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ABSTRACT
As widely distributed domestic animals, sheep are an important species and the source
of mutton. In this study, we aimed to evaluate the regulatory lncRNAs associated with
muscle growth and development between high productionmutton sheep (Dorper sheep
and Qianhua Mutton Merino sheep) and low production mutton sheep (Small-tailed
Han sheep). In total, 39 lncRNAs were found to be differentially expressed. Using co-
expression analysis and functional annotation, 1,206 co-expression interactions were
found between 32 lncRNAs and 369 genes, and 29 of these lncRNAs were found to
be associated with muscle development, metabolism, cell proliferation and apoptosis.
lncRNA–mRNA interactions revealed 6 lncRNAs as hub lncRNAs. Moreover, three
lncRNAs and their associated co-expressed genes were demonstrated by cis-regulatory
gene analyses, and we also found a potential regulatory relationship between the
pseudogene lncRNA LOC101121401 and its parent gene FTH1. This study provides
a genome-wide resolution of lncRNA and mRNA regulation in muscles from mutton
sheep.

Subjects Agricultural Science, Genomics
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INTRODUCTION
As one of the most important domestic animals worldwide, sheep (Ovis aries) are raised
mainly for meat and other agricultural products. To improve the meat production of
existing mutton sheep breeds, research focused on the molecular mechanisms underlying
sheep skeletal muscle development is of vital interest. To identify genes that affect muscle
growth rates in mutton sheep, several studies on sheep skeletal muscle growth have been
performed using transcriptome sequencing (Zhang et al., 2014; Sun et al., 2016a; Sun et al.,
2016b; Bidwell et al., 2014). Many regulatory genes involved in sheep muscle growth and
development have already been detected and reported. However, very few of these studies
have focused on long noncoding RNAs (lncRNAs) in their transcriptome analyses.

In human and mouse, lncRNAs have already been reported as important regulatory
factors of muscle growth and differentiation in multiple studies (Wang et al., 2015;Mueller
et al., 2015; Han et al., 2015; Ballarino et al., 2015; Legnini et al., 2014). In goat and bovine,
which are both closely related to sheep, lncRNAs have also been found to have crucial
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functions in skeletal muscle development (Zhan et al., 2016; Jin et al., 2017; Xu et al.,
2017). Discovering differentially expressed lncRNAs in skeletal muscle from different sheep
breeds would enable us to have a better understanding of the regulatory functions of
lncRNAs in sheep muscle growth. Obviously, identification of relevant lncRNAs would
improve our understanding of the regulatory mechanisms involved in sheep muscle
growth and meat production. Recently, several studies have reported the detection and
analysis of lncRNAs from multiple tissues in sheep (Bidwell et al., 2014; Yue et al., 2016;
Bakhtiarizadeh et al., 2016), though similar studies on sheep skeletal muscle are still needed.
In our previous report, we detected lncRNA transcripts expressed in sheep skeletal muscle
(Chao et al., 2016). However, in the absence of samples and reference genome annotation,
the biological functions of the lncRNAs remain unknown.

In this study, we used publicly available RNA-seq data from four different sheep skeletal
muscle sequencing projects to identify and functionally predict lncRNAs. Among the
four projects, two were designed to study the transcriptome differences between high
production mutton sheep (Dorper sheep and Qianhua Mutton Merino sheep) and low
production mutton sheep (Small-tailed Han sheep), which is consistent with our research
purpose and was applied when detecting differential lncRNA expression. As a cross between
Black headed Persian and Dorset, Dorper is a composite breed derived from South Africa
(Milne, 2000). As a world-famous mutton sheep breed, Dorper is well known for its good
muscle conformation for producing a desirable carcass. The Qianhua Mutton Merino
sheep is a new breed reported by Sun et al. (2016a) that showed better meat performance
than its parent breeds, the South Africa Mutton Merino and Northeast Fine-wool sheep.
Comparison of the above two breeds showed that Small-tailed Han sheep had lower
meat production in the two corresponding studies (Zhang et al., 2014; Sun et al., 2016a).
However, with extremely high litter sizes (2.61) and good meat flavour performance,
Small-tailed Han sheep showed high value in mutton sheep breeding (Tu, 1989). In this
study, the top priority was to search for lncRNAs that may affect muscle growth, which
would provide better knowledge on the mechanisms underlying muscle development and
improve meat production in low production breeds such as Small-tailed Han sheep. This
study significantly advances knowledge regarding sheep skeletal muscle lncRNA expression
and will also provide the basis for further mutton sheep breeding.

MATERIALS AND METHODS
Data acquisition and filtering
No new transcriptome sequencing datasets were generated in this study. RNA-seq datasets
used for differential expression analysis were downloaded from the NCBI Sequence Read
Archive database (SRA) under accession numbers SRP017799 and SRP080149. Detailed
animal and gender information can be foundunder the BioProject accessions PRJNA185414
and PRJNA335752. Moreover, 2 additional RNA-seq datasets downloaded from the
European Nucleotide Archive database (ENA) under accession numbers ERP005642 and
SRP031629 were used for correlation analysis. Detailed animal and gender information
could be found under BioProject accessions PRJEB6169 and PRJNA223213.
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Before transcriptomemapping and assembling, we performed a filtering process with the
raw sequencing reads. Using Trimmomatic-0.36 (Bolger, Lohse & Usadel, 2014), adapters,
leading and trailing low-quality bases, and n bases (below quality 3) were removed. Then,
all the reads were scanned with a 4-base wide sliding window and cut when the average
quality dropped below 15. Finally, an average quality≥ 20 and a minimum length of 36 bp
were selected for the threshold.

Reads mapping and gene annotation
Using STAR (Dobin et al., 2013), we mapped our clean reads with the sheep reference
genome Oar_v4.0 (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/
Ovis_aries/all_assembly_versions/GCF_000298735.2_Oar_v4.0/GCF_000298735.2_Oar_
v4.0_genomic.fna.gz). To detect the expression of the pseudogene loci, we created GTF files
with genome-mapped BAM files in Cufflinks (Trapnell et al., 2010) andmerged the GTF file
with the sheep reference annotation GFF file (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/
vertebrate_mammalian/Ovis_aries/all_assembly_versions/GCF_000298735.2_Oar_v4.0/
GCF_000298735.2_Oar_v4.0_genomic.gff.gz). All ‘‘gene_biotype=lncRNA’’ categories in
the gene annotation GTF file were considered to be lncRNAs. Remapping, annotation and
expression detection of the genes and lncRNAs were performed with STAR and RSEM (Li
& Dewey, 2011).

Transcriptome data normalization and differentially expressed genes
identification
For the eight samples from PRJNA185414 and PRJNA335752, expression data
normalization was performed with the R package RUVSeq (Risso et al., 2014). All genes
and lncRNAs were filtered by requiring more than 2 reads in at least 5 samples. Then, we
normalized the expression matrix using upper-quartile (UQ) normalization from EDASeq
(Bullard et al., 2010). Finally, according to the RUVSeq-recommended parameters, 5000 in-
silico empirical negative control genes were used for unwanted variation factor estimation
and expression data normalization. Relative log expression analysis (RLE) and principal
components analysis (PCA) were performed according to the RUVSeq manual.

Normalized gene count data were used for differential expression analysis using DESeq2
(Love, Huber & Anders, 2014). DESeq2 used the Wald test for differential expression
hypothesis testing (Love, Huber & Anders, 2014). The Wald test P-values were then
independently filtered under the null hypothesis (Bourgon, Gentleman & Huber, 2010)
and adjusted for multiple testing using the procedure of Benjamini & Hochberg (1995). The
significant differentially expressed genes were declared at a log2-fold change ≥0.8 and a
false discovery rate (FDR) <0.05.

Comparative sequence analysis
To identify differentially expressed lncRNAs that were already annotated in mode species
(human and mouse), NCBI blast 2.7.1 was used for comparative sequence analysis. Using
BLASTN, we compared our 39 lncRNAs to the Refseq RNA and non-Refseq RNA (human
and mouse). With an e-value <0.001 as the threshold, we selected the following criteria for
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the comparative analysis: sequence mapping identity 75% in a covered region and 100 nt
for hitting length.

Correlation analysis for lncRNAs with protein-coding genes and
functional annotation
The correlation analysis between the lncRNAs and protein-coding genes was performed
with expression data from all 26 samples from the four RNA-seq projects. The Pearson
correlation test was used to estimate the co-expression relationships between lncRNAs and
protein-coding genes. Moreover, the P value of the correlation coefficient was estimated.
Using the MultiExperiment Viewer (MeV) (Saeed et al., 2003), hierarchical clustering was
performed with the correlation r-values.

Before further functional annotation with the expression data, we calculated the
Pearson correlation coefficient for the differentially expressed protein-coding genes with
differentially expressed lncRNAs. Co-expressed genes from three clusters were identified
by applying the correlation r-value >0.7 and p-value <0.001 as the threshold. Genes
that achieved the threshold with at least one lncRNA were used for GO and KEGG
enrichment analysis. The GO terms and KEGG pathway enrichment was performed using
The Database for Annotation, Visualization and Integrated Discovery (DAVID v 6.8,
https://david.ncifcrf.gov/) (Huang, Lempicki & Sherman, 2009).

LncRNA and protein-coding gene interaction network
We constructed an lncRNA-mRNA co-expression network with the correlation analysis
results. Additionally, a Protein–protein interaction (PPI) network between the protein-
coding genes was constructed based on information from STRING v.10.0 (Szklarczyk et al.,
2015) and credible interactions (combined_score≥ 0.4) were accepted for further network
analysis. Using Cytoscape (version 3.5.1) (Shannon et al., 2003), the two networks were
then merged as one, and the resulting network was defined as a lncRNA-gene interaction
network. Interaction degree analysis was applied with Degree Sorted Layout, and all nodes
were sorted with interaction degree values. Network module analysis identification was
applied with the MCODE method using the MCODE plug-in in CytoScape; the node size
was selected to be proportional with the interaction degree. For the MCODE analysis, the
degree cut-off was selected as 2, while a node score cut-off = 0.2 and K-Core = 2 were
used for Haircut Cluster finding (Bandettini et al., 2012).

Cis-regulatory gene analysis of differentially expressed lncRNAs
The differentially expressed genes were intersected to identify the genes 50 kbp upstream
or downstream of the lncRNAs. A Pearson correlation p-value <0.001 was selected as the
threshold for cis-regulatory gene prediction.

RESULTS
Normalization analysis of sheep skeletal muscle transcriptome data
In this study, skeletal muscle RNA-seq data from eight sheep (four Small-tailed Han
sheep, three Qianhua Mutton Merino sheep and one Dorper sheep) were downloaded for
differential expression analysis. To distinguish the samples from the different sequencing
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projects, we named the three Qianhua Mutton Merino sheep from PRJNA335752 as
M1, M2 and M3; the three Small-tailed Han sheep from PRJNA335752 as S1, S2 and
S3; the Dorper sheep from PRJNA185414 as DP; and the Small-tailed Han sheep from
PRJNA185414 as SH. The downloaded raw reads were filtered using the same thresholds
and the clean reads were mapped to sheep reference genome Oar 4.0 (Table S1).

Because the data we used are derived from two sequencing projects, to check the
batch effect between the samples, we performed relative log expression analysis (RLE)
and principal components analysis (PCA) on the eight samples according to their gene
counts data. As shown in Fig. 1, the RLE boxplots (Fig. 1A) and principal component
plots (Fig. 1B) reveal a clear need for between-sample normalization. Using RUVseq,
the gene count data were normalized with in-silico empirical negative control genes.
After normalization, the eight samples showed consistency in the relative log expression
analysis (Fig. 1C). The higher production group (Mutton Merino and Dorper) and lower
production group (Small-tailed Han sheep) were divided into two groups by principal
component 1 (Fig. 1D).

Identification of differentially expressed genes and lncRNA
To identify the differentially expressed genes, a comparison was performed between the
higher production group (Mutton Merino and Dorper) and the lower production group
(Small-tailed Han sheep). Using the DESeq2 algorithm (log2 Fold Change >0.8 and FDR
<0.05), a total of 704 geneswere identified as differentially expressed. In total, 386 geneswere
up-regulated in higher production group, while the remaining 318 genes were up-regulated
in the lower production group (Table S2). Among them, 606 were known protein-coding
genes, 39 were known lncRNAs, and 59 were novel gene loci. Interestingly, the top three
log2-fold change value genes were all lncRNAs (LOC101101991: 5.23; LOC106991804:
4.09; and LOC105611977: −3.25).

Among the 39 differentially expressed lncRNAs, eight were detected from the pseudogene
locus, while the potential features of the other 31 lncRNAs are all unknown. Performance
of a comparative sequence analysis showed that only two of these 31 lncRNAs received
acceptable matching results with known lncRNAs from human and mouse. LncRNA
LOC105611269 showed high similarity with mouse lncRNA Nr6a1os, and, with the
second highest fold change among all the differentially expressed transcripts, lncRNA
LOC106991804 (log2 Fold Change = 4.09) showed high similarity with the human
lncRNA LOC285847.

Co-expression analysis between lncRNA and protein-coding genes
To reveal the genes and functions that the lncRNAs may be related to, we performed
co-expression analysis between the differentially expressed lncRNAs and differentially
expressed protein-coding genes. The correlation r-values and p-values are shown in
Table S3.

After the Pearson correlation analysis, hierarchical clustering was performed with the
correlation r-values. As shown in Fig. 2, differentially expressed lncRNAs were clustered
into 4 groups based on their correlation relationship with coding genes. With r > 0.7 and
p-value <0.001 as the threshold, a total of 369 genes were found to be co-expressed with
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Figure 1 Relative log expression analysis (RLE) and principal components analysis (PCA) performed
by R package RUVSeq of eight samples according to their gene counts data.Green: high production
group samples. Orange: low production group samples. (A) Boxplots of un-normalized sample RLE. (B)
Plots of un-normalized sample PCA. (C) Boxplots of normalized sample RLE. (D) Plots of normalized
sample PCA.

Full-size DOI: 10.7717/peerj.4619/fig-1

32 differentially expressed lncRNAs from clusters 1 (three lncRNAs), 2 (16 lncRNAs) and
3 (13 lncRNAs), while the other seven lncRNAs (including the two lncRNAs from cluster
4) were filtered out from further analysis (Table S4).

The functions of the differentially expressed lncRNAs were predicted using GO and
KEGG enrichment analyses of their co-expression genes. For cluster 1, we failed to get
any significant enrichment for the co-expression genes. For cluster 2, the correlated genes
were significantly enriched into 14 GO terms and 13 KEGG pathways, among which, the
top enriched terms and pathways were associated with metabolism (Fig. 3A). For cluster
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Figure 2 Correlation r-value clustering heat map perform byMultiExperiment Viewer showing the
co-expression patterns of differentially expressed lncRNAs.

Full-size DOI: 10.7717/peerj.4619/fig-2

3, the correlated genes were significantly enriched into 19 GO terms and eight KEGG
pathways, among which, the top enriched terms and pathways were mostly associated with
cell proliferation and apoptosis (Fig. 3B).

Construction of the lncRNA–gene interaction network
Based on the expression correlation analysis, we constructed a lncRNA-gene co-expression
network with lncRNAs (from clusters 1, 2 and 3) and their correlated genes. A total of
1,206 interactions between 32 lncRNAs and 369 genes were observed. Then, we performed
a Protein–protein interaction analysis with the 369 genes that were significantly correlated
with lncRNAs. A total of 526 interactions between those genes were obtained from STRING.
These two networks were merged as a single lncRNA–gene interaction network (Fig. 4).
The merged network was constructed by 391 nodes (185 expressed higher in the higher
production group and 206 expressed higher in the lower production group) and 1,726
interactions. Among the 391 nodes, 30 were lncRNAs and 361 were gene nodes. All the
gene nodes and lncRNA nodes were sorted with interaction degrees (Table S5), and the top
12 interaction degree nodes are all lncRNAs, with all five pseudogene lncRNAs included.

Further MCODE analysis revealed that there are 8 modules in the network, among
which only the top 2 modules showed scores ≥5. We named these two modules module
A (Fig. 5A) and module B (Fig. 5B). In module A, all 14 nodes, except for the GAMT
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Figure 3 GO term and KEGG pathways achieved significant enrichment levels.Green: biological pro-
cess GO term; blue: cellular component GO term. Yellow: molecular function Go term. Red: KEGG path-
way. (A) Cluster 2 lncRNA co-expression genes GO term and KEGG pathway enrichment result. (B) Clus-
ter 3 lncRNA co-expression genes GO term and KEGG pathway enrichment result.

Full-size DOI: 10.7717/peerj.4619/fig-3

gene, showed higher expression in the lower production group (Small-tailed Han sheep).
Protein-coding genes from module A could be significantly enriched into 2 GO terms,
poly(A) RNA binding (FDR = 0.00024) and nucleolus (FDR = 0.0023). As three of the
highest interaction degree nodes, lncRNAs LOC101121401 (first highest degree node),
LOC105616222 (second highest degree node) and LOC105616344 (fourth highest degree
node) were all included in module A. In module B, 10 nodes showed higher expression
in higher production group (Mutton Merino and Dorper), and the other five nodes were
expressed higher in lower production group (Small-tailed Han sheep). Protein-coding
genes from module B could be significantly enriched into two GO terms, transition
between fast and slow fibre (FDR = 0.0075) and troponin complex (FDR = 0.011). We
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Figure 4 Merged lncRNA–gene interaction network created with Cytoscape. The node size was decided on the basis of the interaction degree
value. Square node, Protein coding genes; Hexagon node, LncRNA nodes; Red node, Higher expressed genes in the higher production group; Blue
node, higher expressed genes in the lower production group; orange node, higher expressed lncRNAs in the higher production group; purple node,
higher expressed lncRNAs in the lower production group; gray edge, lncRNA-gene interaction; green edge, protein–protein interaction.

Full-size DOI: 10.7717/peerj.4619/fig-4
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Figure 5 Module analysis performed by pluginMCODE of CytoScape onmerged lncRNA–gene
interaction network. Square node, protein coding genes; hexagon node, lncRNA nodes; red node, higher
expressed genes in the higher production group; blue node, higher expressed genes in the lower
production group; orange node, higher expressed lncRNAs in the higher production group; purple node,
higher expressed lncRNAs in the lower production group; gray edge, lncRNA-gene interaction; green
edge, protein–protein interaction. (A) LncRNA–gene interaction network Module A. (B) LncRNA–gene
interaction network Module B.

Full-size DOI: 10.7717/peerj.4619/fig-5

also found three lncRNAs in module B, including LOC106991804 (third highest degree
node), LOC101101991 (seventh highest degree node) and LOC106991092 (ninth highest
degree node). As a result, these six lncRNAs were identified as hub lncRNAs.

Regulatory analysis of differentially expressed lncRNA
To detect potential lncRNA cis-regulatory genes, we identified the chromosomal co-
expression of genes 50 kbp upstream and downstream of the 32 lncRNAs. As a result, 3 cis-
regulatory genes of 3 lncRNAs were detected (LOC106990587 with TRIM7, LOC105603392
with KLHL40, and LOC106991804 with ARMC12). These genes were considered potential
lncRNA cis-regulatory genes. Among these three lncRNAs, only LOC106990587 showed
higher expression in the higher production group (Mutton Merino and Dorper).
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Of the 32 lncRNAs, five were pseudogene transcripts. Among them, we detected one
pseudogene exhibiting co-expression with its parent gene. With a Pearson r value = 0.88,
pseudogene LOC101121401 and its parent gene FTH1 were both expressed higher in the
lower production group (Small-tailed Han sheep). It is worth noting that FTH1 showed
the highest expression of all the differentially expressed genes, while LOC101121401 had
the third highest expression among the differentially expressed lncRNAs.

DISCUSSION
Sheep skeletal muscle gene profiling studies have had enormous impacts on our
understanding of muscle growth, providing the identification of novel regulators of
skeletal muscle gene expression and function and defining the pathways that interplay
to promote mutton sheep production. In this study, we performed a transcriptome
level analysis of lncRNAs in skeletal muscle tissues from high production mutton sheep
(Dorper sheep and Qianhua Mutton Merino sheep) and low production mutton sheep
(Small-tailed Han sheep). With the goal of identifying genes affecting muscle production
in mutton sheep, similar experimental designs were used by both of the studies (Zhang
et al., 2014; Sun et al., 2016a) that were selected as our data source. However, because
the experiments were performed with different muscles (the Longissimus, a back muscle
with high commercial value, and the Biceps brachii, a shoulder muscle) and read types
(single-end vs. paired-end), the statistical power of our design might be weakened, though
the exact degree of weakening is still unknown. To solve this problem, a normalization
analysis was performed to eliminate the existing batch effect. However, the unbalanced
data design and normalization might still be a weakness of our study. Furthermore, similar
problems were also present among the samples used for the co-expression analysis, where
six samples were from Longissimus dorsi and biceps from three Texel sheeps (PRJEB6169)
and 12 samples were from undefined muscles from crossbred sheep harbouring a callipyge
mutation or not (PRJNA223213). Further verification experiments on lncRNA expression
and lncRNA-gene regulatory relationships will be performed to confirm the discoveries
from our in silico analysis.

Compared with the two data source studies (Zhang et al., 2014; Sun et al., 2016a), the
most important innovation in this research is the detection of differentially expressed
lncRNAs. A number of studies (Wang et al., 2015; Mueller et al., 2015; Han et al., 2015;
Ballarino et al., 2015; Legnini et al., 2014) have proven that lncRNAs can regulate muscle
growth and differentiation through cis-regulatory, trans-regulatory or competing
endogenous pathways, which indicates that lncRNAs could be important muscle growth
regulatory factors and potential valuable molecular marker regions for mutton sheep
breeding. In our previous report (Chao et al., 2016), we performed a novel lncRNA
detection analysis with sequencing data from Zhang et al. (2014), though the functions
of the identified lncRNAs remain unknown. It is worth noting that the number of
differentially expressed lncRNAs detected in this study is far lower than our previous
report (Chao et al., 2016), which may be caused by the different methods and the statistical
power. Unlike protein-coding genes, the functions of the lncRNAs could not be annotated
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or predicted with functional enrichment analysis. In this study, to confirm the functions
of the differentially expressed lncRNAs, we applied co-expression analysis to seek potential
related genes. GO and KEGG pathway enrichment revealed that the co-expression genes
primarily include those known to be related to muscle development, metabolism, cell
proliferation and apoptosis. These findings suggest a role for lncRNAs in the growth of
sheep skeletal muscle.

Although some pseudogenes have been reported as nonfunctional, ‘dying’ genes (Zhu
et al., 2007), others have been found to be transcribed as noncoding RNAs (Emadi-Baygi
et al., 2017). Pseudogene RNAs can sequester microRNAs, RNA-binding proteins or
translation machinery (Poliseno, 2012), as well as produce natural antisense transcripts,
which fine-tune the expression of the corresponding sense transcripts at the epigenetic,
transcriptional or posttranscriptional levels (Emadi-Baygi et al., 2017;Morris, 2009). In this
study, we specifically examined the correlation between pseudogene lncRNA expression and
their corresponding genes. Among them, only LOC101121401 was co-expressed with its
corresponding gene, FTH1. Amajor function of FTH1 is the storage of iron in a soluble and
nontoxic state (Arosio, Ingrassia & Cavadini, 2009); FTH1 was also found to be associated
with several diseases (Xu et al., 2014; Chekhun et al., 2014; Li et al., 2015). Excessive iron
accumulation may cause the nitration of tyrosine residues, resulting in extensive protein
damage or iron-mediated nucleic acid damage, thereby leading to muscle damage (Bian
et al., 2003; Xu et al., 2012). Therefore, although there is still no direct evidence, FTH1
may regulate muscle growth through its effect on iron homeostasis. Furthermore, several
studies have proven that the FTH1 gene can negatively regulate cell proliferation in human
(Cozzi et al., 2000; Feng et al., 2012). In this study, FTH1 showed the highest expression
among all the differentially expressed genes, which is consistent with another report on the
high expression of FTH1 in skeletal muscle (Polonifi et al., 2010). This gene has also been
detected with multiple pseudogenes, though their functions are still unknown. Displaying a
similar expression pattern, LOC101121401 may regulate the expression of FTH1 and affect
muscle growth. However, since the sequence characteristics of pseudogenes are highly
similar to protein-coding genes, we cannot completely rule out possibility of an incorrect
mapping between them. More experiments and evidence will be required to confirm their
accuracy and regulatory relationships.

For the 31 differentially expressed non-pseudogene lncRNAs, only two lncRNAs
(LOC105611269 and LOC106991804) showed high similarity with human or mouse
lncRNAs. However, to our knowledge, there are no reports on the functions of these
lncRNAs to date. LOC285847 has been reported as a sensitivity molecular signature for
proliferative diabetic retinopathy (Pan et al., 2016). In our research, LOC106991804
showed higher expression in Small-tailed Han sheep muscle and co-expressed with
124 genes, and its co-expression genes were enriched for AMPK signalling, FoxO
signalling, HIF-1 signalling, cell cycle and p53 signalling pathways. It is worth noting
that LOC106991804 has been detected as a hub lncRNA in network analysis, and it has
also shown a potential cis-regulatory relationship with the ARMC12 gene. These results
indicate that LOC106991804 could play important roles regulating apoptosis in skeletal
muscle, though its high expression may be negatively correlated with muscle growth.
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Further study of the merged network with MCODE revealed eight modules, among
which two top score modules were selected and analysed based on GO enrichment. For
the first module, module A, most protein-coding genes were significantly enriched into
two RNA editing-related GO terms, while their related lncRNAs were expressed higher in
Small-tailed Han sheep. In the next module, module B, only three genes (TNNT1, TNNI1
and TNNC1) were significantly enriched into two muscle contraction-related GO terms.
As slow skeletal muscle troponin genes, TNNT1, TNNI1 and TNNC1 were reported with
consistent expression patterns in sheep (Sun et al., 2016b); they have also been reported
as important genes for maintaining slow myofibres (Pierzchala et al., 2014). These results
showed that genes in module B appear to be correlated with muscle type, and their only
related lncRNA in this module, LOC106991092, could be related to skeletal muscle type
determination or maintenance.

An important feature of noncoding RNAs is the capacity for cis-regulation (Guttman
et al., 2009). It has been reported that lncRNAs function through cis-regulation of nearby
protein-coding genes as a common mechanism (Nagel et al., 2014). In the present study,
three lncRNAs showed potential cis-regulation with nearby coding genes. Among them,
only LOC106990587 and its cis-regulation gene TRIM7 showed higher expression in
the high production mutton sheep. TRIM7 was first identified as glycogenin interacting
protein (GNIP) and reported to have a high expression in skeletal muscle (Skurat et al.,
2002). TRIM7 also mediates c-Jun/AP-1 activation through Ras signalling and showed
ubiquitin ligase activity towards RACO-1 (Chakraborty et al., 2015). It can be inferred that
the cis-regulation between LOC106990587 and TRIM7 may increase cell proliferation
and promote the growth of skeletal muscle. The other two lncRNAs, LOC105603392
and LOC106991804, showed higher expression in low production mutton sheep. For
LOC106991804 and its cis-regulation gene ARMC12, we could not find any relevant
studies. Their differential expression may indicate that they play a role in skeletal muscle
growth, though more tests are required to reveal their detailed functions. The KLHL40
gene, which is predicted to be a cis-regulation gene of LOC105603392 in this study, was
reported as a muscle-specific transcript gene locus (Garg et al., 2014). A number of studies
have verified that KLHL40 is a key regulatory control gene in sarcomere thin filament
growth (Chen et al., 2016; Seferian et al., 2016; Winter et al., 2016), though its impact on
muscle production is still unknown. Our results indicate that LOC105603392 may affect
muscle growth through the cis-regulation of KLHL40.

Overall, our computational analysis revealed a number of potential muscle growth/
production-related lncRNAs in mutton sheep. These findings will provide novel insights
into transcriptional level research on mutton sheep skeletal muscle systems.

CONCLUSIONS
In summary, a total of 39 differentially expressed lncRNAs were detected in this study.
Subsequent bioinformatics analyses revealed that 29 of these lncRNAs were associated
with muscle development, metabolism, cell proliferation and apoptosis. Six lncRNAs were
detected as hub lncRNAs, and four lncRNAs showed potential regulatory relationships
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with specific genes. Our research therefore provides the basis for further functional studies
focused on the roles of lncRNAs in sheep skeletal muscle growth and mutton sheep
production.
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