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Abstract

Emerging evidence has suggested that hydrogen sulfide (H2S) may alleviate the cellular dam-

age associated with cerebral ischemia/reperfusion (I/R) injury. In this study, we assessed

using 1H-magnetic resonance imaging/magnetic resonance spectroscopy (1H-MRI/MRS) and

histologic analysis whether H2S administration prior to reperfusion has neuroprotective effects.

We also evaluated for differences in the effects of H2S treatment at 2 time points. 1H-MRI/

MRS data were obtained at baseline, and at 3, 9, and 24 h after ischemia from 4 groups:

sham, control (I/R injury), sodium hydrosulfide (NaHS)-30 and NaHS-1 (NaHS delivery at 30

and 1 min before reperfusion, respectively). The total infarct volume and the midline shift at 24

h post-ischemia were lowest in the NaHS-1, followed by the NaHS-30 and control groups.

Peri-infarct volume was significantly lower in the NaHS-1 compared to NaHS-30 and control

animals. The relative apparent diffusion coefficient (ADC) in the peri-infarct region showed that

the NaHS-1 group had significantly lower values compared to the NaHS-30 and control ani-

mals and that NaHS-1 rats showed significantly higher relative T2 values in the peri-infarct

region compared to the controls. The relative ADC value, relative T2 value, levels of N-acetyl-

L-aspartate (NAA), and the NAA, glutamate, and taurine combination score (NGT) in the ische-

mic core region at 24 h post-ischemia did not differ significantly between the 2 NaHS groups

and the control except that the NAA and NGT values were higher in the peri-infarct region of

the NaHS-1 animals at 9 h post-ischemia. In the ischemic core and peri-infarct regions, the

apoptosis rate was lowest in the NaHS-1 group, followed by the NaHS-30 and control groups.

Our results suggest that H2S treatment has neuroprotective effects on the peri-infarct region

during the evolution of I/R injury. Furthermore, our findings indicate that the administration of

H2S immediately prior to reperfusion produces the highest neuroprotective effects.
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Introduction

Blood flow reperfusion is considered to be the most important intervention to preserve neuro-

logic function when managing patients with acute cerebral stroke. The infusion of thromboly-

tics such as recombinant tissue-type plasminogen activator (rt-PA) either intravenously (i.v.)

or through endovascular catheterization are standard options to manage reperfusion [1, 2].

However, the reperfusion of ischemic tissue is often associated with tissue damage due to vari-

ous factors such as inflammatory responses, oxidative stress, and excitotoxicity generated by

excessive glutamate release [3].Therefore, many research groups have attempted to develop

novel methods for reducing cerebral ischemic/reperfusion (I/R) injury [3–5].

Hydrogen sulfide (H2S) has for many decades been primarily considered a pungent toxic

gas and an environmental hazard [6]. A number of studies on H2S have reported that it has a

broad range of physiological and pathophysiological functions, including the regulation of

neuronal activity, induction of angiogenesis, and vascular relaxation [7–10]. Over the previous

decade, there have also been several reports that H2S exerts neuroprotective effects in animal

models of cerebral I/R injury, by inhibiting oxidative stress, inflammation, and apoptosis [11–

15]. However, only a limited number of studies have involved the administration of H2S prior

to reperfusion. Furthermore, there have been no reports on the optimal administration time of

H2S in a cerebral stroke model which is a major point of consideration.

In our current study, we aimed to evaluate the neuroprotective effects of H2S when admin-

istered prior to reperfusion in a rat cerebral acute stroke model, and also investigate whether

the timing of H2S treatment influences its neuroprotective effects via a systematic analysis of

temporal evolution data generated using vivo 1H-MRI/MRS and histology.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the guidelines of the National Institutes of

Health. All of the procedures were performed following approval by the Institutional Animal

Care and Use Committee of the Asan Medical Center (IACUC Number: 2015-14-157). All sur-

gery was performed under isoflurane anesthesia. All the animals were carefully monitored by

the trained individuals who can assess the animal pain behavior. Animal euthanasia was

planned if the animal showed continuous pain related behavior; however, no animal showed

the unrelieved severe pain related behavior during the experimental period.

Transient middle cerebral artery occlusion (tMCAO) model

We used male Sprague-Dawley rats (eight weeks old, n = 48; weight = 280–310 g; Orient Bio,

Pyeongtaek, Republic of Korea). All animals were individually housed in standard plastic cages

and maintained on a 12-h light-dark cycle (lights on at 08:00 A.M.) at an ambient temperature

of 24.0–25.0˚C, with free access to food and water.

The transient middle cerebral ischemic occlusion (tMCAO) model was used to generate

I/R injury in rats. Rats were initially anaesthetised with 5% isoflurane and maintained with

2–3% isoflurane during surgery. Middle cerebral artery (MCA) occlusion, using a previously

described method of intraluminal vascular occlusion [16], was performed for 60 min to induce

ischemia. The MCA occlusion was then relieved to induce reperfusion. In particular, an 18–

20-mm 4–0 suture thread (Ethylon surgical monofilament polyamide; Ethicon, Livingston,

UK) with a fire-polished tip (diameter, 0.38–0.40 mm) was advanced from the external carotid

artery into the lumen of the internal carotid artery until it blocked the origin of the MCA.

After 60 min, the inserted intravascular thread was removed gently.
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To identify animals wherein the tMCAO model was successfully established, the regional

cerebral blood flow (CBF) was monitored before and after MCA occlusion by using a laser

Doppler flow (LDF) monitoring device (VMS-LDF, Moor Instruments, Devon, UK). For the

placement of the LDF probe, a burr hole (diameter, 2 mm) was drilled 2 mm posterior and 6

mm lateral to the bregma, with care being taken not to injure the underlying dura mater [17].

Rats that did not show a significant CBF reduction after MCA occlusion (at least 70% decrease

from the baseline value) were excluded from the experimental group [18]. Sham-operated rats

were manipulated in the same way without MCA occlusion.

Experimental groups

Sodium hydrosulfide (NaHS, Sigma-Aldrich, St. Louis, MO) dissolved in saline (25 μmol/kg of

NaHS dissolved in 2.5 ml of saline) was used as an H2S donor. Normal saline (2.5 ml) was used

for the vehicle. The drug and vehicle were administrated via intravenous injection.

Rats were randomly divided into 4 groups (n = 8 per group): (1) sham-operated group with

no I/R modelling or injection of the vehicle (n = 8), (2) control group with I/R modelling and

injection of the vehicle (n = 8), (3) NaHS-30 group with I/R modelling and injection of the

drug at 30 min before reperfusion (n = 8), and (4) NaHS-1 group with I/R modelling and

injection of the drug at 1 min before reperfusion (n = 8). If death or insufficient infarction

occurred, additional rats were included to meet the sample size number.

MRI and 1H-MRS
1H-MRI/MRS was obtained at baseline (i.e. before I/R modelling) and at 3, 9, and 24 h after

I/R modelling (Fig 1). MRI and 1H-MRS were conducted using a 9.4T/160 mm animal MR

system (Agilent Technologies, Santa Clara, CA). A 72-mm birdcage volume coil was used for

excitation, and a 4-channel phased array surface coil served as the receiving coil. All the ani-

mals were anaesthetised through a mask via the spontaneous inhalation of 2.0–2.5% isoflurane

Fig 1. Summary of NaHS administration and MRI/MRS acquisition times in the experimental groups.

https://doi.org/10.1371/journal.pone.0187910.g001
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in a 1:2 mixture of O2:N2O. Respiration was monitored and rats were maintained in a normo-

thermic condition at 37.5 ± 0.5˚C using an air heater system.

The MRI protocol included T2-weighted images (T2-WIs), T2 maps, and spin-echo diffu-

sion weighted images (DWIs). T2-WIs were acquired with a fast spin-echo sequence (TR, 4000

ms; k-zero, 3; echo spacing, 10.98 ms; 32 segments; echo train length, 8; effective TE, 32.95 ms;

averages, 1; matrix, 256 × 256; field of view, 30 × 30 mm; and slice thickness, 1.0 mm, no gap).

T2 map images were acquired using a multi-echo multi-slice (MEMS) sequence with the fol-

lowing parameters: TR, 3000 ms; TE, 10–150 ms; 15 echoes; averages, 1; matrix, 128 × 128; and

slice thickness, 1 mm, no gap. Furthermore, the DWI parameters were as follows: TR, 2000

ms; TE, 22.67 ms; averages, 1; matrix, 128 × 128; slice thickness, 1 mm, no gap; and b-values, 0

and 1000 s/mm2. Quantitative ADC maps were created on a voxel-wise basis, with a linear

least-squares fit on the logarithm of the signal intensity vs. the b-value for each diffusion direc-

tion. The geometrical imaging parameters (i.e., number and orientation of slices, FOV) of the

T2 maps and DWIs were the same as those used on T2-WIs.
1H-MRS was performed to detect the metabolites in vivo and monitor the temporal changes

caused by the stroke. In particular, the N-acetyl-L-aspartate (NAA) concentration and the

combination score of NAA, glutamate (Glu), and taurine (Tau) (NAA + Glu + Tau, NGT)

have been proposed as markers of neuronal density and viability in stroke [19, 20]. The MR

spectra of standard brain metabolites were collected from a single voxel of 3.5 × 2 × 1.6 mm3

in the ischemic core (lateral caudo-putamen and somato-sensory cortex) and peri-infarct

region (primary motor cortex and somato-sensory cortex) in the slice, according to the dia-

gram suggested previously by Zhao et al [4] (Fig 2). For single voxel localisation of 1H-MRS

images, we used point resolved spectroscopy sequence (PRESS) with the variable power RF

pulses with optimised relaxation delays (VAPOR) method (TR/TE, 5000/13.47 ms; spectral

width, 5 kHz; number of averages, 256; data points, 2048). Respiration gating was used for

DWI scan acquisitions, and the total scan time was <90 min.

MRI analysis

All MRI data were assessed by an observer blinded to the grouping information. MRI analysis

was conducted using ImageJ software (National Institutes of Health, Bethesda, Maryland;

http://rsbweb.nih.gov/ij/). The total infarct volume at 24 h after ischemia was measured on

T2-WI scans using the 2D volumetry technique, which involves the summation of the infarct

Fig 2. Diagram of the regions of the ischemic core and the peri-infarct region.

https://doi.org/10.1371/journal.pone.0187910.g002
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volume measured from each slice [21]. The peri-infarct volume at 24 h after ischemia was also

measured on T2-WI scans, which involves the infarct volume measured from the peri-infarct

region in the slice (Fig 2).The midline shift (MLS) quantification method was used to deter-

mine the space-occupying effect of the cerebral edema [22]. This method was performed on

T2-WI scans at 24 h after ischemia, where the position of the third ventricle could be deter-

mined clearly in all animals. The distance between the outer border of the cortex and the mid-

dle of the third ventricle was measured from the ipsilateral (A) and contralateral (B) sides (Fig

3). Measurements were obtained at the level of the maximum lateral displacement of the ven-

tricle. MLS was calculated using the following equation: MLS = (A − B)/2, as described previ-

ously [23].

The degree of ischemic injury was evaluated by measuring the ADC and T2 values on a

respective map. The regions-of-interest (ROIs) were located in the ischemic core and peri-

infarct region of the ipsilateral hemisphere, and also in the corresponding ROIs in the

Fig 3. Infarct volumes and midline shift (MLS). (A) The peri-infarct volume was measured from the peri-infarct region (yellow region) on T2-WIs at 24 h

after ischemia in representative rats from each group. To calculate the MLS, the distance between the outer border of the cortex and the middle of the third

ventricle was measured from the ipsilateral (red line) and contralateral (blue line) sides. (B -D) The total infarct volume (B), peri-infarct volume (C) and MLS

(D) were lowest in the NaHS-1 group, followed by the NaHS-30 and control groups. The peri-infarct volume was significantly lower in the NaHS-1 group than

in the NaHS-30 group. Data are presented as mean ± standard deviation (n = 8 rats in each group). *P < 0.001 vs. the control group, # P < 0.001 vs. the

NaHS-30 group.

https://doi.org/10.1371/journal.pone.0187910.g003
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contralateral hemisphere (Figs 4 and 5). Thereafter, the relative ADC (rADC) and T2 (rT2) val-

ues were calculated as ratios i.e., ipsilateral value/contralateral value, as previously decribed [24].

1H-MRS analysis

The resulting spectra were processed as described by Lei et al [25]. Briefly, absolute quantifica-

tion was obtained using a linear combination analysis method (LC Model ver.6.0, Los Angeles,

CA). The MR spectra were considered acceptable if the signal-to-noise ratio (SNR) was�8

and the standard deviation (Cramér-Rao lower bounds, CRLB) of the spectral fit for the

metabolite was<30%. The concentrations of NAA (cNAA) and NGT (cNGT) were measured

in the ischemic core and peri-infarct regions at baseline and at 3, 9, and 24 h after ischemia.

Terminal transferase d-UTP nick-end labelling (TUNEL) assays

The extent of apoptosis in the damaged tissues was assessed using the TUNEL assay. For this

purpose, we used the ApopTag Peroxidase In Situ Apoptosis Detection Kit (Chemicon, CA).

Fig 4. Effect of NaHS treatment on the ADC value. (A) The mean ADC values were measured in the ipsilateral (ischemic core [white square] and

peri-infarct [red square]) and contralateral regions on the ADC maps at baseline and at 3, 9, and 24 h after ischemia. (B, C) The rADC of the ischemic

(B) core and (C) peri-infarct regions were plotted against time. Data are presented as a mean ± standard deviation (n = 8 rats in each group). *
P < 0.001 vs. the control group, # P < 0.001 vs. the NaHS-30 group.

https://doi.org/10.1371/journal.pone.0187910.g004
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The rats were sacrificed and fixed by cardiac perfusion with 4% paraformaldehyde at 24 h

after I/R modelling. The brain tissue was isolated and fixed in 4% paraformaldehyde for 3

days. The fixed brain tissues were then sectioned coronally (thickness, 3 μm) and mounted on

prechilled glass slides coated with poly-L-Iysine. Tissue sections were incubated in a dry oven

for 1 h at 60˚C. The tissues were treated with a working solution containing reaction buffer

and enzyme (7:3) mixture for 1 h at 37˚C, followed by an anti-digoxigenine peroxidase conju-

gate for 30 min at room temperature. The tissues were then treated with the DAB substrate

(1:50) for 5 min in a dark room, followed by haematoxylin for 2 minutes in the dark room for

cell staining.

The TUNEL-stained sections were examined under a microscope (ZEISS, HAL100, 200×
magnification) and photographed. A brown stain in the nucleus represents an apoptotic cell.

The number of TUNEL-positive cells and total cells were counted using ImageJ software in 3

Fig 5. Effect of NaHS treatment on the T2 value. (A) The mean T2 values were measured in the ipsilateral (ischemic core [white square] and peri-infarct

[red square]) and contralateral regions on serial T2 maps at baseline and at 3, 9, and 24 h after ischemia. (B, C) The rT2 of the ischemic (B) core and (C)

peri-infarct regions were plotted against time. Data are presented as mean ± standard deviation (n = 8 rats in each group). * P < 0.001 vs. the control group,
# P < 0.001 vs. the NaHS-30 group.

https://doi.org/10.1371/journal.pone.0187910.g005

Neuroprotective effects of H2S administration against I/R injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0187910 November 21, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0187910.g005
https://doi.org/10.1371/journal.pone.0187910


randomly chosen fields from the ischemic core and peri-infarct regions. The percentage of

TUNEL-positive cells relative to the total cell count was used to evaluate the apoptosis rate.

Statistical analysis

All data are expressed as means ± standard deviation. Statistical analysis was performed using

SPSS version 13.0 software (SPSS, Chicago, IL). The CBF reduction, total infarct volume, MLS,

rADC, rT2, cNAA, cNGT, and apoptosis rate in multiple groups were compared using one-

way analysis of variance with multiple post-hoc comparison with Scheffe’s method. Differences

with a P value <0.05 were considered statistically significant.

Results

tMCAO modelling

The success rate of tMCAO modelling was 60% (24 included animals, with 40 receiving sur-

gery). The causes for exclusion were as follows: death during operation [control (n = 2) and

NaHS-1 (n = 2) groups], death after operation [control (n = 4), NaHS-1 (n = 1), and NaHS-30

(n = 3) groups], and no infarction or insufficient infarction generated [NaHS-1 (n = 2) and

NaHS-30 (n = 2) groups]. The 4 rats without any infarction were excluded after laser Doppler

monitoring indicated insufficient CBF reduction, or after MRI performed at 3, 9, and 24 h

after I/R modelling did not show any signs of infarction. All the included rats in the NaHS-1,

NaHS-30, and control groups exhibited marked decreases in the regional CBF after ischemia

i.e., > 70% reduction, compared to the baseline regional CBF (Table 1). The rats in the sham-

operated group did not show any reduction in the CBF. There was no significant difference in

CBF reduction among the NaHS-1, NaHS-30, and control groups (81% ± 5%, 81% ± 5%, and

79% ± 5%, respectively, P = 0.9019, one-way ANOVA).

Infarct volumes and MLS on T2-WI scans

Fig 3 shows the infarct lesions that were evident on T2-WI scans at 24 hours after I/R model-

ling in the representative rats from each group. The total infarct volume, peri-infarct volume,

and MLS at 24 h after I/R modelling were lowest in the NaHS-1 group, followed by the NaHS-

30 and control groups, which is indicative of the neuroprotective effect of NaHS. In the total

infarct volume and MLS analyses, one-way ANOVA post-hoc tests showed that both NaHS

treatment groups had significantly lower values than the control group (NaHS-30 v.s. Control,

P< 0.001; NaHS-1 v.s. Control, P < 0.001), however, no significant difference was observed

between the NaHS-1 and NaHS-30 groups. In the peri-infarct volume analysis, the results

showed that the NaHS-1 treated group had significantly lower values than either the control or

NaHS-30 treated groups (NaHS-30 vs. NaHS-1, P< 0.001; NaHS-1 vs. Control, P < 0.001).

Table 1. rCBF changes before and after the onset of ischemia.

Group rCBF before ischemia (perfusion unit) rCBF after ischemia (perfusion unit) rCBF reduction (%) p-value

Control 168 ± 18 35 ± 11 79 ± 05

NaHS-30 177 ± 02 34 ± 10 81 ± 05 0.9019 a

NaHS-1 179 ± 12 35 ± 09 81 ± 05 0.9019 a

a P = 0.9019 vs. the control group.

https://doi.org/10.1371/journal.pone.0187910.t001
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ADC and T2 values

Figs 4 and 5 show the evolution of the lesions from ADC maps and T2 maps at baseline, and at

3, 9, and 24 h after I/R modelling in the representative rats from each group. The ischemic/

infarcted area in the ipsilateral hemisphere showed low ADC values and high T2 values, com-

pared to the contralateral hemisphere, thus reflecting the degree of cytotoxic/vasogenic cere-

bral oedema. In the sham-operated group, the ADC and T2 values did not differ over time. On

serial ADC maps, the rADC of the ischemic core and peri-infarct region decreased over time

in the control, NaHS-1, and NaHS-30 groups. On serial T2 maps, the rT2 of the ischemic core

and peri-infarct region increased over time in the control, NaHS-1, and NaHS-30 groups. The

rADC and rT2 of the ischemic core reached a similar level at 24 h after I/R modelling, with no

significant difference found among the control, NaHS-1, and NaHS-30 groups (P > 0.05, one-

way ANOVA). In contrast, the rADC and rT2 values from the peri-infarct region differed sig-

nificantly between the groups at 24 h after I/R modelling (P < 0.001, one-way ANOVA). Post-

hoc tests revealed the highest value in the NaHS-1 group, followed by the NaHS-30 group and

control group, with significant differences between the groups (adjusted P < 0.05 for each

comparison, Scheffe’s test). These results suggest that the strongest neuroprotective effects,

particularly those for the preservation of the peri-infarct region (i.e., penumbra), were in the

NaHS-1 group.

cNAA and cNGT on 1H-MRS

Figs 6 and 7 show the MR spectra for the ischemic core and peri-infarct region, respectively, at

baseline and at 3, 9, and 24 h after ischemia in representative animals from each group. On

serial 1H-MRS analysis of the ischemic core and peri-infarct regions, the cNAA and cNGT lev-

els were found to decrease over time in the control, NaHS-1, and NaHS-30 groups, reflecting

the temporal evolution of the metabolites associated with I/R injury. In the ischemic core and

peri-infarct regions, the cNAA and cNGT values did not differ significantly between the

groups at the 3 h and 24 h time points (one-way ANOVA, P > 0.05), although post-hoc tests

indicated that the peri-infarct region of the NaHS-1 animals had significantly higher cNAA

and cNGT values than those of the control and NaHS-30 groups at 9 h.

Extent of apoptosis

Positively stained apoptotic cells (round with brown nuclei) were analyzed in the NaHS-1,

NaHS-30, and control groups (Fig 8). In the ischemic core and peri-infarct regions, the lowest

apoptosis rate was observed in the NaHS-1 group, followed by the NaHS-30 and control

groups, with these differences showing significance (P< 0.001, one-way ANOVA). Post-hoc

tests further revealed that the apoptosis rate was significantly lower in the NaHS treatment

groups than in the control group (P< 0.001). Moreover, a significant difference in the ische-

mic core and peri-infarct region apoptosis rates was observed between the NaHS-1 and NaHS-

30 groups (P < 0.001).

Discussion

Consistent with the results of prior studies [11, 14, 21, 26], we found in our current analysis

that H2S has therapeutic effects against I/R injury in the brain. Using T2-WI analyses, which is

the best sequence for anatomic evaluations (total infarct volume, peri-infarct volume and

MLS), H2S treated rats showed reduced infarct volumes and MLS values compared with con-

trol animals at 24 h post-ischemia. Moreover, our NaHS-1 treatment group showed signifi-

cantly better neuroprotective effects compared with the NaHS-30 and control groups.

Neuroprotective effects of H2S administration against I/R injury
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Although H2S treated groups showed overall therapeutic effects compared to the control

group, our data showed some discrepancies and conflicts in therapeutic efficacies according to

the analysis methods and the measurement times. We assumed that it arose from the heteroge-

neities of pathological progression for each model entity; however, if the refined analysis tech-

nology in the stroke research is introduced rather than the current analysis method, we believe

that this problem can be amended.

Using rADC and rT2 measures that respectively represent the formation of cellular edema

[27] and vasogenic edema [28], we found from our current analysis that H2S administered at 1

min before reperfusion showed a significant decrease in these values at the peri-infarct sites

which are widely regarded as salvagable (penumbra). With regard to the influence of H2S

administration timing, our results indicated that applying this treatment at 1 min before reper-

fusion produced better neuroprotective effects in the peri-infarct region compared with a far

Fig 6. cNAA and cNGT changes in the ischemic core. (A) MR spectra at baseline and at 3, 9, and 24 h after ischemia. (B, C) The cNAA (B) and cNGT

(C) values were plotted against time. The cNAA and cNGT levels decreased over time in the control, NaHS-1, and NaHS-30 groups and reached a similar

level at 24 h after I/R modelling in all three groups. The cNAA and cNGT values did not differ significantly between the three groups at any time point.Data

are presented as mean ± standard deviation (n = 8 rats in each group).

https://doi.org/10.1371/journal.pone.0187910.g006
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earlier administration (30 min) Consistently, some previous studies that have used a myocar-

dial infarction model have reported that H2S treatment at the onset of reperfusion led to a sig-

nificant decrease in the myocardial infarct size [29, 30]. However, no previous study has

assessed the effect of H2S administration at 1 min before reperfusion in a cerebral I/R model.

We postulated that the pharmacokinetic properties of H2S may underlie these timing

effects. When reperfusion occurs, the blood that is newly returning into the ischemic area

carries the initial abundant inflammatory response and oxidative stress factors. In addition,

previous reports indicate that H2S reaches its highest level within a few minutes after the

administration [31]. It thus seems reasonable that exposure to H2S immediately before

reperfusion would have more protective effects against initial reperfusion damage. It must

be noted however that we only examined a single dose of H2S in our analysis (25 μmol/kg,

Fig 7. cNAA and cNGT changes in the peri-infarct region. (A) MR spectra at baseline and at 3, 9, and 24 h after ischemia. (B, C) The cNAA (B) and

cNGT (C) values were plotted against time. The cNAA and cNGT levels decreased over time in the control, NaHS-1, and NaHS-30 groups and reached a

similar level at 24 h after I/R modelling in all three groups. The cNAA and cNGT values did not differ significantly between the three groups at any time point

other than 9 h after I/R modelling. Data are presented as mean ± standard deviation (n = 8 rats in each group). * P < 0.001 vs. the control group.

https://doi.org/10.1371/journal.pone.0187910.g007
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NaHS) that had been suggested previously by Li et al. and Ren et al [21, 32]. Moreover, no

study to date has assessed the relationship between the blood concentration and the anti-

oxidant effects of H2S. Further studies are therefore needed to more precisely evaluate the

relationship between the timing of H2S delivery and its subsequent blood concentration.
1H-MRS can sensitively detect metabolites in vivo and monitor their temporal changes dur-

ing stroke. NAA, which is predominantly present in neurons, has been proposed as a marker

of neuronal density and viability [19]. NGT is used as a predictive marker of ischemic severity

Fig 8. NaHS treatment suppresses apoptosis. (A) Representative photomicrographs of TUNEL staining results in the ischemic core and peri-infarct regions

(magnification 200×). Red arrow indicates apoptotic cells; blue arrow indicates viable cells. (B, C) Quantification of the effect of NaHS treatment on the

apoptosis rate in the ischemic (B) core and (C) peri-infarct regions. Data are presented as mean ± standard deviation (n = 8 rats in each group). * P < 0.001 vs.

the control group, # P < 0.001 vs. the NaHS 30 group.

https://doi.org/10.1371/journal.pone.0187910.g008
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[20]. In our current results, the NAA and the NGT levels in the peri-infarct region of the sub-

ject rats were higher in the NaHS-1 group than in the controls at 9 h post-ischemia. However,

there were no differences in these parameters in any of the animal groups at 24 h post-ische-

mia. Possible reasons for this finding may be the evolution of stroke injury and the technical

limitations of the analytical methods we used. As oxidative stress and glutamate-mediated

excitotoxicity are sustained during the evolution of cytotoxic/vasogenic edema [33–35], dis-

ruption of the blood brain barrier (BBB) and the plasma membrane ion transport function

gradually occurs. Therefore, although the protective effects of H2S can attenuate oxidative

stress and glutamate-mediated excitotoxicity, it appears that this will only delay the eventual

cell death that arises from continuous damage to different areas of the brain. Notably, we only

measured the NAA and the NGT levels in limited regions of the rat brain and more wide rang-

ing analysis on the neuroprotective mechanism of H2S will therefore be needed. An investiga-

tion using multi-voxel MRS may further elucidate this phenomenon.

Conclusions

We have evaluated the protective effects of H2S administration prior to reperfusion and

assessed the relationship between the timing of H2S delivery and the subsequent neuroprotec-

tive effects against I/R injury in a rat model. Neuroprotective effects of H2S against edema and

apoptosis were observed. Furthermore, our results support our hypothesis that the therapeutic

timing of H2S exposure affects its neuroprotective impact against I/R-induced cerebral injury.

Nevertheless, further studies on the precise time-dependence of H2S efficacy against cerebral

I/R injury and the mechanism underlying its neuroprotective effects are needed to assess its

potential clinical application.
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