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Abstract

Predicting changes in protein binding affinity due to single amino acid mutations helps us better understand the
driving forces underlying protein-protein interactions and design improved biotherapeutics. Here, we use the MM-
GBSA approach with the OPLS2005 force field and the VSGB2.0 solvent model to calculate differences in binding
free energy between wild type and mutant proteins. Crucially, we made no changes to the scoring model as part of
this work on protein-protein binding affinity—the energy model has been developed for structure prediction and has
previously been validated only for calculating the energetics of small molecule binding. Here, we compare predictions
to experimental data for a set of 418 single residue mutations in 21 targets and find that the MM-GBSA model, on
average, performs well at scoring these single protein residue mutations. Correlation between the predicted and
experimental change in binding affinity is statistically significant and the model performs well at picking “hotspots,” or
mutations that change binding affinity by more than 1 kcal/mol. The promising performance of this physics-based
method with no tuned parameters for predicting binding energies suggests that it can be transferred to other protein
engineering problems.
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Introduction

Proteins can be modified to serve multiple different functional
roles, with practical applications in medicine, industry, and
basic science. Protein engineers use a combination of
computational approaches and experimental techniques to find
sequence Vvariations that can modulate protein function.
Computational protein design has yielded impressive
successes, such as predicting a completely novel protein fold
[1], designing a zinc-finger protein that folds without a metal
cofactor [2], introducing catalytic activity into a protein that is
not an enzyme [3], and creating an enzyme for which there is
no naturally occurring biocatalyst [4]. However, the overall
success rate is low for de novo computational enzyme design,
due to the extremely challenging nature of the problem [5], and
successful attempts to design higher affinity or stability proteins
have often used an iterative approach where single mutations
are validated separately and then combined [6,7,8,9].

While the above noted design successes are impressive,
most practitioners take a more conservative approach to
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computational protein design, either by designing large protein
libraries or by making single residue changes to modulate
existing function. Protein library design involves suggesting
specific sequences to be made experimentally, where
computation is used to focus experiments on the parts of
sequence space that are most likely to contain the desired
protein function [10,11,12]. On the other hand, rational design
can be used to predict specific amino acid modifications —
even a single mutation can significantly impact protein
solubility, stability, or affinity — and this may be the best
approach to a given design problem.

Various computational methods have been used to predict
the impact of single amino acid mutations, and in particular
these methods are successful at distinguishing protein
“hotspots” (positions where mutations have a large impact on
protein stability or affinity) from other positions where mutations
have little to no impact on these properties [13,14,15,16].
Predicting both types of mutations can be useful because even
when a single mutation has no direct impact on the protein
function, it may modulate pharmacokinetic and ADME
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properties or increase the efficiency of manufacturing the
protein. Computational methods can effectively be used to
predict the impact of a large number of single mutations on
various protein properties. Computational methods applied
towards this purpose have included structure-based modeling
of atomic interactions (electrostatics, packing, solvation, etc.)
as well as data mining in sequence space [3,17,18,19]. For
example, a single histidine mutant was used to increase the
half-life of granulocyte colony stimulating factor (GCSF) [20],
and single mutations have been used to modulate protein-
protein interaction specificity [21,22,23].

In this work, we present results for computational affinity
predictions of single mutations at protein-protein interfaces
using the MM-GBSA approach [24,25] in BioLuminate (version
1.0, Schrédinger, LLC, New York, NY, 2012), which
incorporates the OPLS2005 force field [26,27], VSGB solvent
model [28], and rotamer search algorithms from Prime (version
3.1, Schrodinger, LLC, New York, NY, 2012). For our test set
we used the proteins and mutations from Kortemme and Baker
[13], since this is a well-known dataset in the protein design
field. Importantly, we did not use any training set to modify our
force field or solvent model during this work. Furthermore, the
Prime sampling algorithm and solvent model have been fit to
reproduce side-chain conformations in protein crystal
structures [29,30], not binding free energies. We present the
results for the computational method described in this work and
highlight important considerations when predicting protein-
protein binding energies, such as careful protein preparation
and consideration of protein stability during computational
protein design.

Results and Discussion

Performance on the 19 target data set

We performed MM-GBSA scoring of mutations for the 19
targets in the Kortemme and Baker test set [13], as described
in the Materials and Methods. The MM-GBSA score for a
protein-protein complex is calculated by scoring three protein
structures (one binding partner alone, the other binding partner
alone, and the complex) using the OPLS2005 force field and
an implicit solvent model for water. By comparing the energies
of these three systems for the wild type to the same three
systems for the mutant, we determine a predicted change in
binding affinity for changing the wild-type residue to the mutant.
The equation for this “delta Affinity” is described in the
Materials and Methods, and is derived from a well-known
thermodynamic cycle.

We tested varying degrees of protein flexibility, from
minimization of the residue of interest alone (with the rest of the
protein rigid) to side-chain sampling of the residue of interest
plus all other residues in a radius of 5 A. For most of the
systems, a very conservative level of protein flexibility (i.e.
minimization of only the mutated side chain of interest)
produced the best correlations between the calculated and
experimental results (Figure 1). The full set of experimental and
predicted mutations is included as Table S1.

While correlation (r or R%) can be a useful assessment metric
in some cases, it is not an optimal measure of performance for
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practical applications, where a key objective is to assess the
ability of a method to prioritize mutations that improve affinity.
To address the limitations associated with correlations,
Kortemme and Baker followed up on Clackson and Wells’
concept of a “hotspot” [31] as a mutation that weakens binding
affinity by more than 1 kcal/mol. In their paper they report a
“fraction correct”, which is defined as the fraction of
experimental hotspots that are computationally predicted to be
hotspots. This metric has an intuitive interpretation and
addresses some of the limitations associated with correlations,
but it does not provide a complete assessment of a method
because it combines all non-hotspot mutations into one
category (those predicted to improve binding affinity by more
than 1 kcal/mol and those predicted to be neutral).

In the work presented here, we use metrics that measure the
ability of a method to correctly predict mutations that will have
an impact (positive or negative) on binding. As such, we
categorize mutations into “neutral” (experimentally within 1
kcal/mol of zero change in binding affinity) or “hotspot” (more
than a 1 kcal/mol change in binding affinity). We include two
different hotspot classes: at least 1 kcal/mol decrease in
binding affinity, and at least 1 kcal/mol improvement in binding
affinity, for a total of three mutation classes. We define “hotspot
precision” in the same way as the traditional use of precision:
the sum of true positive hotspot predictions divided by the total
number of hotspot predictions (true positives plus false
positives). In other words, out of the mutations computationally
predicted as hotspots, what fraction are true experimental
hotspots. This directly measures the ability to select true
hotspots from a dataset. We also use an “accuracy” metric to
describe the overall correctness of our model, defined as the
sum of correct classifications divided by the total number of
classifications [32]. Given these categories, the null model for
hotspot precision and accuracy is 1/3, which corresponds to
predicted and experimental values randomly distributed
between the three classes.

As described in the Materials and Methods, the change in
binding affinity calculated with MM-GBSA is on a different scale
than the experimental change in binding affinity. Here, we use
a cutoff of 3 kcal/mol to define the hotspot classes for the
predicted affinities by MM-GBSA. This number reflects the
typical slope of the line we observe when comparing computed
to experimental binding energies with MM-GBSA for small
molecule binding. While better results could be obtained in this
work with a fit to the computed protein-protein binding
energies, our intention was to avoid any fit parameters in this
work. In addition to hotspot precision and accuracy, we also
report the “fraction correct” metric in Figure S1, which shows
that MM-GBSA has a slightly higher fraction correct for
hotspots while Rosetta has a slightly higher fraction correct for
neutral mutations. Overall, the methods perform about the
same.

Figure 2 shows the experimental and predicted changes in
binding affinity for four targets with alanine mutational data
studied here and illustrates differences in the model
performance across different systems. For example, 1JCK and
1VFB have good correlation (R? is 0.59 and 0.43, respectively)
and the accuracy and precision metrics are also good. For
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expt. Minimization Side chain 0 A Side chain 5 A
PDBID Res. Partner A PartnerB  std.dev. #Mut|R*2 R Acc. Prec|R*2 R Acc. Prec|R*2 R Acc. Prec
1A22 2.6 hGH hGHbp 1.07 69 (0.23 048 064 041 (0.26 0.51 059 0.37 [0.17 0.41 048 0.35
ribonuclease
1A4Y 2 inhibitor angiogenin 0.98 28 (0.22 0.47 054 0.28 (0.27 0.52 0.68 0.36 [0.00 0.00 0.25 0.18
1AHW 3 TF-Fab Fab 5G9 1.42 8 [0.61 0.78 0.50 |0.00 [0.60 0.78 0.63 0.00 [0.71 0.84 0.50 0.67
1BRS 2 Barnase Barstar 2.55 14 10.53 0.73 0.79 0.0 |0.49 0.70 0.79 0.0 |0.03 0.17 0.57 0.88
1BXI 2.05 Im9 ES Dnase 1.44 34 1043 066 094 100 (0.12 035 091 1.00 |0.32 0.57 0.76 0.80
1CBW 2.6 BPTI Chymotrypsin =~ 0.64 9 [0.02 0.12 0.44 |0.17 (0.00 -0.01 0.56 0.00 (0.00 0.03 0.44 0.00
1DAN 2 Factor VIIA tissue factor 0.61 51 (0.08 0.27 057 0.15 (0.07 0.27 0.61 0.16 [0.03 0.18 0.47 0.16
1DF) 2.5 RNAse RNAse Inh. 1.45 14 [0.24 049 0.79 0.88 |0.22 047 0.79 0.88 (0.04 0.20 043 0.60
engineered
1DN2 2.7 peptide IgG 0.27 5 [0.85 092 |1.00 1.00 |0.63 0.79 1.00 100 |0.05 0.22 1.00 1.00
1F47 1.95 ZIPA FTSZ 1.04 10 |0.43 066 0.70 0.60 |0.43 066 0.70 0.60 [0.48 0.69 0.70 0.60
1FC2 | 2.80 Protein A 1gG 0.81 3 [0.96 098 0.67 |1.00 (0.79 0.89 067 1.00 (0.02 0.13 0.00 0.00
1FCC 3.2 Protein G 1gG 1.81 0.44 066 |0.88 1.00 |0.55 0.74 0.88 1.00 |0.62 0.79 0.63 |1.00
1GC1 2.5 CD4 gp120 0.39 49 |0.09 |0.30 0.88 0.33 |0.09 0.31 0.88 0.25 |0.02 -0.13 0.67 0.13
1CK 3.5 143.DT-cell AR SEC3 0.86 10 |0.60 0.77 0.80 1.00 |0.75 0.87 0.80 1.00 (0.47 0.68 0.60 1.00
Interferon
1RH 2.8 gamma A6 1.54 40 |0.48 |0.69 0.75 0.82 |0.14 |0.38 0.78 0.79 |0.07 0.27 0.58 0.69
INMB = 2.2 Neurominidase NC10 0.99 8 041 -0.64 0.63 |0.60 (0.14 -0.38 0.63 0.60 (0.44 -0.67 0.63 0.60
1VFB 1.8 D1.3 HEL 0.99 29 (0.43 0.66 0.72 0.57 (0.42 0.65 0.69 0.54 [0.15 0.39 0.62 0.67
2PTC 1.9 Beta-trypsin Trypsin Inh. N/A 1 |N/A N/A 100 100 |N/A N/A 100 100 |[N/A N/A 100 1.00
3HFM 3 HEL HYHEL-10 2.18 16 |0.13 0.37 0.63 0.56 |0.07 0.26 0.63 0.63 |0.06 0.24 0.31 0.43
Figure 1. Results summary for predicted change in protein-protein binding affinity for 19 protein-protein interaction

targets [13]. Each R? is the correlation between the predicted change in binding affinity and the experimental change in binding
affinity. Three different refinement methods were used, as described in Materials and Methods. Accuracy is an overall measure of
the ability to categorize residues as “neutral” or “hot spot” (see Results and Discussion). “Hotspot precision” indicates the ability of
the model to select mutations that make binding affinity worse by more than 1 kcal/mol. The experimental standard deviation is
computed after removing qualifiers from qualified values (i.e. >2.0 is treated as 2.0) and has units of kcal/mol.

doi: 10.1371/journal.pone.0082849.g001

1JCK, we predict 4 mutations as neutral and 6 mutations as
hotspots. These 6 hotspot predictions are all correct
(experimentally they decrease binding affinity by more than 1
kcal/mol), resulting in a hotspot precision for this target of 1.0.
However, two of the predicted neutral mutations are
experimental hotspots, leading to an overall accuracy of 0.8.
For 1VFB, we predict that 15 mutations will be neutral and 14
will be hotspots. 8 of the 14 predicted hotspots are true
hotspots, so the hotspot precision for this target is 0.57. In
addition, 13 of the 15 predicted neutral predictions are true
neutral mutations and the hotspot classification accuracy for
this target is 0.72. These system dependent differences do not
appear to be due to the character of the mutated residues — in
Table S2 we separated the mutations into groups by residue
type and observed only a very small difference in the R?
correlation when the wild-type residue was hydrophobic (0.22),
polar (0.39), or charged (0.26).

Figure 2 also highlights two targets (1DFJ and 3HFM) where
the correlation between predicted and experimental changes in
binding affinity are small (R? is 0.24 and 0.13, respectively) but
the accuracy and hotspot precision evaluation metrics are
good. This shows that MM-GBSA can be useful for prediction
of mutations as neutral, significantly improving binding, or
making binding affinity significantly worse. Of the 14 mutations
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in 1DFJ, we predict 6 to be neutral and 8 to be hotspots.
Indeed, 4 of the 6 neutral mutations are true neutral mutations,
while 7 of the predicted hotspots are true hotspots, resulting in
a hotspot precision of 0.88 and classification accuracy of 0.79.
3HFM has 16 mutations of which 10 are neutral and 6
mutations are observed as experimental hotspots. We predict 9
mutations to be hotspots and 7 mutations to be neutral, while 5
of the predicted hotspots are true hotspots, giving a hotspot
precision of 0.56. Of the 7 predicted neutral mutations, 5 are
correct, leading to an overall accuracy of 0.63 for this system.
We predict a significant fraction of the hotspot mutations
correctly in both of these systems, demonstrating that even
when the calculated changes in binding affinity do not correlate
well with experiment, the model can still be useful for practical
applications.

Different optimization methods were used for calculating
binding affinities: energy minimization of the wild type or
mutated residue, and side-chain prediction of residues within a
0 A or 5 A radius of the mutation. For most of the systems
studied in this work, using minimization as the MM-GBSA
refinement method performs better than side-chain prediction.
Although it is positive from a practical perspective that the less
expensive refinement method often performs better, it is
somewhat troubling that less sampling performs better.
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Figure 2. Plots of observed versus predicted affinity using the “minimization” refinement method, for four targets: 1JCK,
1VFB, 1DFJ, and 3HFM. The R? correlation, accuracy, and hotspot precision are shown for each target.

doi: 10.1371/journal.pone.0082849.g002

However, the reason for this may depend to some extent on
the dataset studied here, which is dominated by alanine
mutations. In general, mutating to a smaller residue will not
produce clashes with the binding partner and therefore
repacking the mutant structure is unnecessary to fit the
mutated side chain. The region surrounding the mutated side
chain will have less favorable van der Waals interactions than
the original residue in this case, so repacking side chains may
be important, but this effect does not appear to dominate the
energetics for our dataset. Furthermore, allowing the structure
to move, especially when not necessary, may add errors to the
results. Another possible explanation for the superior
minimization results is that if backbone movement is needed in
order to relax a system or avoid clashes between atoms in the
mutation point region, this will not be captured by the side-
chain prediction method, whereas energy minimization will
include both side chain and backbone atoms and will be able to
relieve such strain or clashes.

While minimization alone outperforms the other refinement
methods on average, it is not always the best technique for a
given target or mutation. In some cases, side-chain
rearrangements are necessary to fit a mutated residue and
improvements in the computed binding energies can be
observed with the prediction of side chains proximate to the
mutation. Rearrangements allow for new intramolecular and
intermolecular interactions to be accessed, which may include
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the formation of additional hydrogen bonds and improved
packing. Optimal interactions often cannot be accessed with a
minimization method due to the rough energy landscape at a
protein-protein binding interface that results in getting stuck in a
local minima. Side-chain prediction allows for overcoming the
energy barriers and finding better interaction configurations,
albeit with additional computational costs and the risk of finding
incorrect results due to the additional degrees of freedom.

In two systems, repacking residues within 5 A of the mutated
residue improves results: 1AHW and 1FCC. For 1AHW, there
is an increase in R? value from 0.61 to 0.71 when side chains
within 5 A of the mutated residue are allowed to be searched
during the calculation. We also see an increase in the hotspot
precision from 0.00 to 0.67 for this system when including the
side chain prediction. Figure 3 shows two examples of intra-
chain and inter-chain hydrogen bond formation that are
identified when side chains are flexibly sampled. Figure 3A
depicts the Thr170Ala mutation in the C chain of 1AHW. The
resulting structures after minimization (cyan) and side-chain
prediction (brown) are superimposed and the mutation residue
is represented in ball-and-stick. After side-chain prediction, we
see that the side chains of Glu174 and Thr172 have rotated
and are now positioned to make an internal hydrogen bond
between the side-chain oxygen of Glu174 and the side-chain
hydroxyl hydrogen of Thr172. Additionally, the new Thr172
side-chain conformation allows for a hydrogen bond to be
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. C:170 Thr-to-Ala

~ C:43 Trp-to-Ala

Figure 3. Mutations in where repacking residues nearby the mutation improves the prediction compared to minimization
alone. In each case the mutant structure refined by minimization is shown in cyan and the mutant structure where a 5A radius was
refined by side-chain prediction is shown in brown. The mutation residue is shown in ball-and-stick. Panel A shows the C:Thr170Ala
mutation in 1AHW along with nearby residues. Panels B and C show the C:Trp43Ala mutation in 1FCC.

doi: 10.1371/journal.pone.0082849.g003

formed between the side-chain oxygen of Thr172 and the
backbone hydrogen of Asn173. Moreover, the side chain of
Tyr153 flips by 180 degrees, enabling a hydrogen bond to form
between the side-chain amide oxygen of Asn173 and the
hydroxyl hydrogen of Tyr153. Side-chain prediction also results
in a generally more relaxed region around the mutation point,
with the total energy of the region being lowered by about 10
kcal/mol.

Another system that benefits from side-chain sampling
around the mutation is 1FCC. Figures 3B and 3C show two
views of the Trp43Ala mutation in the C chain. In the figure, the
A chain is represented by a green ribbon, while the C chain is
represented by a brown ribbon; the energy minimized system is
in cyan and the side-chain predicted system in brown. For this
system, the R? value improves from 0.42 to 0.62 and the
hotspot precision remains the same, while there is a decrease
in the overall accuracy from 0.88 to 0.63. In the side-chain
predicted structure, additional hydrogen bonds between the
mutation chain and its binding partner are observed due to
changes in the side-chain conformation. Figure 3C shows an
example of two such hydrogen bonds being formed between
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the A and C chain of 1FCC. In the C chain, the terminal side-
chain amide of Asp40 rotates so that the carbonyl oxygen atom
can form a hydrogen bond with the backbone H of Asn434 in
the A chain. Conformational changes in the side chains of both
Glu42 (C chain) and GIn311 (A chain) facilitate a hydrogen
bond between the carbonyl oxygen of Glu42 and an amide
hydrogen in GIn311. Allowing the region around the mutation
point to be reorganized via side-chain prediction causes the
overall energy of the system to decrease by about 50 kcal/mol.
Similar reorganizations are observed for other mutations in the
1AHW and 1FCC systems, contributing to the overall
improvements in the model quality metrics for these systems.
Figure 4 compares the hotspot precision and accuracy
classifications to a primary null hypothesis in which all
mutations are predicted to be in the neutral category (the most
frequent experimental outcome for this dataset) and to an
alternate null hypothesis that all mutations make binding affinity
worse (which is the second most frequent experimental
outcome for this dataset). The alternate null hypothesis is
based on outcomes from directed evolution experiments,
where unfavorable single mutations combine over multiple
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Figure 4. Comparison of the Accuracy metric for the minimization MM-GBSA refinement method to two different null
hypotheses: the null hypothesis that all mutations are neutral, and the null hypothesis that all mutations make binding

affinity worse by more than 1 kcal/mol.
doi: 10.1371/journal.pone.0082849.9g004

generations to produce the desired outcome. Indeed, it has
been shown that most mutational paths followed by directed
evolution experiments are inaccessible because single
mutations most often have a detrimental impact on the protein
stability or function [33,34]. If protein-protein binding is the
function of these complexes, this alternate hypothesis may be
particularly relevant for these systems. For some systems
(1A22, 1A4Y, 1AHW, 1CBW, 1DAN, and 1GC1), so many
mutations do not change the binding affinity significantly that
the null hypothesis that all mutations are neutral performs
better than MM-GBSA. However, overall, our predictions of
neutral and hotspot mutations are more predictive than either
null hypothesis.

Mutations that improve binding affinity

The dataset from Kortemme and Baker did not contain any
single mutations that improve binding affinity by more than 1
kcal/mol, so we explored two additional targets where such
mutation data has been reported. 1C4Z is a 2.6 A resolution
structure of the E6AP-Ubc47 protein-protein complex with
experimental binding affinities for six single mutations (three in
each binding partner), 2 of which improve binding affinity by
more than 1 kcal/mol. 20M2 is a 2.2 A resolution structure of
the GolLoco peptide bound to the a1 subunit of protein G.
Similar to 1C4Z, six experimental single mutations to this
complex have been published (two in protein G and four in the
GolLoco peptide), 3 of which improve binding affinity by more
than 1 kcal/mol [35]. Bosch et al used Rosetta to select these
mutations, but since only 6 of 33 mutations predicted to
improve affinity were tested, we cannot use this dataset to
compare performance.

These mutations are quite different from the previously
studied set in that all of them are to large residues, whereas
the set from the Kortemme and Baker set was primarily to
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alanine. Although we do not categorize all of the 20M2
mutations correctly using minimization as the refinement
method (the accuracy and hotspot precision metrics are 0.66
and 1.0, respectively), the correlation for the 20M2 mutations
is similar to what we see for many targets in the Kortemme and
Baker set (R?=0.38). In contrast, when we use minimization as
the refinement method for 1C4Z, the hotspot predictions are all
incorrect and we get a negative correlation with experiment.
Similarly, when we use side-chain prediction to place the
mutated residue for 1C4Z there is no correlation with
experiment (R?=0.03) but the mutation that is predicted to most
improve binding affinity is experimentally also the best mutation
(see Figure 5). Comparing the mutations in these two systems
highlights that the environment around each mutation position
plays an important role in the quality of mutation predictions.

The 20M2 mutations include three mutations of Gin-to-Leu,
as well as one Leu-to-Tyr, one Val-to-Trp, and one Phe-to-Trp
mutation. All of the mutations are at the protein-protein
interface (within 3 A of the binding partner) and all are partly
solvent-exposed except for one Gin-to-Leu mutation. In all
cases there is sufficient space for the mutated residue to fit.
The mutations that significantly improve binding affinity are Val-
to-Trp, Phe-to-Trp, and one of the GIn-to-Leu mutations. The
favorable GIn-to-Leu mutation is at a partially solvent exposed
position on protein G.

The 1C4Z mutations include one Gin-to-Trp mutation, two
mutations from Asp (to Tyr and Trp), a Phe-to-Trp, a Lys-to-
Leu, and an Ala-to-Trp. The Asp-to-Tyr in ubiquitin-protein
ligase E3A and the Ala-to-Trp mutation in ubiquitin-conjugating
enzyme E2 both improve binding affinity by more than 1
kcal/mol (-1.1 kcal/mol and -1.9 kcal/mol, respectively). In both
cases, the minimization method predicts both of these
mutations to be detrimental to binding. A:Asp641 is partly
solvent-exposed in the complex, but mutation to Tyr at this
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Figure 5. Plots of predicted versus experimental change in protein-protein binding affinity for two additional targets: 1C4Z
and 20M2. For 20M2 the results shown are for the minimization refinement method (with only the mutated residue minimized) and
for 1C4Z the results shown are for side chain refinement, with a 0 A radius (i.e. only the mutated residue refined).

doi: 10.1371/journal.pone.0082849.g005

position is initially placed in a clashing environment between
residue D:Lys96 and A:GIn637. Minimization does not improve
this and produces a highly strained and energetically
unfavorable conformation of A:Tyr641. In contrast, side-chain
prediction (even with only the mutated residue predicted)
creates a more reasonable Tyr conformation, although it is still
slightly unfavorable for binding. However, when the backbone
of the mutated residue is allowed to minimize (as occurs during
Prime side-chain sampling that includes the Ca-Cf8 bond), the
predicted delta Affinity becomes negative as the Tyr interacts
more favorably with nearby D:Lys96 and A:Tyr645, and if
nearby residues are included in the refinement region, the Tyr
conformation becomes even more favorable and it is correctly
predicted to be a hotspot. We do not know the true structure of
the mutated complex (no crystal structure is available for any of
the six mutants), but the refined Tyr appears to make good
interactions. Similarly, initial placement of D:Trp98 is wedged
tightly between A:Met653 and A:Tyr645 after mutation from the
native Phe. While minimization cannot relieve this clash, side-
chain refinement produces a favorable Trp conformation that is
partly solvent-exposed and also makes favorable van der
Waals interactions. We also predict that a neutral mutation in
1C4Z (D:Phe63-to-Trp) will improve binding affinity by making
additional pockets at a buried position in the interface. It is not
obvious why this is unfavorable experimentally, as the Trp
appears to fit well. It is possible that water effects at the
interface play a role here. Others have suggested that
electrostatics can sometimes be more predictive than van der
Waals for scoring mutations [36]. However, we did not explore
the role of explicit water molecules in this work.

Protonation states at protein-protein interfaces

The method of protein preparation had a significant impact
on the results for this study, which is not surprising given that
the importance of protein preparation for virtual screening has
been shown previously [37]. By default, the Protein Preparation
Wizard predicts protonation states using the PROPKA program
[38,39]. PROPKA uses an empirical approach to predict pKa
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values by perturbing the standard pKa value for each amino
acid residue with terms (whose coefficients have been fit to
experimental data) that reflect local hydrogen bonding,
desolvation effects, and charge-charge interactions. PROPKA
has proven capable of reliably predicting pKa values (<1 log
unit from experiment) for an entire protein in a matter of
seconds [38]. These values are generally of comparable
accuracy to those that can be obtained from computationally
intensive continuum methods, and as a result the PROPKA
method has found great acceptance. However, as with any
empirical method, certain outlier cases can present difficulties
that should be examined individually. In the studies here, there
are multiple cases where the empirical protein pKa prediction
program PROPKA neutralizes a buried Lys at the interface.
These occur in buried hydrophobic regions, which sometimes
include tryptophan residues that could make pi-cation
interactions, such as Lys 1:47 in 1JRH and Lys Y:96 in 3HFM. It
is difficult to model the energy change for residue
deprotonation upon binding because we know that protein
crystal structures can change significantly when solved at
different pH (for example a series of GM2AP structures have
significant loop movements between PDB structure 2AG9 and
2AF9 [40]). Manually choosing the positively charged state for
each of these wild-type Lys residues improves the prediction
accuracy, which highlights the importance of structural
inspection and manual alterations in cases where automated
algorithms produce potentially incorrect states.

An energetic analysis of the above two cases provides
additional insights. Default PROPKA settings result in the
neutralization of Lys 1:47 in 1JRH, which is a completely buried
residue. We predict that mutating this neutral Lys to Ala will
significantly improve binding affinity (by -7 to -8 kcal/mol) due
to neutral Lys being relatively unfavorable in the crystal
structure, but experimentally this mutation results in a decrease
in binding affinity (by 3.5 kcal/mol). However, when the charged
Lys is used for the wild type, the mutation is correctly
categorized as unfavorable. Indeed, Lys can form a pi-cation
interaction with Trp L:92 when it is treated in the positively
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charged state. Similarly, in 3HFM we predict that mutating a
neutral Lys Y:96 to Ala will not significantly impact the binding
affinity, but experimentally it is very unfavorable (by more than
6 kcal/mol). When the protein is prepared with the charged Lys,
the predicted change in binding affinity is unfavorable because
positively charged Lys is much more favorable than neutralized
Lys in this position, as estimated by the MM-GBSA
methodology used here. These two cases illustrate instances
where the more computationally expense implicit solvent with
physics-based force field outperforms the quick empirical
approach for pKa prediction.

Another consideration during protein preparation is whether
or not waters will be included during the preparation and during
the binding energy calculations. As shown in Figures S2 and
S3, when proteins with waters in the crystal structure were
prepared with all waters present or with only waters that make
three or more hydrogen bonds to the protein, the average
correlation, accuracy, and precision results do not change
significantly. For some systems the correlation is better with
waters and for other systems the results are better without
waters, but the differences in predictions are small and in most
cases insignificant. This could either be because explicit water
molecules do not play an important role in binding energy
predictions for these systems or that our treatment of explicit
waters was not sufficient in this work. For example, we did not
allow for waters to be displaced or new waters to be introduced
during the mutation process. Furthermore, a more rigorous
treatment would consider the energetics of the water molecules
relative to bulk solvent in addition to their presence/absence.
Indeed, others have shown that explicit waters can be
important in understanding molecular recognition [41] and
protein binding energies for peptides [42] and small molecule
systems [43]. Further work and additional datasets would be
required to determine the best way to model waters when
making protein mutations.

Materials and Methods

Datasets

The 19 datasets in Figure 1 were selected based on the work
of Kortemme and Baker [13]. All protein structures were
downloaded from the Protein Data Bank [44] and the
mutational data was re-collected from the original references:
1A22 [45,46], 1BXI [47], 1DAN [48], 1DN2 [49], 1F47 [50],
1FCC [51], 1JRH [52,53], 1NMB [54], and 3HFM [55]. We
incorporated all single mutations from the original references,
including Pro-to-Ala and Gly-to-Ala mutations that were
excluded in the original work. Mutation data for targets 1A4Y,
1AHW, 1BRS, 1CBW, 1DFJ, 1FC2, 1GC1, 1JCK, 1VFB, and
2PTC were collected from the Alanine Scanning Energetics
database (ASEdb) [56]. This database has been updated since
the Kortemme and Baker paper, so we included the currently
available mutations for each target, which for most targets is a
larger number than was explored by Kortemme and Baker. The
two additional datasets in Figure 5 for 20M2 and 1C4Z [57]
were chosen because they include multiple mutations that
improve binding affinity by more than 1 kcal/mol.
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Protein preparation

All proteins were downloaded and prepared using the Protein
Preparation Wizard in the Suite2012 release, Maestro 9.3.515.
The biological unit was used in all cases. For a few systems,
chains far from the binding interface were deleted to reduce the
size of the system while retaining everything relevant for the
binding energy calculations. Several systems contained
sugars, which were removed before further preparation.
Defaults were used for the “preprocess” step except that
missing side chains were added using Prime and waters far
from het groups were not removed. PROPKA was used for the
prediction of protein ionization states and ProtAssign was used
for hydrogen bond optimization. After automatic hydrogen
assignment, visual inspection was used to flip residues and
change protonation states at the protein-protein interface when
appropriate. All non-default preparation steps are described in
Figure S2. All waters and SO, were removed from the system
before the final default restrained minimization in the Protein
Preparation Wizard. A separate preparation was performed in
which water molecules were retained and is presented in
Figures S3 and S4.

Residue scanning with Prime MM-GBSA

Predicted changes in binding affinity were computed using
the Residue Scanning functionality in BioLuminate (version 1.0,
Schrédinger, LLC, New York, NY, 2012), with command line
options to specify the mutations of interest, one concurrent
mutation, sequential mutations, and refinement set to either
minimize or side-chain prediction. The distance for other
residues to refine was set to either 0.0 (i.e. no additional
residues) or 5.0 A from the mutated residue. For systems with
two binding partners in the complex, the receptor was selected
as the non-mutated partner. For antibody systems, the receptor
was selected as either just the antigen or both the heavy and
light chains together as the receptor. The full command line
invocation for minimization calculations with 0.0 A flexible shell
looked like:

$SCHRODINGER/run  $SCHRODINGER/mmshare-v21515/
python/scripts/residue_scanning_backend.py -jobname
<jobname> -file <.inp file of mutations> -concurrent 1 -
sequential -refine_mut prime_minimize -calc
e_pot,pka,sasa_polar,sasa_nonpolar,sasa_total,hydropathy,rot
atable,prime_energy -dist 0.00 -receptor_asl <receptor asl>
<input structure file>

For calculations with side-chain flexibility within 5.0 A of the
mutation the command line invocation looked like

$SCHRODINGER/run  $SCHRODINGER/mmshare-v21515/
python/scripts/residue_scanning_backend.py -jobname
<jobname> -file <.inp file of mutations> -concurrent 1 -
sequential -refine_mut prime_minimize -calc
e_pot,pka,sasa_polar,sasa_nonpolar,sasa_total hydropathy,rot
atable,prime_energy -dist 5.00 -receptor_asl <receptor asl>
<input structure file>

Residue Scanning makes a specified list of mutations and
then performs MM-GBSA refinement of the bound and
unbound state for each system for both the wild type and the
mutant. The predicted change in binding affinity is calculated
using the equation and thermodynamic cycle in Figure 6. The
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Figure 6. Thermodynamic cycle for calculating the net AAG free energy difference between binding the wild-type protein P
and the mutant protein P’. In the associated equation for AAG,, E is the calculated energy of each protein or complex after

refinement.
doi: 10.1371/journal.pone.0082849.g006

state function nature of free energy allows us to calculate the
net AAG free energy difference by addressing the free energy
changes represented by the vertical arrows in this cycle, which
represent changes that are easier to simulate than the
experimentally observable processes represented by the
horizontal arrows.

Maestro initially places a mutated residue by setting the chi
angles to those of the residue that is being replaced. Chi
angles that didn’t exist in the initial residue are set to extended
values (i.e. 180°). For a refinement radius greater than zero,
the refinement region is defined based on the size of an
arginine residue at the mutation position, and residues
containing any atom within that radius of any of the arginine
atoms are added to the refinement region. The refinement
region is then minimized [58] or rotamers are searched for all
mobile residues [59] using Prime.

A scale factor of 3 was used to relate the computed MM-
GBSA energies to experimental energies. The reason for a
scale factor in implicit solvent binding energy calculations has
been discussed in detail elsewhere [60]. As such, a computed
cutoff of 3 kcal/mol is used to predict the hotspot classes,
which themselves are defined based on experimental changes
in binding affinity of greater than 1.0 kcal/mol. As additional
support for the scaling factor of 3, we computed the slope
between prediction and experiment for systems that have at
least 10 mutations and have a good correlation (R? > 0.4)
between the delta affinity prediction and experiment (1AHW,
1BRS, 1BXI, 1JCK, 1VFB, 1F47, 1FCC, and 1JRH). Qualified
experimental values (such as >2.0) were excluded, and the

PLOS ONE | www.plosone.org

remaining points were best fit by the line y = 2.91x + 0.74.
While the optimal slope varies from system to system, ranging
from 1.2 to 4.6, we chose the value of 3 based the average and
the precedent described by Abel et al. [60] For both accuracy
and hotspot precision, the minimum value is 0.0 and the
maximum is 1.0.

Supporting Information

Figure S1. Direct comparison with Kortemme/Baker 2002
results using their metric of “fraction correct”, which
assesses the fraction of experimental hotspots that are
predicted to be hotspots. The “hotspot precision” presented
in the main text of our paper is the fraction of the predicted
hotspots that are experimental hotspots. The “hotspot
precision” was developed with a more practical question in
mind: Of the mutations that are predicted to be hotspots, which
of them will turn out to be experimentally validated hotspots?
The MM-GBSA technique used here is the same as that used
in the “Minimization” section of Figure 1 in the main paper.
Cells are colored green when one method has a larger “fraction
correct”.

(EPS)

Figure S2. Protein preparation details for each system.
(EPS)
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Figure S3.

Residue scanning results with all waters

included in the structure during protein preparation.
(TIF)

Figure S4. Residue scanning results with waters retained
during protein preparation only if they make at least 3

hydrogen bonds to protein

(after hydrogen bond

assignment).
(TIF)

Table S1. Experimental and predicted mutation prediction
values.
(DOCX)
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