronavirus. The World Health Organization (WHO)
reported 760 million confirmed COVID-19 cases and 7
million deaths worldwide on July 12, 2023 [1]. Although
COVID-19 no longer constitutes a global health emergency,
it is still a threat to human health [2]. Several challenges
such as rebound positivity, virus variation, and long COVID,
still exist.

While the majority of patients with COVID-19
completely recover in the weeks following acute infection
with no sequelae, many patients may continue experi-
encing a range of symptoms after recovery, and some may
even acquire new symptoms. The phrase “long COVID” was
created by patients, and numerous authors have elabo-
rated on the circumstances of its onset [3-5]. Approxi-
mately 57% of participants in a retrospective cohort
analysis involving 81 million individuals, including 273,618
COVID-19 survivors, had at least one long COVID symptom
recorded within 180 days of the SARS-CoV-2 infection. The
authors suggested a higher likelihood of developing long
COVID in patients with severe COVID-19, including women
and young people [6]. The results of another retrospective
cohort study suggested that 14.8 % of outpatients had at
least one long COVID symptom 12-20 weeks following their
COVID-19 diagnosis [7]. In a nationwide, population cohort
study, 71.5 % and 70.7 % of individuals who had previously
been infected with COVID-19 reported one or more symp-
toms at 6 and 12 months, respectively [8]. Therefore, long
COVID is a huge challenge that deserves our attention.

The long-term complications of COVID-19, especially the
occurrence of autoimmune diseases, are becoming a major
focus of research as the global disease burden increases.
Several new-onset autoimmune illnesses, including systemic
lupus erythematosus, myasthenia gravis and Graves’ dis-
ease, have been documented with COVID-19 [9-11]. Several
cohort studies have highlighted that COVID-19 is linked to a
markedly high risk of acquiring multiple autoimmune
diseases. Zhou et al. analyzed the data of 21 patients with
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COVID-19 and identified the prevalence of autoimmune
markers, such as antinuclear, anti-60 kDa SSA/Ro, and anti-
52kDa SSA/Ro antibodies in 50 %, 25 %, and 20 % of patients,
respectively [12]. Qin et al. reported that the most severe cases
of COVID-19 had higher levels of inflammatory cytokines and
lower T-cell counts compared with less severe cases [13].
Furthermore, long COVID has been linked with the emer-
gence of autoimmunity [14-17]. Son et al. found increased
ANA/ENA cycling concentrations at 3 and 6 months after
recovery in 106 patients with COVID-19 compared with
healthy controls [14]. Wajnberg et al. reported that more
than 90 % of seroconverters produced detectable neutral-
izing antibody responses, and these titers remained rela-
tively stable for at least 5 months after infection in a dataset
of 30,082 patients [15]. These findings suggest that autoim-
munity is at least partly involved in the development of
long COVID.

Although numerous researchers are evaluating the
autoimmune aspect of long COVID after the diagnosis of
COVID-19, the corresponding pathophysiology remains
unclear. In this review, we outlined several typical new-
onset autoimmune diseases occurring after COVID-19. In
addition, we elaborated on the mechanism and biomarkers
of long COVID. We believe that further research on the link
between COVID-19 and its different complications will
increase our understanding of the disease and eventually
improve diagnosis, treatment, and patient outcomes.

Post-COVID-19 autoimmune
complications

Systemic lupus erythematosus (SLE)

Systemic lupus erythematosus is a multifactorial autoimmune
disease that can affect multiple organ systems, and lupus
nephritis is a typical manifestation of kidney involve-
ment [18]. Lupus nephritis can appear in the majority of
patients with SLE within 5 years of diagnosis. It is a type of
glomerulonephritis and one of the most severe organ pre-
sentations of SLE [19]. Several authors have suggested the
correlation between SLE and various pathogens, including
Epstein-Barr virus (EBV) human papilloma virus, and
parvovirus [20-22]. Therefore, COVID-19 may potentially
induce SLE. Nine cases (male: 4 and female: 5) of new-onset
SLE caused by COVID-19 have been documented to date
(Table 1) [9, 23-30]. Notably, four of these cases were
complicated by lupus nephritis and two of them were
complicated by antiphospholipid syndrome.
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Although a link between SLE and COVID-19 infection has
not been conclusively determined, some authors have out-
lined the mechanism of COVID-19-induced SLE. Extra-
follicular B-cell activation is associated with an increase in
the counts of antibody-secreting cells and the early synthesis
of high concentrations of SARS-CoV-2 specific neutralizing
antibodies, and this phenomenon has been observed in pa-
tients with severe COVID-19 [31]. Notably, extrafollicular
B-cell activation is also involved in SLE [32]. In addition,
patients with COVID-19 have a severe inflammatory cytokine
storm with high expression of pro-inflammatory cytokines,
such as IL-1, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-q,
IFN-y, granulocyte macrophage-colony stimulating factor
(GM-CSF), and inducible protein 10 [33, 34]. Similarly, cyto-
kines, such as IL-6, IL-17, IL-18, B-lymphocyte stimulating
factor, and TNF-q, are highly expressed in SLE. These cyto-
kines mediate the differentiation, maturation, and activa-
tion of several immune cells and promote immunologic
dysregulation, resulting in local inflammation and tissue
damage.

Interferons (Type L, II, and III IFNs) may also be associ-
ated with the development of autoimmune conditions after
COVID-19. Type I IFNs include IFN-a and IFN-, which play a
dual role against viral infection. On the one hand, IFN-a or
IFN-B can protect the host from viral infections by enhancing
the activity of antigen-presenting cells, promoting the anti-
viral function of adaptive immune cells, and blocking the
viral replication cycle. On the other hand, IFN-a or IFN-f can
induce the synthesis of immunosuppressive cytokines such
as IL-10, thereby decreasing T-cell activity [35]. Several pa-
tients with SLE and other systemic autoimmune disorders
show increased type I IFN expression [36]. Low type I IFN
concentrations have been linked to SARS-CoV-2 infec-
tion [37]. Bastard et al. reported that approximately 10 % of
patients with serious COVID-19 had high concentrations of
neutralizing autoantibodies against IFN-a or IFN-w or
both [38]. However, type I IFN responses significantly in-
crease in some patients with severe COVID-19. Lee et al.
suggested that the conflicting results regarding type I
interferon responses in patients with COVID-19 may be
attributed to different definitions of disease severity, sam-
pling time points, and/or readout types in different
studies [39]. Therefore, the association between COVID-19,
IFNs, and SLE needs to be further investigated.

Myasthenia gravis (MG)

Myasthenia gravis is an autoimmune illness that affects
neuromuscular connections, leading to muscle weakness,
ptosis, and diplopia. Pathogenic antibodies against the
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acetylcholine receptor (AChR) and muscle-specific kinase
(MuSK) are present in approximately 80 % and 1 %-10 % of
patients with MG, respectively [40]. MG has been reported
after infections with viruses, such as hepatitis B, hepatitis C,
HIV, herpes simplex virus, Zika virus, and EBV [41]. Recently,
some authors have suggested the possibility of new-onset
MG after COVID-19 infection, and 19 such cases have been
reported (Table 2). Anti-AChR antibodies were found in 16
cases and anti-MuSK antibodies were found in 2 cases. Sur-
prisingly, both anti-AChR and anti-MuSK antibodies were
not detected in one case. Approximately 47 % of the patients
were males, and 58 % were aged above 50 years. Patient
outcomes improved to varying degrees, except in two cases
where treatment outcomes were not described [10, 42-54].

SARS-CoV-2 infection may be involved in the patho-
genesis of MG. Galassi et al. suggested that the epitopes of
the virus are similar to the components of the neuromus-
cular junction (molecular mimicry). Therefore, antibodies
generated against the SARS-CoV-2 protein may react with
the AChR receptors [55]. Given their chemical distinctions,
cross-reactivation is a less likely cause of the emergence of
MuSK-associated MG than the failure of self-tolerance
mechanisms [56]. In addition, SARS-CoV-2 infection induces
cytokine storms, i.e., an increase in the expression of IL-6,
IL-23, IL-7, IL-21, and TGF-p. IL-7 regulates the survival and
growth of immature thymocytes, and IL-21 stimulates the
growth of T follicular helper cells. The overexpression of AChR
can increase the generation of anti-AChR antibodies [57-59].
Finally, medications, such as azithromycin and hydroxy-
chloroquine sulfate, frequently prescribed to patients with
COVID-19 may cause MG [60, 61].

Graves’ disease (GD)

Graves’ disease is an autoimmune disease caused by auto-
antibodies produced against the thyroid-stimulating hormone
receptor, leading to an overactive thyroid. GD can affect
people of all ages; however, it is more prevalent in women
than in men [62]. Thirteen cases of de novo GD have been
reported after COVID-19 infection, and the frequency is
greater in women (9/13; 69 %) than in men (Table 3). Treat-
ment of GD mainly comprises methimazole and beta-blockers.
The sera of most patients with GD contained detectable anti-
thyroid antibodies, including anti-thyrotrophin receptor, anti-
thyroglobulin, and thyroid peroxidase antibodies. All patients
favorably responded to the treatment and attained varied
degrees of clinical remission except for two patients who did
not disclose treatment outcomes [11, 63-74].

Numerous theories have been suggested to explain the
association between COVID-19 infection and GD. Molecular

DE GRUYTER

mimicry is considered one of the potential mechanisms.
SARS-CoV-2 virus binds to the angiotensin-converting
enzyme-2 (ACE2) receptor to enter the host cells, which is
highly expressed on thyroid cells [75]. Therefore, SARS-CoV-2
may enter thyroid cells through the ACE2 receptor to induce
thyroid injury. Thyroid dysfunction may also be triggered by
a cytokine storm linked to COVID-19. Lania et al. conducted
a single-center retrospective study to evaluate thyroid
function tests and IL-6 concentrations of 287 patients with
COVID-19 and found a strong correlation between high
concentrations of circulating IL-6 and thyrotoxicosis [76, 77].
IL-6 antagonists (e.g., tocilizumab, sarilumab, and siltux-
imab) were related to decreased mortality in patients with
severe COVID-19 in a prospective meta-analysis based on
27 randomized clinical trials conducted by the WHO [78].
However, further definitive studies are required to under-
stand whether COVID-19 is truly implicated in the emergence
of GD.

Autoimmune hemolytic anemia (AIHA)

Autoimmune hemolytic anemia is a complex autoimmune
disorder characterized by an increase in the autoimmune
destruction of red blood cells (RBCs), typically caused by
autoantibodies against erythrocyte surface antigens. The
autoantibodies may be warm, cold, or mixed type [79]. We
collected 37 cases of newly diagnosed AIHA after COVID-19
infection in adults (Supplementary Table 1). Warm ATHA was
diagnosed in 19 out of 37 cases, and cold agglutinin syndrome
was diagnosed in 17 cases. Interestingly, Evans syndrome
was diagnosed in one case. Of the 37 patients, 12 were posi-
tive for IgG and complement, nine were only positive for
complement, eight were only positive for IgG, and one was
only positive for IgA. The relevant data was not available for
seven patients. The mainstay treatment for most patients
includes steroids and blood transfusion, and some patients
may be treated with rituximab [80-105].

Infections with cytomegalovirus, EBV, and hepatitis A
virus can lead to AIHA [106, 107]. Although the precise link
between AIHA and COVID-19 is not yet understood, molec-
ular simulations may play a significant role. The erythrocyte
membrane protein ANK-1 is an essential component of
erythrocyte development and function. ANK-1 and the
SARS-CoV-2 surface glycoprotein (Spike protein) share a
100 % similar potentially immunogenic epitope (amino acids
LLLQY). Therefore, cross-reaction between RBCs and an
active immune system can lower hemoglobin levels [108].
Liu et al. discovered the presence of heme ligand binding
sites in the SARS coronavirus ORF3a protein and confirmed
that ORF3a can coordinate to attack heme on the hemoglobin
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Table 2: Reported cases of de novo MG after COVID-19 infection.

— 37N

Authors Age Sex PMH Symptoms Serology Diagnose Treatment Outcome
(years) profile
Restivo et al. 68 M N Fever; diplopia; Anti-AChR  Generalized Pyridostigmine; steroids UK
muscular fatigability Abs + MG
64 M N Fever; diplopia; Anti-AChR  Generalized IVIG R
dysphagia; muscular Abs + MG
fatigability
71 M N Fever; cough; diplopia  Anti-AChR Generalized ~ Plasmapheresis; R
bilateral ocular ptosis;  Abs + MG hydroxychloroquine
hypophonia; dysphagia;
respiratory failure
Huber et al. 21 F  Hashimoto’s thyroiditis; Double vision; right- Anti-AChR  Ocular MG IVIG; pyridostigmine R
pernicious anemia; sided ptosis Abs +
Addison’s disease
Perez et al. 48 M  Schizophrenia; inverse Diplopia Anti-AChR  Ocular MG Hydroxychloroquine; R
Psoriasis Abs + azithromycin
Assini et al. 77 M N Chewing difficulty; Anti-MuSK Oculobulbar  Azathioprine R
dysphonia; diplopia; Abs + MG
eyelid ptosis
Muhammed 24 F N Diplopia; slurred Anti-MuSK Generalized IVIG; steroids R
et al. speech; dysphagia; Abs + MG pyridostigmine;
global limb weakness
Muralidhar 65 M  Diabetes;HTN Dysphagia Anti-AChR  Generalized  Steroids; pyridostigmine; R
et al. Abs + MG azathioprine; ventilator
support
Sriwastava 65 F  Meningioma; pituitary Diarrhea; myalgia; Anti-AChR  Ocular MG Pyridostigmine; steroids R
etal. adenoma; pulmonary extreme fatigue; left Abs +
carcinoma; left renal cell eyelid ptosis
carcinoma status post
partial nephrectomy
Karimi et al. 61T F N Dysphagia; nasal Anti-AChR  Generalized Plasma exchange; R
speech; ocular ptosis;  Abs + MG pyridostigmine; steroids
diplopia; dyspnea prox-
imal muscle weakness;
57 M CHFandICD Fever; cough; muscle Anti-AChR  Generalized Pyridostigmine; steroids R
fatigue; diplopia; ptosis; Abs + MG
dysphagia
383 F N Fever; cough; myalgia; Anti-AChR Generalized Pyridostigmine; steroids R
fatigue, Abs + MG
Bhandarwar 61 M Diabetes mellitus;bronchial ~ Breathlessness; Anti-AChR  Generalized  Steroids; thymoma with R
et al. asthma dysphagia; generalized Abs + MG thymectomy
weakness
Jogi et al. 65 M  HTN; hypercholesterolemia; Fever; cough; shortness Anti-AChR Generalized  IVIG; steroids; pyridostig- R
cataract of breath; dysarthria; Abs + MG mine; azathioprine
dysphagia; difficulty
pronouncing words;
bilateral ptosis;
right-sided oculomotor
paralysis; weakness of
neck muscles
Taheri et al. 35 F N Dyspnea; myalgia; sore  Anti-AChR  Generalized  Steroids; remdesivir; R
throat; weakness; Abs + MG pyridostigmine
nausea; cough; severe
weakness in her upper
and lower limbs; blurred
vision; droopy eyelids
Tereshko 19 F  Hashimoto’s thyroiditis; Diplopia; dysarthria; Anti-AChR  Oculobulbar  IVIG; pyridostigmine; R
etal. thalassemia; anemia; dysphagia right ptosis;  Abs + and then steroids; thymectomy
autoimmune gastritis generalized weakness generalized

MG



372 —— Guo et al.: Understanding autoimmune response after SARS-CoV-2 infection DE GRUYTER

Table 2: (continued)

Authors Age Sex PMH Symptoms Serology Diagnose Treatment Outcome
(years) profile
Rodrigues 37 F N Dysphagia; dysphonia; N MGFA class Rituximab; steroids; R
etal. post-prandial cough; 111B pyridostigmine.
diplopia bilateral ptosis;
mild dyspnea
90 UK Atrial fibrillation; HTN UK Anti-AChR  MGFA class VIG UK
Abs + 1B
Essajee et al. 7 F Multisystem inflammatory ~ Fatigable bilateral Anti-AChR  Ocular MG Pyridostigmine; steroids; R
syndrome in children (MIS-C) orbital ptosis; diplopia ~ Abs + methotrexate

MG, myasthenia gravis; F, female; M, male; HTN, hypertension; CHF, congestive heart failure; ICD, implantable cardioverter defibrillator; IVIG, intravenous
immunoglobulin; AChR, acetylcholine receptor; MGFA, myasthenia gravis foundation of America; N, none; UK, unknown; R, response.

Table 3: Reported cases of de novo GD after COVID-19 infection.

Authors Age Sex PMH Symptoms Serology Diagnose Treatment Outcome
(years) profile
Harris et al. 21 F  Asthma; GERD; Tachycardia; palpitations; anxi- ~ TRAb GD Methimazole; beta R
prediabetes; ety; shortness of breath. blocker
class-I obesity
Lanzolla et al. 33 F N Tachycardia; weight loss; heat ~ TRAb; TgAb ~ GD Methimazole R
intolerance; nervousness.
Mateu et al. 53 F N Dyspnea; fever; asthenia; TRAb; TgAb;  GD Methimazole; beta R
tremor;palpitations TPOAb blocker
Feghali et al. 33 F N Palpitations; fatigue shortness of UK GD Methimazole; beta R
breath blocker
Edwards 27 M N Fever; confusion; tremulous; TRAb; TgAb;  GD Methimazole; beta R
etal. aggressive behavior; tachycardic blocker; SSKI
Rockett et al. 1% M N Shortness of breath; anxiety; TRAb; TgAb;  GD Methimazole; beta R
chest pain; ongoing tremor; TPOAb blocker
thyroid was enlarged and tender
Nham et al. 27 F N Fever; tachycardia; pricking chest TPOAb GD with Methimazole; beta UK
pain subacute blocker
thyroiditis
Franca et al. 30 F Asthma; renal Tachycardia; fatigue; palpitations; TRAb GD Methimazole; beta R
lithiasis; dizziness; tremors, excessive blocker
migraine with sweating; intolerance to physical
aura exercise
Boyle et al. 65 F N Exertional dyspnea; palpitations TRAb; TPOAb  GD Methimazole; beta R
blocker
Bayar et al. 38 F Leukopenia Persisting asthenia; tremor; TRAb GD Corticosteroid; UK
palpitations propranolol
Ghareebian 48 M N Fatigue; shortness of breath; TSI GD Methimazole; beta R
et al. generalized muscle aches; cough blocker
Urbanovych 22 F N Palpitation; tremor; muscle; TRAb GD Methimazole; beta R
etal. weakness;anxiety; sleep blocker;
disturbance glucocorticosteroids
Sousa et al. 28 M N Fatigue; shortness of breath; TRAb; TgAb;  GD Methimazole; beta R
palpitations; weight loss TPOAb blocker

GD, Grave’s disease; F, female; M, male; GERD, gastroesophageal reflux disease; TRAb, thyrotrophin receptor antibody; TgAb, thyroglobulin antibody; TPOAb,
thyroidperoxidase antibodies; TSI, thyroid stimulating immunoglobulins; SSKI, saturated solution potassium iodide; N, none; UK, unknown; R, response.

beta chain. The virus can attack both oxygenated and is more susceptible. In addition, viral structural proteins S
deoxygenated hemoglobin; however, the deoxygenated one and E have porphyrin-producing and binding domains that
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can bind porphyrins to cause infection [109]. Lam et al. noted
that SARS-CoV-2 infection activates complement in vivo, and
RBCs from patients with COVID-19 contain complement
activation products and viral antigens [110].

Other autoimmune complications

Multiple sclerosis (MS) is a chronic inflammatory, demye-
linating and neurodegenerative disease of the central ner-
vous system, characterized by the brain and spinal cord
demyelinating lesions [111]. Numerous neurological symp-
toms, such as the MG, have been documented in patients
with COVID-19. Nevertheless, COVID-19-induced demyelin-
ating illnesses have not been characterized. Some authors
have elaborated on MS caused by COVID-19, however the
underlying mechanism is not well understood [112-116].
Demyelination-related immunopathologies include autoim-
mune, direct immune cytotoxicity, and indirect dam-
age [117]. The coronavirus family is neurotropic, entering the
central nervous system mostly through the blood-brain
barrier (BBB) and the neuronal pathways [118]. Neurotropic
virus-induced demyelination appears to be mediated by
adaptive immunity rather than direct viral infection [119].
COVID-19 has also been linked to rheumatoid arthritis,
vasculitis, type 1 diabetes, and Guillain—Barre
syndrome [120-123]. Although the causative association be-
tween COVID-19 and autoimmune conditions is unclear,
numerous theories attempt to explain the influence of
SARS-CoV-2 infection on the onset of autoimmune responses.
The S1 domain of SARS-CoV-2 can bind to the trans-
membrane ACE2 receptor, mediating the direct entry of viruses
into cells. SARS-CoV-2 and human proteins have similar peptide
sequences, and antibodies against SARS-CoV-2 can cross-react
with human proteins through molecular simulation [124, 125].
Bystander activation, epitope diffusion, and polyclonal activa-
tion of B-cells may also be involved in the occurrence of auto-
immunity after SARS-CoV-2 infection [126-128]. Notably, the
occurrence of new autoimmune illnesses after COVID-19
vaccination has also been linked to these pathways [129].
SARS-CoV-2 can downregulate the ACE2 expression,
resulting in the imbalance of the renin—-angiotensin—aldo-
sterone system. In addition, SARS-CoV-2 infection increases
cytokine release and activates inflammasome and com-
plement, leading to endothelial dysfunction, hypercoagu-
lable state, and thrombosis [130, 131]. SARS-CoV-2 can lead
to immune cell imbalance by inducing the apoptosis and
depletion of T-cells, which, in turn, may decrease the
immunity of patients and increase the susceptibility to
microbial infections. Neutrophils are then activated and
recruited to form a neutrophil network, thereby promoting
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the development of inflammation [132]. Overall, various
factors lead to the occurrence of post-COVID-19 autoim-
mune complications.

Long COVID
Definition and manifestations of long COVID

“Long COVID” is the term used to describe the continuation
or development of new symptoms 3 months after the initial
SARS-CoV-2 infection, which may last for at least 2 more
months [133]. General symptoms (such as fatigue or fever),
respiratory and heart symptoms (such as breathlessness, a
persistent cough, or chest pain), neurologic symptoms (such
as trouble speaking, cognitive dysfunction, and a loss of
smell or taste), digestive symptoms (such as diarrhea and
stomach pain), and other symptoms (such as muscle aches,
rashes, or changes in menstrual cycles) are typically linked
to long COVID. Approximately 10 %-20% of individuals
infected with SARS-CoV-2 may experience long-term effects
that can be diagnosed as long COVID. Patients who have
suffered from more severe COVID-19 or multisystem in-
flammatory syndrome are more likely to have long COVID.
Moreover, it is more common in people who did not receive
the COVID-19 vaccine [134].

Cellular and molecular biomarkers of long
coviD

Long COVID is often difficult to diagnose because it affects
multiple systems and has a wide array of symptoms. There-
fore, it is critical to find biomarkers for long COVID to improve
the diagnosis. Several cohort studies have reported long
COVID-related biomarkers, including immune cells, immu-
noglobulins, cytokines, and other plasma proteins (such as
chemokines). The most common biomarkers are C-reactive
protein, IL-6, TNF-a, IFN-A, D-dimer, lactate dehydrogenase,
leukocytes, von Willebrand factor, o2-antiplasmin, and
Tregs [135-137]. Erythropoietin concentrations are increased
in patients with long COVID, which may be related to tissue
hypoxia in these individuals. Moreover, high erythropoietin
concentrations may be necessary for the generation of red
blood cells [135]. Su et al. found a significant correlation
between symptoms of preexisting type 2 diabetes and
COVID-19 in 309 patients with COVID-19 compared with
healthy controls. In addition, individuals who had higher RBC
counts at diagnosis and those who were female or had chronic
obstructive pulmonary disease or both were more likely to
experience various symptoms. The latent period EBV and the
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reactivation of SARS-CoV-2 RNAemia can predict the occur-
rence of long COVID. Autoantibodies are also biomarkers
for predicting long COVID, and high concentrations of anti-
SARS-CoV-2 nucleocapsid protein IgG are associated with
neurologic symptoms. IFN-a2 autoantibodies are associated
with respiratory symptoms, and increased levels of multiple
autoantibodies are associated with gastrointestinal symptoms
and sputum production [138]. The occurrence of fibrotic pul-
monary sequelae may be predicted by evaluating early peri-
osteal protein concentrations [139].

Pathophysiology and mechanism of long
COVID (Figure 1)

Viral persistence and reactivation of latent viruses

Symptoms in certain individuals with long COVID may be
linked to the persistence of the SARS-CoV-2 reservoir after
acute infection. Cheung et al. revealed that SARS-CoV-2 viral
antigens were present in the gastrointestinal tract and liver of
five patients with COVID-19 up to 6 months after recovery [140].
Notably, the gastrointestinal system is the most extensively
studied potential reservoir of residual virus [141-143].
Natarajan et al. documented that the shedding of fecal
SARS-CoV-2 RNA in any patient with COVID-19 is the
longest [144]. SARS-CoV-2 antigen persists in the intestinal
mucosa for months following acute COVID-19 in the majority
of individuals with inflammatory bowel disease regardless

Figure 1: Multiple pathophysiologic mechanisms of long COVID.
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of immunosuppressive medication or intestinal inflamma-
tion [145]. SARS-CoV-2 can persist in the brain and penis for
extended durations after the original human infection [146, 147].
These extrapulmonary organs can be considered SARS-CoV-2
reservoirs and a possible source of viral shedding [148]. Circu-
lation spikes were observed in patients with long COVID up to
12 months after diagnosis in a retrospective pilot investigation
using plasma samples of 63 adults with acute or chronic
COVID-19 [149]. Desimmie et al. suggested that the likelihood of
virus persistence, reactivation, or reinfection is high in immu-
nocompromised patients [150].

The symptoms of long COVID are related to the reac-
tivation of other viruses, such as EBV, HIV, HHV6, and
cytomegalovirus [151-158]. Peluso et al. found that recent EBV
reactivation was most closely related to fatigue (OR=2.12);
however, it was less related to other symptoms of long COVID.
Participants with underlying HIV were most strongly associ-
ated with neurocognitive symptoms (OR=2.5) followed by
gastrointestinal symptoms (OR=2.33) [154]. Zubchenko et al.
evaluated 88 patients and found that 68 (72.3 %) of them had
EBV and HHV6 reactivation. EBV reactivation alone was
present in 42.6 % of cases, HHV-6 reactivation alone was
presentin 25 % of cases, and both EBV and HHV-6 reactivation
occurred in 32.4% of cases [155]. Gold et al. found that
approximately 30% of patients reported long COVID-like
symptoms after acute disease in a retrospective study of 185
individuals. EBV reactivation was detected in 66.7 % of long
COVID individuals and 10% of control subjects [156]. The
discovery of virus reactivation highlights the importance of
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determining whether the symptoms of long COVID are due to
the SARS-CoV-2 virus directly or the result of the reactivation
of other viruses in future studies.

Autoimmunity

Many studies on autoimmunity following COVID-19 infection
have focused on the development of different autoantibodies
(Figure 2). Autoantibodies against type I IFNs are significant
contributors to the development of COVID-19, particularly in
severe cases. Bastard et al. found that the prevalence of
circulating type I IFN autoantibodies increases with aging
and at least 10 % of patients with serious COVID-19 have
neutralizing autoantibodies against type I IFNs, and the
percentage of male patients was higher [159]. Son et al.
discovered that COVID-19 survivors showed higher concen-
trations of circulating ANAS/ENAs 3 months after recovery
compared with healthy or non-infected individuals. The
occurrence of anti-U1-SnRNP and anti-SS-B/La, the two most
prevalent ANAS/ENAs, predicted persistent dyspnea and
fatigue in COVID-19 survivors at 12 months. Approximately
one-third of the COVID-19 survivors in convalescence had at
least one autoreactive IgG, whereas most of the healthy
controls had no IgG autoantibodies [14]. The functionally
active autoantibodies (:AABs) targeting G-protein coupled
receptors (GPCR-AABs) were also found in patients with
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severe COVID-19 infection. Wallukat et al. studied 31 patients
who recovered from the acute phase of COVID-19 and found
that all patients had 2-7 different GPCR-tAABs. Two addi-
tional {AABs were also present in 29 (90 %) patients that
target the RAS receptors, angiotensin II AT1 receptor and
angiotensin 1-7 MAS receptor [160]. GPCR-;AABs may be
related to autonomic dysfunction, central nervous system-
related symptoms, heart failure, and impaired retinal
microcirculation [161-164]. In addition, anti-CCP, anti-TG,
and anti-DSG2 antibodies have also been found in patients
with long COVID [165, 166]. These findings demonstrate that
various AABs are produced after COVID-19, and some of
them may be associated with long COVID.

Inflammatory activation and immune dysregulation

Cytokine storm refers to increased circulating concentra-
tions of cytokines in response to various infections and
immune-mediated conditions [167]. Acosta-Ampudia et al.
noted that patients with long COVID had higher concentra-
tions of pro-inflammatory cytokines (e.g., IL-6, IL1-B, IL-13,
IL17A, IFN-a, TNF-a, and G-CSF). The majority of cellular
immune components in these patients did not return to their
pre-infection baseline even after 7-9 months of infection.
Some patients with long COVID have higher concentrations
of inflammatory indicators, such as C-reactive protein,
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Figure 2: Autoimmune theory of long COVID and the production of autoantibodies (AABs). SARS-CoV-2 may induce the production of AABs, such as
anti-GPCR, anti-IFN-1, anti-ACE2, and ANA AABs, due to the similarities between SARS-CoV-2 and human antigens (molecular mimicry). The excessive
production of AABs causes and worsens autoimmune disorders. The development of long COVID may be influenced by the persistence of AABs.
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D-dimer, IL-6, and IFNs [168]. Additionally, IFN-B, PTX3,
IFN-y, IFN-A2/3, and IL-6 were strongly correlated with long
COVID [169]. Rodriguez et al. noted higher levels of IL-8 and
circulating nucleosomes in patients with severe long COVID
compared with convalescent controls, indicating chronic
neutrophil activation [170]. SARS-CoV-2 may cause aberrant
pathogenic Th1 cells to release pro-inflammatory cytokines,
such as GM-CSF and IL-6. Additional activation of CD14"
CD16" inflammatory monocytes by GM-CSF results in an
increase in the production of IL-6, TNF-a, and other cyto-
kines. Furthermore, membrane-bound immune receptors,
poor IFN-y induction, and neutrophil extracellular traps
may be involved in the release of cytokines [171].

Sin DD proposed that SARS-CoV-2 infection destroys the
immune system of the host, and the immune system of
patients with long COVID remains persistently over-
activated even after the virus has been completely cleared
from the host, resulting in immune system dysregula-
tion [172]. Espin et al. reviewed 239 candidate biomarkers
from 23 cohort studies and found a higher frequency of
plasmacytoid dendritic cells expressing activation markers
CD86 and CD38, inflammatory monocytes (CD14* CD16"), NK
cells expressing memory (CD57) and activation (NKG2C)
markers, and Tregs (CD4" CD25" CD127'°") [173]. The pres-
ence of these markers indicates a sustained and uncon-
trolled immune response.

Endothelial activation and clotting abnormalities

Persistent endotheliopathy is a common observation in
patients with long COVID. Fogarty et al. observed that plasma
FVIIL:C levels and thrombin production were significantly
higher, the delay time was significantly shortened, endoge-
nous thrombin potential and peak thrombin were signifi-
cantly increased, and the time to peak was shorter in 50
COVID-19 convalescent patients compared with healthy con-
trols. Furthermore, these patients had significantly higher
amounts of soluble thrombomodulin, von Willebrand factor
antigen, and VWF propeptide compared with healthy
controls [174].

High D-dimer concentrations in convalescent patients
may indicate active thrombosis and fibrinolytic activity in
the blood vessels [175]. Fan et al. conducted a prospective
observational trial and found that patients with COVID-19
had significantly greater levels of inflammation, endotheliop-
athy, and hypercoagulable state compared with controls [176].
Therefore, endothelial activation and hypercoagulability in
patients with long COVID may be associated with thrombo-
embolism complications; therefore, antithrombotic therapy
should be performed at the earliest after diagnosis [177].
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Mast cell activation (MCA)

The symptoms of long COVID have also been linked to MCA.
Wechsler et al. reported that serum concentrations of
CXCL1, IL-6, and active trypsin were significantly higher in
patients with long COVID than in controls, suggesting sys-
temic MCA. Further, active trypsin levels were associated
with CXCL1 and IL-6 concentrations [178]. Several authors
have reported the expression of trypsin in mast cells, which
also contain the serine protease ACE2, the primary receptor
for SARS-CoV-2 [179]. Pro-inflammatory factors, such as
histamine, IL-18, CCL2, GM-CSF, and TNF-qa, can also be
released after the activation of mast cells, and these mole-
cules have been linked to COVID-19 symptoms [180].

Mast cell activation syndrome (MCAS) is a heterogeneous
disorder characterized by severe symptoms resulting from
the release of mast cell mediators. MCAS is of three types,
namely primary, secondary, and idiopathic MCAS [181]. The
symptoms and severity of MCAS are substantially identical to
those of long COVID, and the prevalence of MCAS is compa-
rable to that of severe COVID-19 in populations infected with
SARS-CoV-2 [182, 183]. Since COVID-19 can induce mast cell
dysfunction, the abnormal mast cells are prone to produce
inappropriate and excessive responses, which may drive the
occurrence of long COVID or aggravate the existing MCAS in
patients [181, 183].

Other potential mechanisms

Recently, some authors have reported the potential role
of microbiota dysbiosis, especially gut dysbiosis, in long
COVID [184-187]. Liu et al. evaluated 106 patients with
COVID-19 and 68 non-COVID-19 individuals for 6 months and
observed that 76 % of patients had long COVID symptoms,
and the most common symptoms were fatigue, hair loss, and
poor memory. Patients with long COVID symptoms had
different gut microbiomes than those without these symp-
toms. Moreover, gut microbiomes of patients without long
COVID symptoms were similar to those of non-COVID-19
controls. The changes in the composition of the gut micro-
biota were closely related to the persistence of symptoms in
patients with long COVID. For example, persistent respira-
tory symptoms were linked to opportunistic gut pathogens,
whereas neuropsychiatric symptoms and exhaustion were
linked to nosocomial gut pathogens [186]. Gut microbiota
produces signals required to activate the adaptive immune
system against microbial infections. On the contrary, the
adaptive immune system can selectively modulate the innate
system to maintain gut microbiota homeostasis [185, 188, 189].
Notably, the diversity of gut microbiota is a predictive indi-
cator for severe COVID-19 [185, 190].
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Amyloid fibrin microclots have been linked to the
progression of long COVID. High levels of amyloid fibrin
microclots have been found in platelet-poor plasma of
patients with long COVID. These microclots can block cap-
illaries to prevent RBCs from passing through, thereby
limiting oxygen exchange and causing tissue hypoxia. In
addition, these clots may potentially present new antigens,
trigger the generation of autoantibodies, and exacerbate
symptoms [191-193]. High concentrations of various inflam-
matory molecules, fibrinogen chains, serum amyloid A, and
a(2)-antiplasmin and obvious platelet hyperactivation suggest
that patients of long COVID may have a failed fibrinolysis
phenomenon [192, 193].

Neuropsychiatric disorders are the most commonly
reported symptoms in a large majority of patients with
COVID-19 [194]. Xu et al. found that the hazard ratio of any
neurologic sequelae in the COVID-19 group was 1.42 and the
disease burden per 1,000 people was 70.69 at 1 year, indi-
cating a high risk and burden of neurologic diseases in pa-
tients with COVID-19 [195]. Oaklander et al. analyzed 17
patients with long COVID with no history or risk of neu-
ropathy (as defined by the WHO) and showed that small
fibrous neuropathy was the most common [196]. CCL11
concentrations increased in patients who experienced
ongoing cognitive impairments after COVID-19 [197]. The
neurologic manifestations of long COVID may be driven by
inflammation, endothelial cell damage, generalized vascular
dysfunction, complement activation, and neurodegenera-
tive changes [198-201].

Overall, numerous pathophysiologic factors contribute
to the occurrence of long COVID. In addition to the above-
mentioned pathways, melatonin deficiency, bacteriophage-
like actions, multiple organ damage, and tissue hypoxia may
also be involved in the occurrence of long COVID [202, 203].

Can COVID-19 vaccines cause long COVID?

Long COVID may be a cluster of autoimmune diseases
induced by the SARS-CoV-2 spike protein [204]. Antibodies
produced against the SARS-CoV-2 spike protein after vacci-
nation may cross-react with the host antigens (molecular
mimicry), leading to autoimmune diseases [129]. Therefore,
some scholars suggest that vaccines containing spike pro-
teins may play the same role in inducing long COVID. How-
ever, the National Institute for Clinical Excellence (NICE) of
the UK or WHO standards defines long COVID based on a
previously confirmed diagnosis of COVID-19. We believe that
even if similar symptoms occur after vaccination, it cannot be
called long COVID; however, the phenomenon can be called
long-COVID-like symptoms [205]. Moreover, vaccination may
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help ameliorate the symptoms of long COVID [206, 207].
The association between vaccination and long COVID is
unclear, and elimination of the residual viral reservoir
by increasing antibody titers may be one of the possible
reasons. In conclusion, vaccines may play a dual role in
patients with long COVID. On one hand, vaccines can read-
just the immune capacity of these patients and ameliorate
their symptoms. On the other hand, vaccines may cause
excessive immune response and aggravate symptoms. In
addition, the COVID-19 vaccine can also elicitlong COVID-like
symptoms in people who have not been diagnosed with
COVID-19. The interval between the beginning of symptoms
and infection or vaccination appears to be an important
differentiating factor [205]. Overall, the protective effect of
vaccines on the human body is much higher than their side
effects, and the vaccination of COVID-19 is crucial in the
future.

Conclusions

The COVID-19 pandemic was a huge global challenge.
Although the fear of COVID-19 has gradually decreased
among the population owing to the sustained efforts of all
countries and the universality of the SARS-CoV-2 infection,
various complications after the COVID-19 infection,
including the appearance of the long COVID, have once
again raised serious concerns. It is still controversial
whether long COVID can be regarded as an autoimmune
disease. Given that the autoimmune mechanism is crucial
to the occurrence and progression of long COVID, we
describe long COVID as an autoimmune complication that
occurs after initial recovery from COVID-19.

The autoimmune diseases after COVID-19, including
long COVID, will continue to develop for many years.
Therefore, it is critical to comprehend the likelihood of
acquiring post-COVID-19 complications, such as autoim-
mune diseases, and their possible mechanisms. Although we
do not have a comprehensive record due to the wide variety
of autoimmune diseases caused by COVID-19, our review
provides comprehensive information on the link between
COVID-19 and autoimmune diseases that develop after initial
recovery from the disease. We aim to increase awareness
among patients and healthcare professionals for the early
diagnosis and treatment of post-COVID-19 autoimmune
complications to lower morbidity and mortality.
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