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Abstract

Background: The usual analysis of RNA sequencing (RNA-seq) reads is based on an existing reference genome and
annotated gene models. However, when a reference for the sequenced species is not available, alternatives include using a
reference genome from a related species or reconstructing transcript sequences with de novo assembly. In addition,
researchers are faced with many options for RNA-seq data processing and limited information on how their decisions will
impact the final outcome. Using both a diploid and polyploid species with a distant reference genome, we have tested the
influence of different tools at various steps of a typical RNA-seq analysis workflow on the recovery of useful processed data
available for downstream analysis. Findings: At the preprocessing step, we found error correction has a strong influence on
de novo assembly but not on mapping results. After trimming, a greater percentage of reads could be used in downstream
analysis by selecting gentle quality trimming performed with Skewer instead of strict quality trimming with Trimmomatic.
This availability of reads correlated with size, quality, and completeness of de novo assemblies and with number of mapped
reads. When selecting a reference genome from a related species to map reads, outcome was significantly improved when
using mapping software tolerant of greater sequence divergence, such as Stampy or GSNAP. Conclusions: The selection of
bioinformatic software tools for RNA-seq data analysis can maximize quality parameters on de novo assemblies and
availability of reads in downstream analysis.
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Background data focus on straightforward scenarios with diploid eukaryotes
with an available reference genome [2-5]. The implications of
data analysis decisions are less clearly understood in situations
where, e.g., the species of interest is a polyploid or the species
of interest does not have a reference genome, but a reference
genome is available from a sister clade. This study aims to ex-
plore RNA-seq data analysis from this scenario, where the main
steps are read trimming, either mapping to a related species ref-

Bioinformatics is a field under constant expansion with regular
advances in the development of software and algorithms. This
requires researchers to continuously evaluate available soft-
ware tools and approaches to maximize accuracy of experimen-
tal outcomes [1]. However, the majority of the relevant studies
comparing bioinformatic tools for RNA sequencing (RNA-seq)
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Figure 1: Schematic view of the RNA-seq pipeline followed on this work. (A) Samples were obtained from roots of the diploid Vaccinium arboreum (VA) and tetraploid
Vaccinium corymbosum (VC) grown at either pH 4.5 or 6.5 and sequenced. (B) Paired-end (PE) [llumina reads were either error corrected (cor; black lines) or not (Uc) and
trimmed for removal of adapters and either low-quality bases (trimm,; red crosses) or not (skewer). (C) Each set of reads was subjected to two de novo transcriptome
assembly methods (two individual samples and merge results, or four combined samples) with three assemblers, followed by redundancy reduction by CD-HIT and
RapClust clustering methods. Metrics were conducted on all steps. Trinity transcriptomes were further annotated, and their CD-HIT clusters used for mapping (under-
lined). (D) Transcripts were mapped to a diploid VC genome with gmap for mapping metrics, while short reads were mapped to either the genome or a transcriptome

using multiple read aligners to obtain read counts.

erence genome (from here on referred to as a “distant reference”)
or to a de novo transcriptome assembly, and read quantification
by gene or transcript (Fig. 1). Moreover, this study compares de-
cisions along the RNA-seq analysis steps of a workflow, exam-
ining all permutations of those decisions from the beginning to
the end of the pipeline.

From the many next-generation sequencing platforms that
generate RNA-seq data, [llumina has had the greatest success,
yielding high-quality reads at a reasonable price and read length
increasing with new generations of instruments [6]. An alter-
native to RNA-seq for the study of transcriptomes is isoform
sequencing, a method developed by Pacific Biosciences to an-
alyze molecules 1-6 Kb long. This method has the advantage of
capturing full transcripts but is significantly more expensive per
base and thus currently less commonly used than RNA-seq [7].
From raw RNA-seq reads, numerous informatic analysis deci-
sions must be made to derive meaningful biological data, start-
ing with any preprocessing of the reads. Despite the usually high
accuracy of Illumina reads (0.1% error rate), error correction is a
method with potential to improve the quality of read alignment
and de novo assembly [8]. Before sequencing, adapters are incor-
porated to both ends of each sequence. Trimming of bases orig-
inating from these adapters is required, but the merit of aggres-
sive vs gentle trimming of lower-quality bases, which modifies
the final amount of data, is still being explored [9].

After preprocessing, if a reference genome is available, RNA-
seq reads may be used to call variants or determine differen-
tially expressed genes; on the contrary, de novo assembly may

be used to reconstruct transcripts to do such analyses [10]. De
novo transcriptome assembly in plants is complex due to the se-
quence similarity of transcripts that are isoforms, paralogs, or-
thologs, and, in the case of polyploids, homoeologs. Moreover, in
transcriptomes of plants under environmental stress, alterna-
tive splicing is even more prevalent [11]. During de novo assem-
bly, this complexity is reflected in the form of bubbles or extra
branches in de Bruijn graphs that may lead to imperfect assem-
blies, with a portion of assembled transcripts affected by arti-
facts such as hybrid assembly of gene families, transcript fusion
(chimerism), insertions in contigs, and structural abnormalities
such as incompleteness, fragmentation, and local misassembly
of contigs [12, 13].

From the many assemblers developed to use with short
reads, Trinity [14] is often selected and usually produces good-
quality assemblies at single k-mer [4, 15]. Trans-ABySS [16],
which has good recovery of full transcripts, and SOAPdenovo-
Trans [17], designed to handle difficulties of plant genes assem-
bly, are also prevalent. A next step to refine de novo assemblies
is often to further reduce transcript redundancy. One popular
toolis CD-HIT [18], which removes shorter redundant sequences
based on sequence similarity. A more recently released cluster-
ing tool, RapClust [19], generates clusters based on the relation-
ships exposed by multimapping sequencing fragments and is
considerably faster than previous approaches. Several methods
are available to assess the overall quality, accuracy, contiguity,
and completeness of a de novo assembled transcriptome, includ-
ing basic metrics for assemblies, contig-level metrics, reference-



free evaluation methods that include read support, and compar-
ison to protein datasets from related species [10, 12, 20-22].

Read mapping is a crucial step to estimate gene expression
for further analysis but is made difficult by sequencing errors
and is dependent on characteristics of the reference (e.g., qual-
ity of gene annotation, relatedness to sequenced individuals,
size, repetitive regions, ploidy) [23]. Mapping transcript reads
to a reference genome has the additional challenge of cross-
ing splice junctions, some of which may not be accurately an-
notated [3]. Multiple metrics can be used to determine perfor-
mance of read aligners. Precision and recall are the usual metrics
with simulated data, while evaluations without a priori known
outcomes utilize mapping rate, base mismatch rate, detected
transcripts, or correlation of gene expression estimates to quan-
tify performance [2, 24]. These outcomes are dependent on the
individual implementations of each alignment software pack-
age. Many short-read aligners are based on hash tables, with
quick seeding of alignment candidates and alignment extension
with precise algorithms. These are more sensitive but usually
slower than those based on the ultrafast FM-index (Full-text in-
dex in Minute space) and extension by dynamic programming,
which are fast though less flexible with handling errors [2, 10].
When using a distant genome, sequence divergence between
reads and the reference genome may compromise results; nu-
cleotide mismatches are more likely to decrease the number
of mapped reads, while indels are usually better tolerated with
gapped alignments [2]. One benefit from the utilization of a dis-
tant genome is a direct comparison of gene expression results
from multiple related species [25]. On the other hand, utiliza-
tion of de novo assemblies avoids the mappingissues to a distant
genome and also captures divergent and novel genes useful for
species-specific discovery of new functions. Selecting between a
de novo transcriptome or a reference genome has been shown to
produce comparable gene expression profiles at over 87% corre-
lation in other systems but has not been examined in plants [5,
24].

Most prior research that examined the choice of informat-
ics software for RNA-seq data analysis worked with straightfor-
ward datasets, either performing a single type of analysis on the
data or working with data from diploid organisms with well-
developed reference genomes. However, much less research has
been done into genomics of complex species and, especially in
the case of plants, polyploids. Many polyploid crops now have
available reference genomes, such as strawberry [26], cotton [27],
wheat [28], and sweet potato [29], while others continue to rely
on genomic resources from diploid relatives, such as potato [30],
kiwifruit [31], peanut [32], and blueberry [33]. Here, we have se-
lected blueberry datasets as an example. A number of differ-
ent species of blueberries are used in agricultural production
and breeding, with autotetraploid Vaccinium corymbosum (VC;
highbush blueberry) as the most economically important [34].
A diploid accession of V. corymbosum was used for genome se-
quencing and construction of a blueberry reference genome [33,
35]. In this study, we use RNA-seq data from an autotetraploid
V. corymbosum (section Cyanococcus) and a diploid species, Vac-
cinium arboreum (VA;section Batodendron).

The sequencing data used in this work is 270 million Illumina
paired-end reads (2+101 bp long) for diploid VA and 582 mil-
lion reads for tetraploid VC, originating from eight plants each
[25] and sequenced on duplicate lanes. Libraries were prepared

from RNA collected from roots of plants of similar age after eight
weeks of growth in hydroponic systems under either stressful
(pH 6.5) or control (pH 4.5) conditions. All sequence data are
publicly available at the National Center for Biotechnology In-
formation (NCBI) (see details below). At the first step of data cu-
ration, our tested methods are error correction of RNA-seq data
with Rcorrector and trimming of low-quality bases by one of two
methods, Trimmomatic [36] or Skewer [37] (Supplementary Ta-
ble S1). Error correction of raw reads modified an average of 0.7%
bases per library, a proportion larger than the expected 0.1% se-
quencing error rate in [llumina reads and suggesting a possi-
ble masking of variability in the data. Next, both original and
corrected reads were trimmed using either Skewer or Trimmo-
matic at default settings. Gentle quality trimming with Skewer
retained on average 99.6% reads at mean length 99.8 bp (Supple-
mentary Table S2). In contrast, quality trimming with Trimmo-
matic, which has significantly more aggressive default trimming
parameters, retained 77.2% of reads at mean length 93.8 bp. Er-
ror correction had a minimal effect on trimming results. From
the combination of corrected/uncorrected reads and trimming
software used, four read sets (reads processed by Rcorrector and
Trimmomatic, Rcorrector and Skewer, Trimmomatic only, and
Skewer only) for each species were used in downstream analy-
ses.

A series of de novo assemblies were carried out with Trinity,
SOAPdenovo-Trans, and Trans-ABySS software packages (Sup-
plementary Table S1). For each species, assemblies of a single
control library, a single treatment library, or a combination of
both libraries were performed, using each of the four preprocess-
ing techniques as input (Skewer corrected, Skewer uncorrected,
Trimmomatic corrected, Trimmomatic uncorrected), to yield 24
initial runs from each assembler (Fig. 1 and Supplementary Fig.
S1). For the assembly of two individual libraries, the results were
combined post-assembly (Fig. 1 and Supplementary Fig. S1). The
possible benefit of this approach is the reconstruction of specific
transcripts from control and treated samples without mixture of
alternative splice variants, at the expense of including a smaller
data input size that may induce fragmentation of assemblies as
well as a requirement to merge the separate assemblies after-
ward. This approach is contrasted to the second method, which
combines multiple samples in a single assembly run; this ap-
proach aims at reconstructing longer and more complete tran-
scripts despite mixing fragments from splice variants.

Trinity, SOAPdenovo-Trans, and Trans-ABySS responded dif-
ferently to the number of input reads and how they are pre-
processing (Fig. 2). Trinity and Trans-ABySS produced tran-
scriptomes with similar numbers of transcripts, generally in-
creasing with the number of input reads, and with similar
N50 scores. By contrast, SOAPdenovo-Trans produced tran-
scriptomes with 27%-52% fewer transcripts (80,000-290,000 se-
quences). SOAPdenovo-Trans also demonstrated more sensitiv-
ity to the trimming and correcting methods, with the use of
Trimmomatic yielding a larger number of transcripts and in-
creased N50 statistic. For both species, the highest observed N50
was achieved by uncorrected Trimmomatic-trimmed reads and
four input samples assembled with SOAPdenovo-Trans. On the
contrary, Skewer-trimmed reads had reduced transcript num-
bers and N50. The N50 from Trinity and Trans-ABySS assem-
blies followed a more constant pattern, with Trinity reaching a
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Figure 2: Basic statistics of de novo transcriptome assemblies and CD-HIT or RapClust reduced transcriptomes. Individual assemblies are plotted with the number of
input fragments along the x-axis. Lines are drawn to visually associate assemblies from the same species, assembler (SOAPdenovo-Trans, Trans-ABySS, or Trinity)
and error correction strategy (with or without Rcorrector). Total number of transcripts, N50 value, percent of GC content, and Detonate scores (rows) are shown for
initial assemblies, assemblies clustered with CD-HIT, and assemblies clustered with RapClust (columns). Point colors indicate species and number of samples used on
assembly. Point shapes indicate use of error correction (cor) or not (Uc) and trimming software (Skewer or Trimmomatic).

higher N50 (440-580 bp) compared to 390-465 bp from Trans-
ABySS. Trinity also yielded a higher N50 in VA than VC and a
slight improvement when using four samples. Detonate [22], a
reference-free evaluation tool, was used to compare each set of
transcriptomes formed from the same set of reads, where scores
closer to zero indicate better assemblies. Transcriptome quality
as assessed by Detonate was highest in Trinity, closely followed

by Trans-ABySS; error correction and use of Trimmomatic had a
positive impact on these metrics.

GC content of final transcriptome assemblies also varied
by assembly strategy. Our results (Fig. 2) contained assemblies
of 42.3%-43.9% GC for VA and 42.1%-43.3% GC for VC, with
the highest variability across samples found with SOAPdenovo-
Trans. GC content was generally higher and more variable when



reads were preprocessed by Skewer, possibly indicating the role
of residual primer sequences or low-quality bases in lowering fi-
nal GC content. When input reads were trimmed with Trimmo-
matic, assemblies generally had very similar GC content across
assemblers. The assemblies for VC four-sample (4s) with Trim-
momatic had GC content between 42.1% and 42.2%, match-
ing the 42.2% of predicted VC gene models from the reference
genome [33]; VA transcriptomes had 42.3%-42.4% GC under the
same conditions.

Quality assessment can also be measured as the proportion
of RNA-seq reads used to generate each assembly that map
back to the transcriptome (Fig. 3). Read support (percent reads
mapped, top row) was best for Trinity, ranging from 66% to 74%,
followed by Trans-ABySS with 60%-70%, and was very variable
in SOAPdenovo-Trans, 9%-56%. Strict trimming with Trimmo-
matic and error correction had an overall positive impact on read
support. All assemblers showed reduced read mapping with un-
corrected reads and Skewer trimming; the trend was most pro-
nounced for SOAPdenovo-Trans, with more than 30% average re-
duction in mapping rate when using Skewer uncorrected than
Trimmomatic corrected reads.

In addition to assembly metrics, functional annotation of
transcripts was done to assess putative biological information
contained in the transcriptomes. An initial observation of puta-
tive coding regions consisted of finding complete open reading
frames (ORFs) with at least 50 amino acids from start to stop
codon. SOAPdenovo-Trans showed strong variations by trim-
ming software, with Skewer transcriptomes having 7%-12% of
transcripts with predicted ORF vs 25%-31% with Trimmomatic
(Fig. 3). Trinity, between 12% and 17%, had 2%-5% higher con-
tent on ORFs than Trans-ABySS, which ranged from 8% to 15%.
Finally, assemblers were compared as a function of complete-
ness of their assemblies, indicated by the total number of con-
served orthologs (Benchmarking Universal Single-Copy Ortho-
logues [BUSCO]) present in the transcriptomes, from 1,440 plant
BUSCOs. Trans-ABySS yielded the assemblies with the high-
est completeness, with 792-1,217 identified BUSCOs, closely fol-
lowed by Trinity with an average of 40 fewer BUSCOs per tran-
scriptome. SOAPdenovo-Trans again showed strong variation
with trimming type, yielding between 237 and 566 BUSCOs with
Skewer and between 645 and 951 with Trimmomatic.

Overall, these results show the impacts error correction,
trimming, and assembly software can have on transcriptome as-
sembly results. Error correction contributed to transcriptomes
with more transcripts, with higher completeness, and with de-
creased GC content; for Trinity and Trans-ABySS, error correc-
tion promoted higher N50 and ORF content while decreasing
percent of reads mapping back to transcriptomes. These results
are in agreement with previous reports showing improvement
of assembly quality after using an error correction tool [8, 38].
Use of strict trimming, such as with Trimmomatic, generally im-
proved transcriptome metrics and all Detonate scores, with a
smaller number of total transcripts, improved N50, more con-
sistent GC content, better rate of mapping of reads, and higher
proportion of coding regions, with very little loss of complete-
ness when using four samples. Use of Skewer-trimmed reads
had a particularly negative effect on SOAPdenovo-Trans, includ-
ing reduced number of transcripts, reduced N50, reduced Deto-
nate score, lower percent of reads mapping, much lower number
of identified ORF, and lower completeness. VA transcriptomes
differed from those of VC with a generally lower number of tran-
scripts and higher Detonate scores. With use on the Trans-Abyss
and Trinity assemblies, more differences in VA vs VC can be ob-
served, including slightly higher N50 and identified ORFs in VA

assemblies, but more completeness in VC assemblies. Using two
samples yielded fewer transcripts and a lower percent of reads
mapped and lower completeness than those from four samples,
despite their higher Detonate scores.

Assemblies may contain sequences from highly similar gene iso-
forms, transcript isoforms of the same gene, and, in the case of
polyploids, homoeologous genes that may be considered redun-
dant and lead to reads mapping to multiple locations. In addi-
tion, considering that plants contain 37,000 proteins on average
[39], the number of transcripts from all of the Vaccinium assem-
blies (Fig. 2) largely surpasses this quantity. Tools aimed at the
reduction of such redundancy are widely used to select nonre-
dundant representative sequences [15, 40, 41]. We have com-
pared the clustering capabilities of two tools with very different
approaches (Supplementary Table S1). CD-HIT was used to select
long representative transcripts and remove smaller redundant
sequences at 95% similarity cutoff. RapClust groups transcripts
based on the information of multimapped reads and removes
transcripts with low read support. CD-HIT returns a classifica-
tion of transcripts into clusters and a set of representative tran-
scripts with reduced redundancy, while RapClust returns clus-
tering information suited to be used for downstream differential
expression analysis but does not report a reduced transcript set.
For the sake of comparing results, the longest transcript from
each cluster generated by RapClust was selected to form corre-
sponding reduced assemblies. Prior to clustering, single-sample
assemblies were combined into a merged assembly, with ex-
pected introduction of high redundancy. Then, transcripts from
the 16 assemblies (8 per species) and 3 assemblers (Fig. 1 and
Supplementary Fig. S1) were subjected to classification into clus-
ters with either of these tools.

Clustering had a noticeable impact on assemblies (Fig. 2),
with RapClust producing fewer clusters in comparison to CD-
HIT’s reduced transcript set in all cases. Noticeably after appli-
cation of RapClust, Trinity and Trans-ABySS assemblies had a
very similar number of transcripts, N50, and Detonate scores.
On average, the number of clusters after CD-HIT and RapClust
were 22% and 51% smaller than the initial number of tran-
scripts, respectively, for both Trinity and Trans-ABySS, and 5%
and 26% after SOAPdenovo-Trans. To a lesser extent, the de-
gree of clustering varied by type of assembly and species. De-
spite the 4s assemblies having larger initial numbers of tran-
scripts, the percent of removed or clustered transcripts was
greater in two-sample (2s) than 4s assemblies. Thus, after clus-
tering, a larger proportion of representative sequences was re-
tained on 4s assemblies compared to 2s assemblies by 12%, 13%,
and 8.7% by CD-HIT, or 2.5%, 3.3%, and 15% by RapClust, on Trin-
ity, Trans-ABySS, and SOAPdenovo-Trans, respectively. Cluster-
ing only showed small difference by species with Trinity assem-
blies, with 3.2% more sequences retained as clusters in VA than
VC. These trends are likely due to the putative higher redun-
dancy in 2s assemblies and the presence of homoeolog genes
due to polyploidy in VC. Clustering has a variety of impacts
on N50. The N50 of Trinity assemblies was not much changed,
while the N50 for Trans-ABySS assemblies was increased. For
SOAPdenovo-Trans, the N50 was reduced after clustering, par-
ticularly with Trimmomatic trimming, from the highest N50 of
1,260 to 1,180 and 1,030 after CD-HIT and RapClust, respectively.
Detonate scores were used to evaluate the original assembled
transcripts with the three assemblers as well as the cluster rep-
resentative sequences yielded by CD-HIT and the longest tran-
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Figure 3: Read and annotation support of de novo transcriptome assemblies and CD-HIT or RapClust reduced transcriptomes. Quality metrics for assemblies, including
percent of input reads that map back to assemblies, the proportion of transcripts with a putative open reading frame (ORF), and completeness as determined by
the presence of Benchmarking Universal Single-Copy Orthologues orthologs (rows). These metrics are represented for initial assemblies, assemblies clustered with
CD-HIT, and assemblies clustered with RapClust (columns). Lines are drawn to visually associate assemblies from the same species, assembler (SOAPdenovo-Trans,
Trans-ABySS, or Trinity), and error correction strategy (with or without Rcorrector). Point colors indicate species and number of samples used for assembly; point
shapes indicate use (cor) or not (Uc) of error correction and trimming software (Skewer or Trimmomatic).

script from each RapClust cluster. Clustering with CD-HIT did
not substantially modify Detonate scores, while for RapClust,
Trinity scores were slightly lowered.

GC content of clustered assemblies (Fig. 2) was reduced by
an average 0.2% from the original assemblies in those from two
samples and generated with Trinity or Trans-ABySS. The same
reduction was observed in 2s assemblies when using RapClust
on SOAPdenovo-Trans assemblies. In all cases, values were re-
duced closer to the putative GC percent found in the diploid VC
reference genes. All changes were minor, with most assemblies
from four samples and Trimmomatic-trimmed reads staying
close to their original values after clustering. Clustering yielded
a less than 5% decrease in support from RNA-seq reads of the
transcriptomes generated with Trans-ABySS and SOAPdenovo-
Trans (Fig. 3) or clustered with CD-HIT. Trinity assemblies had
an average of 7% loss of read support under clustering with
RapClust, which is close to Trans-ABySS values but still having

the highest support. Differences in ORF content between Trin-
ity and Trans-ABySS decreased with clustering as Trans-ABySS
modified ORF content from 8%-15% to 8%-12% after CD-HIT and
12%-15% after RapClust, while Trinity changed from 12%-17% to
11%-15% and 13%-15% after CD-HIT and RapClust, respectively.
Lower values of SOAPdenovo-Trans remained at 7% after clus-
tering, but the highest ORF content, originally at 31%, changed
to 32% and 27% after CD-HIT and RapClust, respectively. The
variation of the proportion of transcripts containing a coding se-
quence was not mirrored by the degree of completeness. Clus-
tering with CD-HIT did not modify the overall completeness of
assemblies, while RapClust slightly decreased them by 14, 43,
and 24 in Trans-ABySS, Trinity, and SOAPdenovo-Trans, respec-
tively.

Clustering with CD-HIT was effective in reducing the redun-
dancy of transcriptome assemblies in Trinity and Trans-ABySS,
without substantial modification of quality metrics. This reduc-



tion affected especially 2s assemblies compared to 4s, concomi-
tant with the expected higher artificial redundancy induced in 2s
assemblies after the merging of single assemblies. SOAPdenovo-
Trans assemblies displayed little modification from CD-HIT clus-
tering, suggesting a lower number of isoforms or less fragmenta-
tion in the output transcriptomes. By contrast, RapClust reduced
the number of transcripts from all three assemblers, with dif-
ferent effects. SOAPdenovo-Trans assemblies had a lower N50
and ORF content but similar read support, Detonate scores,
and completeness after RapClust clustering and selection of
the longest transcript as a representative. For Trans-ABySS as-
semblies, there were similar read support, Detonate scores, and
completeness after RapClust but higher N50 and ORF content,
suggesting a reduction of smaller and noncoding transcripts. For
Trinity assemblies, the similar N50 and ORF content but lower
read support, Detonate scores, and completeness suggests a re-
duction of transcripts of all sizes by RapClust.

Biological consistency of clustering methods

The general evaluation of de novo transcriptome assemblers re-
vealed that Trinity assemblies have balanced metrics across
options, with high support of RNA-seq reads, medium N50
and proportion of coding transcripts, and high completeness.
Trans-ABySS was competitive on completeness and balanced
on GC content but had lower read support, N50, and ORFs.
SOAPdenovo-Trans was very sensitive to the input read trim-
ming, showing good metrics with Trimmomatic, but had an
overall low read support and completeness compared with the
other methods. Thus, from here on, Trinity assemblies are se-
lected to explore in more detail assembly metrics and mapping
of RNA-seq reads.

To further explore the effect of clustering, we utilized the
published reference genome from the diploid V. corymbosum [33].
We presented two scenarios, one with a distant diploid species
and the other with the same species but different ploidy level.
To explore the portion of transcripts with sequence homology
that each species shares with the reference genome, we mapped
the clustered transcriptomes to it. Transcripts were classified as
uniquely mapping, mapping to multiple loci, translocated (parts
of the transcripts were mapped to different locations on the
genome), or not mapping. These results were combined with
coding sequence (cds) predictions from Transdecoder and blast
homology results. Overall, transcripts generated for the diploid
VA mapped to the reference genome at a larger proportion than
the tetraploid VC, and the two-sample merged assemblies (2s)
mapped at a higher rate than the 4s ones (Fig. 4). Specifically,
the average mapping rate of transcripts was 66% and 57% in VA
2s and 4s and 57% and 43% in VC 2s and 4s. Thus, the use of mul-
tiple samples leads to a higher proportion of transcripts not re-
sembling the genome, representing species-specific transcripts
and possibly artifacts. While VA has higher mapping rates than
VC, discrimination between a true higher similarity or an ef-
fect due to the read input cannot be made. The proportion of
multiple mapping and translocated transcripts had little varia-
tion across transcriptomes in both species, being 5%-7% and 4%,
respectively. Multimapping rate reflects highly similar regions
of the genome, and translocations could indicate either true
genome rearrangements or assembly artifacts such as transcript
fusions (chimeras). Clustering with CD-HIT or RapClust (using a
single representative sequence for each cluster), despite affect-
ing the total number of transcripts, maintained similar propor-
tion of transcripts in each mapping category; on average, Rap-
Clustincreased 2.2% unique and decreased by 0.5% multiple and
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Figure 4: Mapping of de novo assembly transcriptomes to V.corymbosum refer-
ence genome and annotation of transcripts. Transcripts mapped uniquely to the
genome (uniq), to multiple locations (mult), with translocations (transloc), or did
not map (out). Annotation from prediction of coding sequences (cds) using ho-
mology results from blast is divided as “No Functional Annotation” (map), “CDS
Only” (cds), and “CDS with Blast Hit” (blast). Transcriptomes for V. arboreum (VA)
or V. corymbosum (VC) produced from two (2s) or four (4s) samples were clustered
with either CD-HIT (C) or RapClust (R). The last two letters indicate trimming
with Trimmomatic (T) or Skewer (S), and use (C) or not (U) of error correction of
RNA-seq reads.

translocated mapping transcripts compared to CD-HIT. Trim-
ming also influenced mapping; assemblies from reads trimmed
with Trimmomatic showed an average 2% higher unique map-
ping rate than their counterparts with Skewer, suggesting better
accuracy with stricter trimming. No effect was observed from er-
ror correction.

Prediction of a coding sequence and the extent to which it
may be coding for proteins was used as an indicator of biologi-
cal information contained in transcripts. Transdecoder finds all
ORFs and selects the most likely putative cds using homology
search results from blast; 51%-59% of transcripts contained a
predicted cds for all assemblies (Supplementary Table S3). Com-
pared to the length of original transcripts, the average length
of cds decreased by 13% and 20% on 2s and 4s assemblies, re-
spectively. Transcripts within each category (unique, multiple,
translocated, and not mapping) had different likelihoods of hav-
ing a predicted coding sequence and additionally of cds showing
homology to known proteins. On average, 49.2%, 51.8%, 54.8%,
and 64.5% of the transcripts in the categories unique, multi-
ple, translocated, and not mapping contained a predicted cod-
ing sequence (Fig. 4, Supplementary Table S3). In addition, 54.0%,
42.4%, 55.2%, and 20.1% of the cds on those categories, respec-
tively, had a blast hit. Thus, a relatively large proportion of cds



do not map to the genome, particularly in VC with four sam-
ples (72%). These transcripts also show low similarity to known
proteins, leaving unclear whether they belong to true novel
transcripts or they are assembly artifacts. For transcripts that
mapped to the genome, VA exhibited a greater proportion of an-
notation than VC. Nonetheless, comparing absolute number of
transcripts, VC has a larger set of mapping transcripts with cds
but also an even larger number of transcripts not matching the
reference than VA. Influence from the other analysis options on
annotation distribution was less drastic. Clustering with Rap-
Clust had a positive effect on the proportion of cds and blast
results of unique and translocated transcripts, especially in 2s
assemblies, in the range of 0.5% to 5.5%. Changes due to read
trimming or correction were lower than 2%.

Specific variations on Trinity transcriptome completeness
throughout the sequential stages of processing (i.e., assembly,
clustering, and cds prediction) used the BUSCO tool to report, for
each of the 1,440 near-universal conserved orthologs searched,
whether it is present in the assembly as complete and single-
copy, complete and duplicated, fragmented, or missing. Exam-
ining the impact on BUSCO results by read processing, assem-
blies from soft trimmed reads with Skewer presented higher
completeness (Fig. 5A). Interestingly, error correction improved
the formation of complete BUSCOs on 2s assemblies, while it
did not have a significant effect on 4s assemblies. However, the
major options influencing completeness were blueberry species
and number of samples used. Thus, assembly of complete genes
was improved in VC compared to VA and in assemblies of four
rather than two samples (Fig. 5A). Overall, completeness of CD-
HIT clusters was very similar to those of de novo assemblies,
while RapClust clusters contained fewer total BUSCOs. Selec-
tion of cds further decreased completeness, either decreasing
complete genes or also increasing fragmented genes, mostly in
4s assemblies. In addition, the distribution of complete vs frag-
mented BUSCOs shows a trend where a reduction in total BUS-
COs is followed by an increase in fragmented BUSCOs (Fig. 5A).
Following this trend, the rate of fragmented BUSCOs was not
significantly modified by read processing nor by clustering with
CD-HIT, while RapClust increased it except in VA 2s, where frag-
mented BUSCOs were reduced.

While some gene families may have undergone expansion or
contraction since the Vaccinium common ancestor, we expect the
majority of transcripts to provide one-to-one orthologs for the
VA gene set and two-to-one orthologs for the tetraploid VC gene
set. Coincident with their ploidy, duplicated vs single-copy ratio
in unclustered VA de novo assemblies was half that of VC (0.50
in 2s and 0.58 in 4s). Also, the duplication ratio in 2s vs 4s un-
clustered assemblies was 1.25 in VA and 1.45 in VC, supporting
higher redundancy in 2s assemblies. These ratios are indepen-
dent from the size of transcriptomes. Clustering was efficient to
remove redundant genes, as shown by the reduction of dupli-
cates. RapClust drastically removed most duplicated BUSCOs,
leaving 20-30 duplicated BUSCOs for all assemblies, while CD-
HIT performed a reduction proportional to the assembly length
of 62% on 2s and 44% on 4s assemblies. While the clustering
did remove many duplicated BUSCOs, most became single-copy
BUSCOs and were not lost from the assembly altogether. Only
in the 4s assemblies, comparing the original assembly to Rap-
Clust cluster transcripts, was there a significant decrease in the
number of complete BUSCOs (Fig. 5B). Ideally, clustering would
reduce splice isoforms and partially assembled transcripts; how-
ever, the reduction in completeness suggests possible removal of
gene isoforms in both species and collapse of homoeologs in the
tetraploid VC, especially by RapClust.

BUSCO results were not only used to assess completeness but
also to measure the success of the clustering methods using an
adaptation of the Jaccard similarity method. Taking advantage
of BUSCO consensus sequences, transcript co-annotation was
calculated as the number of transcripts with the same BUSCO
annotation within a cluster (set intersection) divided by the to-
tal number of transcripts with that BUSCO annotation or in the
cluster (set union). The result is a value in the range of 0 to
1, from low to perfect shared annotation of transcripts within
a cluster. This method not only indicates the degree of co-
annotation depicted by each clustering algorithm but also com-
pares the putative biological relevance of clusters. In this re-
spect, RapClust consistently outperforms CD-HIT on clustering
of co-annotated BUSCO genes (Fig. 5C). Clusters from the diploid
VA were markedly better co-annotated than those from VC. Gen-
erally, RapClust performance was enhanced on larger transcrip-
tomes, while CD-HIT performed better on smaller ones. In re-
lation to read processing, Trimmomatic and uncorrected reads
generally achieved higher scores.

To explore the percent of the blueberry genome captured by
the de novo assemblies, base coverage was calculated for tran-
scripts that mapped uniquely to the diploid reference genome
(Figs. 4 and 5D). Assembly base coverage is the proportion of
bases of each transcript assembly that were mapped to the refer-
ence genome, and genome base coverage is the proportion of the
reference genome covered by the transcripts. In general, both
metrics showed inverse correlation. Thus, genome coverage was
enhanced with the use of Skewer, four samples, and CD-HIT,
while decreasing assembly coverage. Thus, genome coverage is
concordantly improved by those options that also increase tran-
scriptome size, where a larger number of transcripts is able to
better represent genomic sequences. This is true for both blue-
berry species, with the distinction that VC exhibits both better
genome and assembly coverage than VA, consistent with phylo-
genetic proximity to the reference genome species. On the other
hand, trimming with Trimmomatic, 2s assemblies, and clus-
tering with RapClust had better assembly coverage, but lower
genome coverage. This suggests that transcripts generated from
more restrictive options are more likely to be real genes that
can be found in the genome, but the more restrictive options do
exclude some genes. Error correction did not follow this trend
and generally decreased assembly coverage while not affecting
genome coverage.

As an alternative to de novo assembly, RNA-seq analysis for these
two species could utilize a mapping approach with the publicly
available genome of diploid VC. With this approach, an entirely
different set of software options becomes available. In this case,
mapping to a genomic reference that is evolutionarily diverged
from the sequenced species may make accurate read mapping
more difficult. For the diploid VA, mapping to homolog genes
is expected, while for the tetraploid VC, reference genes may be
mapped by reads originating from both homolog and homoeolog
sequences. To account for sequence divergence, we compared
results from five representative mapping software programs,
run with either default settings or increasing mismatch toler-
ance (Fig. 6A, Supplementary Table S1). Overall, aligners behave
similarly on both blueberry species. The programs that yield the
most mapped reads are Stampy and GSNAP, both of which were
designed to tolerate more sequence divergence during mapping,
although only Stampy surpassed 5% mismatch rate (Fig. 6B).
Bowtie2 and HISAT? yielded the lowest mapping rates. The ad-
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dition of relaxed conditions, despite modifying the percent of
mismatches tolerated on alignments, did not have a significant
effect on mapping results of GSNAP, Stampy, and STAR; it low-
ered the mapping rate for Bowtie2 and increased it for HISAT2,
especially in VA. The effect of trimming was correlated with the
number of available reads to be mapped; thus, Skewer improved
mapping rates by 5%-11% compared to Trimmomatic (Supple-
mentary Table S4). Finally, corrected reads, though not signifi-
cant, promoted an increase in the mapping rate for all options,
with 0.7% and 0.5% average increase in VA and VC and up to 2.5%
in HISAT2 in VA.

It is desirable to utilize the maximum number of reads as
possible in differential gene expression analysis, as increased
depth of read counts leads to more sensitivity in statistical anal-
ysis. For example, more depth would increasingly allow detec-
tion of differences in lowly expressed genes or genes with small
log fold changes in expression between treatments. To use this
as a quality metric, we examined the successful conversion of
raw reads to countable reads for each gene model using the soft-
ware HTSeq. Starting from all mapping results, a read may not
be converted to a countable read due to low-quality mapping,
multiple alignments, or mapping to a genomic region without
an annotation. The influence of each factor varies by mapping
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Figure 6: Read mapping to V. corymbosum reference genome. (A, left panels) Proportion of total reads mapping to reference (gray boxes or higher values) converted
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programs were compared at default and modified settings to increase mismatch tolerance. Reads used (cor) or not (Uc) error correction and Trimmomatic (trimm) or

Skewer trimming software. Results are distribution of eight samples.

tool (Supplementary Fig. S2). The main cause of failed read con-
version into counts was low quality of read alignment, found
in Bowtie2, HISAT2, Stampy, and GSNAP, by decreasing mag-
nitude. The second major factor that prevented counting was
mapping within an intergenic region, which accounted for 5%-
13% of mapped reads (Supplementary Figs. S2 and S3). Map-
ping to exonic features showed even larger variability, ranging
from 57% displayed by Stampy to 80% by HISAT2, varying by
mapping tool (Supplementary Fig. S3). In relation with mapping
rate, these values indicate that both programs have similar map-
ping rates to exons, but Stampy is mapping more reads to non-
exonic regions that may present higher sequence divergence.
After collecting useful read counts, count rates to gene models
were smaller than mapping rates by 14.2%, 10.9%, 7.5%, 15.7%,
and 3.3% for Bowtie2, GSNAP, HISAT2, Stampy, and STAR, repre-
senting a loss of up to 45% of mapped reads for Bowtie2 and be-
low 15% for STAR (Fig. 6A, right panels). Globally, modification of
mismatch tolerance increased this loss in Bowtie2 and Stampy
and reduced it in HISAT2. Read loss using Skewer compared to
Trimmomatic was larger on GSNAP and Stampy and smaller on
HISAT?2 and Bowtie2. Interestingly, the rate of mapped reads not

turned into counts in STAR was constant under the preprocess-
ing and software options tested. After counting, count rates (Fig.
6A, lower values) displayed similar response to read process-
ing as mapping rates discussed above, with GSNAP and Stampy
showing equally high count rates.

An important issue in science is reproducibility of results
that, in the case of mapping results, can be reflected as simi-
larity of gene count profiles, which ultimately determine genes
that are differentially expressed. Correlation of counts was cal-
culated across all blueberry samples comparing the 20 combi-
nations of read processing and mapping software with default
options (Fig. 7). Concomitant with their similarity on mapping
results to the reference genome, VA and VC shared major cor-
relation patterns between software programs, where two ma-
jor groups are formed. This grouping is consistent with the al-
gorithmic similarities of the software, i.e., one group is com-
posed of Bowtie2 and HISAT2, which utilize a FM-index, and
the second group includes GSNAP, Stampy and STAR, which use
a combination of suffix array/hash table. Correlation was usu-
ally influenced by the trimming option, so that Skewer signifi-
cantly improved correlation on GSNAP and STAR, Trimmomatic
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Figure 7: Correlation of gene count profiles after mapping to V.corymbosum genome. Values are mean of eight samples in either V. arboreum (VA, upper triangle) or V.
corymbosum (VC, lower triangle). Each row/column corresponds to a unique combination of mapping software, trimming software, and error correction.

on Bowtie2 and Stampy, and HISAT2 was lightly affected by trim-
ming. Interestingly, only Bowtie2 and HISAT2 responded to read
correction, suggesting higher sensitivity to errors by the FM-
index.

Read mapping to de novo assemblies

The previous section focused on the effects of read correction,
trimming, and alignment software on read mapping to a ref-
erence genome. Here, a similar analysis is performed though
use of de novo assemblies from Trinity clustered with CD-HIT.
To simplify the analysis, reads that underwent certain correc-
tion and trimming processing (e.g., samples with corrected reads
trimmed with Skewer) were only mapped to the assemblies pro-
duced by reads with the same pre-processing. This method of
de novo assembly followed by alignment is common for RNA-seq
analysis when no reference genome is available and has advan-
tages, including that mapping to transcript assemblies is usually
contiguous, instead of spliced, and that assemblies are species
specific, unlike a distant reference genome. All the aligners pre-
viously used for the genome alignment may also be used with
transcriptomes. In addition, we incorporated the Salmon tool for
transcript quantification, which is built solely for alignment of
reads to a transcriptome.

Using de novo assemblies as the reference, mapping perfor-
mance of the five aligners showed lower variability by condi-
tion (trimming and type of assembly) compared to mapping to

the genome, with Stampy and GSNAP again as best performers
(Fig. 8). The mapping profile was similar for both species, with
higher mapping rates for VC than VA by 1.4% using Skewer and
2.5% using Trimmomatic, except for Salmon. Also, 4s assemblies
had consistently better mapping rates than 2s assemblies, with
improvements for Skewer/Trimmomatic of 3.7/3.0% in VA and
3.8/3.4% in VC. Examining only the effect of trimming, yield is
likewise correlated with the number of reads available for map-
ping, so that Skewer had on average 12.5% more reads mapped
than Trimmomatic. Finally, error correction of reads did not have
a significant effect on read mapping. Examining conversion of
raw reads to countable reads, 30%—-45% and 22%-30% of mapped
reads in 2s and 4s assemblies were not able to be turned into
counts, with higher values on 2s assemblies than 4s ones (Fig. 8,
right panels). For Bowtie2 and Stampy, the major cause of read
loss was low-quality alignments, while for GSNAP, HISAT?2, and
STAR, most of the dropped reads were multimapped (Supple-
mentary Fig. S4). Read counts further reduced variability across
programs and intensified the difference between mapping to 4s
compared to 2s assemblies, increasing by 9.1/6.1% in VA and
9.8/7.9% in VC for Skewer/Trimmomatic, respectively. The dif-
ference between using Skewer or Trimmomatic was reduced to
an average of 9%. The different results yielded by Salmon re-
flect its different algorithm, which performs pseudo-mapping
to estimate abundance but does not report mapping results in
a format suitable to do quality assessment of alignments. The
consequence is that Salmon has an artificially higher estimated
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Figure 8: Read mapping to CD-HIT clustered de novo assemblies. Proportion of total mapped reads (left panels, gray boxes), converted to counts (left panels, white
boxes), and percentage of the difference (right panels). Six mapping software programs were compared at default settings on assemblies made from four samples,
produced either by two sets of two samples independently assembled (2s) and later merged or from the four samples assembled together (4s). Reads used (cor) or not

(Uc) error correction and Trimmomatic (trimm) or Skewer trimming software.

count rate than reads mapped, and since no reads are filtered
out for quality score, Salmon has higher count rates than other
approaches.

In the case of mapping to a de novo assembly, calculation of
a correlation of mapping results is not directly due to each as-
sembly having their own set of transcripts. Hence, rather than
program-to-program correlation, which is shown in the pre-
vious section, reference-to-assembly count profiles were com-
pared (Fig. 9). To do this, the reference gene model gene space
was used for such comparison. New count profiles for assem-
bly mapping results were obtained by adding counts of all tran-
scripts mapped to each single reference gene model. Then, they
were compared to results with the reference genome by same
read pre-processing and mapping software. Utilization of the
reference genome from diploid VC, though useful for a shared
gene set to compare, has the inconvenience of not represent-

ing species-specific transcripts (blue bars in Fig. 4). VA is a sis-
ter species but is also a diploid, so one-to-one homology may
be expected. However, tetraploid VC assemblies not only con-
tain a larger proportion of transcripts that do not match the
genome but also splice isoforms, and lowly diverged homoe-
olog sequences are expected to map to the same gene models.
Likewise, balancing this effect, reads originated from transcripts
sharing sequence similarity are expected to map to the same
gene model on the reference genome.

The highest assembly-to-genome correlation values are ob-
tained on the diploid VA, which reach 75% on all programs (Fig.
9). However, the best-performing program differs by species:
GSNAP and Stampy for VA and Bowtie2 and HISAT?2 for VC. For
both species, results with the larger 4s assemblies are better
correlated to the genome than the 2s assemblies. Overall, the
preference for trimming software, if any, is opposite by species;
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Figure 9: Correlation of gene count profiles obtained with de novo assemblies and the reference genome. Counts of transcripts aligned to the same reference gene
model were added and re-annotated as that gene model. Correlation was calculated on the common set of gene models with non-zero counts on both reference and
assemblies by mapping software and read pre-processing (error correction and trimming). Uc stands for uncorrected, cor for corrected, trimm for Trimmomatic. Color
indicates mean correlation of reference counts with Salmon, a transcript-specific quantification tool. Values are mean + standard deviation of eight samples.

Skewer and Trimmomatic improves 2s and 4s assemblies in VA,
respectively, and Skewer improves 4s assemblies in VC. These
differences caused by read processing are more prominent on
4s assemblies, while on 2s assemblies they induce significant
changes on VA with Bowtie2, HISAT2, and STAR. This suggests
that stricter trimming in the distant VA may help mapping ac-
curacy on the diploid VC genome, especially with Bowtie2 and
HISAT2 4s, while gentle trimming in the tetraploid VC may help
by either better assembly of transcripts or read mapping. Salmon
results correlate well with the different aligners in VA, espe-
cially GSNAP and Stampy (Fig. 9, bar colors), while the tetraploid
VC has overall poorly comparable results. This suggests that
Salmon transcript quantification may be better suited for less
complex genomes.

Discussion

RNA-seq is an affordable and versatile tool to analyze transcrip-
tomes of any species. Depending on the available resources, it
can be guided by a reference genome or by building custom as-
semblies that will reflect the transcripts present in the samples.
However, many confounders make the analysis less straight-
forward than simply trimming adapters, assembling reads as
needed, and mapping to a reference. Some of these confounders
are common for any RNA-seq data analysis, such as sequencing
errors, repetitive sequences, natural heterozygosity, and vari-
ants, while the analysis of a species other than the reference
has additional sequence variation and, in the case of a polyploid,
gene redundancy. Thus, we explored the repercussions of vari-
ous informatic choices on the final gene expression profiles.

Mlumina short-read sequencing, though very accurate, is not
exempt of sequencing errors. One strategy to deal with low-
quality nucleotides aims to correct reads, usually by replacing
poorly represented k-mers with similar ones of higher frequency
patterns [38]. Effectivity of error correction on RNA-seq data is
lower than on genomic data due to differences in expression
level and splicing and is less dependent on the organism of study
[8]. Despite sequencing errors of Illumina technology occurring
at a reported average rate of only 0.1% bases [6], Rcorrector mod-
ified 0.7% bases in both species. While error correction tools can
reduce sequencing errors, they can also introduce new errors at
a variable rate, especially for complex datasets [38]. For a com-
plex gene family or when examining a polyploid, this could be a
significant problem, with some reads converted to the sequence
of a close homolog, leading to incorrect mapping and/or misas-
sembly. However, in this study, read correction did not reflect
significant variation in overall mapping success. It induced a
small amount of variation only on those aligners that use an FM-
index, Bowtie2 and HISAT?2, and thus require perfect matching
for seeding an alignment. Read correction was more important
for assemblies that exhibited larger changes depending on cor-
rection state, such as larger number of transcripts, higher Deto-
nate scores, or higher completeness when using corrected reads
in most cases, especially with SOAPdenovo-Trans. Previous re-
search also demonstrated that error correction impacts genome
assembly [38].

Trimming is required to, at the least, remove sequencing
adapters and often also addresses short reads and low-quality
bases. The broadly used tool Trimmomatic implements strict
trimming based on sequencing base quality, where trimming re-
moves low-quality bases that could lead to complex or incorrect



de Bruijn graphs, but also reduces read length, which may have
a negative impact on coverage bias [38]. Skewer takes a much
less stringent trimming approach. The extent to which trim-
ming of low-quality bases is beneficial for downstream anal-
yses was explored for DNA-seq [42], suggesting a positive ef-
fect on genome assembly despite increased fragmentation and
a tradeoff between accuracy and recall of assemblies. In our ex-
periments, similar effects derived from trimming were shown
on both the diploid or tetraploid species, especially with Trans-
ABySS or Trinity. We found that Skewer (soft trimming) usu-
ally led to more complete assemblies at the expense of a larger
amount of noncoding transcripts, while Trimmomatic (i.e., strict
quality trimming) improved support from input reads and con-
sistency of GC content across assemblers. In Trinity clusters,
Trimmomatic also reduced fragmentation of assemblies and en-
hanced biological consistency of clustering. In mapping experi-
ments, higher-quality reads are mapped at a larger relative pro-
portion; however, this is at the expense of losing many reads
at the trimming stage, many of which may have been success-
fully mapped downstream. Nonetheless, both options can lead
to comparable expression profiles, usually if mapping tools can
deal with bases of lower quality [42].

There are cases where transcriptome assemblies are re-
quired, such as absence of a suitable reference genome or dis-
covery of novel isoforms. For transcriptome assembly with sam-
ples derived from various conditions, two approaches are com-
mon: one in which the samples are pooled into a single run [40,
41] and one in which samples are assembled independently [43-
45]. The major interest is to obtain transcripts that are specific
to each sample, and combination of reads is a potential source
for mis-assembly or formation of chimeras. In this respect, we
found that transcripts from separate samples had significantly
higher assembly base coverage (transcript bases mapped to the
reference genome), although the combined samples had better
genome base coverage (reference genome bases covered by tran-
scripts). However, merging individual assemblies generates high
redundancy. This effect was studied in wheat, reporting that re-
dundant merged assemblies showed improved read mappability
with Trinity but lower with Trans-ABySS, but also had less con-
tinuity than assemblies from pooled samples, and their quality
decreased after clustering [43]. We found improved read support
on merged assemblies for the three assemblers, but lower mean
transcript size and completeness. A strong reverse correlation
between fragmentation of genes and assembled reads was also
found, supporting that sequencing depth is beneficial to the re-
covery of full-length transcripts [13, 15, 20]. General conclusions
apply to both the diploid and the tetraploid species, although
the polyploid had proportional increased duplication rate and
exhibited a larger species-specific proportion of transcripts. On
the other hand, proper clustering in polyploids is difficult, not
unexpectedly, as it must handle isoforms of genes as well as
homoeologs. This is reflected by the outcomes of the cluster-
ing methods utilized, where aggressive reduction of redundancy
alsoleads to loss of completeness, though to a lesser extent than
sequencing depth.

Scientists examining organisms without a specific reference
face the decision of whether to use the reference genome of
a close organism or to build a custom de novo assembly. Map-
ping to a distant reference has disadvantages, including se-
quence divergence at the nucleotide level and also larger struc-
tural divergence, where genes may be missing or duplicated be-
tween the species. From our species studied, it would be ex-
pected for the distant diploid VA to have undergone greater se-
quence divergence than the tetraploid relative of the reference

diploid VC, in which divergence would be driven by diversify-
ing subgenomes. Mapping results to the reference genome re-
flect this issue, where mapping tools that have greater sensitiv-
ity to align divergent sequences, such as Stampy, GSNAP, and
STAR, improve mapping results of VA compared to VC, while
HISAT?2 and Bowtie2, which require an exact match to seed, per-
form better in VC than VA. Regardless of the species, we found
GSNAP and Stampy to yield the highest performances on the
reference genome, probably due to their ability to align diver-
gent sequences even at default settings. On the second mapping
strategy, utilizing specific assemblies allowed much higher map-
ping rates compared to the reference, concordant with the high
proportion of transcripts not represented on the genome that are
now available to be mapped. Both species displayed compara-
ble results when mapping to an assembly, slightly better on the
tetraploid VC than on the diploid VA except with Salmon, prob-
ably due to the better completeness of the VC transcriptomes. In
addition to higher mapping rates, specific biological information
may be present on transcripts not represented in the genome,
from which 64.5% had a predicted cds, gaining insight into the
processes under study. Nonetheless, in addition the divergence
with the reference genome, using assemblies can give similar re-
sults at 75% correlation; awareness of mismatches also played a
role, improving correlations of VA with GSNAP and Stampy and
of VC with HISAT2.

In conclusion, using a reference genome with either a distant
diploid species or a polyploid relative can give reliable results,
simplifying the RNA-seq analysis by skipping de novo assembly
and associated steps. In the present work, we expanded many
possibilities from read processing to gene counting, providing a
complete overview on how each of the tested options impacts
gene expression profiles. On both species studied, the pipeline
that yielded high outcome with comparable results using either
a reference genome or a transcriptome assembly used trimming
with Skewer, a combination of multiple samples for improved
assembly quality, and Stampy or GSNAP for short-read mapping.
This pipeline was oriented to maximize the recovery of informa-
tion from RNA-seq reads, working with the specific case where
samples and reference genome are not from the same organ-
ism. While we suggest that this strategy can be extrapolated to
other systems, our study also highlights the many downstream
impacts software analysis decisions can have on results. For sci-
entists faced with complex RNA-seq analysis projects, testing of
different software packages to examine and optimize results can
be beneficial.

The following methods include a brief summary of the tools that
were used in this work. For detailed descriptions of the algo-
rithms, please refer to original publications or websites.

Preparation of RNA-seq libraries from root tissue of diploid V.
arboreum cultivar FL148 and tetraploid V. corymbosum “Emerald”
blueberry species are previously described [25] and available in
NCBI as bioproject PRINA353989. Briefly, eight plants per species
were acclimated to growth in hydroponic systems at either pH
4.5 or pH 6.5 for 8 weeks, after which roots were collected and
flash frozen. RNA was extracted and prepared for sequencing
of 100 base-pair (bp) paired-end reads on a HiSeq 2000 system
(Mumina, CA).



Rcorrector (RNA-Seq error CORRECTOR) [8] is a k-mer-based er-
ror correction method that uses a de Bruijn graph to represent
trusted k-mers, a method similar to that used on de novo assem-
bly. Reorrector v1.0.2 was applied to raw reads with default pa-
rameters. Then, sets of corrected and uncorrected reads were
trimmed for removal of Illumina adapter sequences using ei-
ther Trimmomatic v0.35 [36], specifying parameters “SLIDING-
WINDOW:4:15” and minimum read length of 30 bp, or Skewer
v0.2.2 [37], with the same minimum length cutoff. Trimmo-
matic searches adapters by finding an approximate match and
aligning using a seed and extend approach [46], both for regular
and “adapter read-through” scenarios. Illumina quality scores
of bases are used to determine cut points, discarding the 3’ end
of the read. Skewer uses a novel bit-masked k-difference match-
ing dynamic programming algorithm, which uses a variation
of the Smith-Waterman [47] algorithm to search substrings and
solve the k-difference problem and an extended bit-vector algorithm
[48] to handle base-call quality values. Skewer can remove low-
quality bases on both 5’ and 3’ read ends and is considerably
faster than Trimmomatic. FastQC v0.11.4 [49] was used for qual-
ity assessment of reads. From each original read file (VA control,
VA treatment, VC control, VC treatment), the combination of er-
ror correction and trimming generated four new sets of trimmed
reads to be utilized in downstream processes: reads processed
by Rcorrector and Trimmomatic, reads processed by Rcorrector
and Skewer, reads processed by Trimmomatic only, and reads
processed by Skewer only.

Each of the four processed read sets was used for transcriptome
de novo assembly, independently for each blueberry species, us-
ing Trinity 2.2.0 [14], Trans-ABySS v1.5.5 [16], and SOAPdenovo-
Trans v1.03 [17], with k-mer = 25 and filtering for a minimum
contig length of 200 bp. Environmental stress is expected to al-
ter the transcripts present in the cells as well as transcript splic-
ing patterns. To include this source of variability, two commonly
used approaches were considered: assemble control and treated
samples independently and concatenate results after assembly
and combine two control and two treated samples in the same
assembly run. Together, 12 Trinity assemblies for each species
were generated (Supplementary Fig. S1). The next step consisted
of removing redundant transcripts from assemblies using either
CD-HIT v4.6.6 [18] at 95% identity or RapClust [50]. CD-HIT sorts
all transcripts by length and attempts to consecutively cluster
smaller sequences to longer representative ones, getting clas-
sified as redundant or representative based on sequence simi-
larity; the result included a reduced transcript set consisting of
one sequence per cluster. On the other hand, RapClust was de-
veloped to group assemblies using information from multimap-
per paired-ended reads, thus requiring input from Salmon [51]
aligner. From the clustering information after RapClust, reduced
transcriptomes were obtained after selection of the longest tran-
script per cluster. This step generated 16 clustered assemblies
for each species (Supplementary Fig. S1).

Transcriptome de novo and clustered assemblies were assessed
for quality with DETONATE 1.11 [22] to calculate a score weighed

with the reads used to generate each assembly, Transrate 1.0.3
[12] to get basic metrics, and BUSCO v2.0 [21] for completeness
assessment. To compare the Trinity de novo assemblies to the
genome, reduced assemblies were mapped to the diploid blue-
berry reference genome [35] with gmap version 2017-05-08 [52].
Base coverage was calculated on uniquely mapping transcripts
using coverageBed from the BEDTools suite version 2.26 [53].

Biological consistency of clustering results was evaluated
with a custom Jaccard similarity score based on the method de-
scribed in [54] using the BUSCO annotation results on Trinity as-
semblies. Each cluster received an individual score calculated
as the number of transcripts with the same BUSCO annotation
within the cluster divided by the total number of transcripts
with that BUSCO annotation plus the number of transcripts in
the cluster that did not share that annotation. The statistic is
based on amount of the intersection divided by amount of union
where the two sets are all the transcripts sharing a BUSCO anno-
tation and all the transcripts in a cluster. If multiple annotations
were present in a cluster, the maximum score was selected for
that cluster. The result is a value between 0, indicating low co-
annotation of transcripts, and 1, indicating perfect clustering of
co-annotated transcripts. Clusters with a single transcript were
omitted.

Putative ORFs were predicted for each Trinity clustered as-
sembly with TransDecoder v3.0.0 [55], software that incorporates
results from blast [56] and Pfam [57] homology searches to se-
lect best ORF candidates. First, candidate cds encoding at least
50 amino-acid-long peptides were extracted from transcripts.
Then, these were searched with blast against the plant TrEMBL
protein database (evalue < 10e-5) and with HMMER 3.1b2 [58]
against Pfam. Finally, a single putative ORF was selected for each
transcript when possible.

The four sets of processed RNA-seq reads from VA and VC
were mapped to either the draft reference genome for diploid
VC or Trinity de novo assemblies clustered with CD-HIT, using
STAR 2.5.0, Stampy v1.0.28, GSNAP 2016-11-07, Bowtie2 2.2.8,
and HISAT?2 2.0.4. Software options were modified or not when
mapping to the reference genome to increase mismatch toler-
ance. Salmon v0.7.2 [51], which uses quasi-mapping with a two-
phase inference procedure, was specifically used on transcrip-
tomes. Mapping metrics were collected using picard tools v2.1.0
[59] and RNA-SeQC v1.1.8 [60]. Finally, counts were obtained us-
ing HTSeq-count Version 0.6.1p1 [61].

Short-read aligners can be classified by algorithmic approach
as not splice-aware (Bowtie2, Stampy) or splice-aware (HISAT?2,
STAR, GSNAP), or by their use of an uncompressed index, such
as hash table, or compressed indexes, such as suffix arrays,
Burrows-Wheeler transform (BWT) methods, and Full-text in-
dex in Minute space (FM-index). Bowtie2 [62] uses an algo-
rithm based on the BWT and the FM-index, which extracts
seed substrings from reads, finds exact alignments with the
FM-index, and extends with gapped dynamic algorithms such
as Needleman-Wunsch (global alignment) or Smith-Waterman (lo-
cal alignment). Stampy [63] uses a hash table with locations of
15-mers in the genome used to search every overlapping 15-
mer in the reads. Those that pass neighborhood similarity fil-
tering are extended with Needleman-Wunsch. GSNAP (Genomic
Short-read Nucleotide Alignment Program) [52] combines a set
of algorithms to improve accuracy of alignment, using either
hash tables or enhanced suffix arrays. Sequentially after failure
of previous methods, GSNAP searches for a single continuous



match, applies segment combination procedures, or employs its
complete set analysis to allow for larger mismatch proportion.
STAR (Spliced Transcripts Alignment to a Reference) software
[64] is based on an algorithm that uses “sequential maximum
mappable seed search in uncompressed suffix arrays followed
by seed clustering and stitching procedure.” After stitching of
seeds, the unmapped portions of the reads can be extended with
Needleman-Wunsch algorithm. HISAT?2 (Hierarchical Indexing for
Spliced Alignment of Transcripts) [65] is based on the BWT and
the FM-index, with operation methods adapted from Bowtie2.
In addition to the global FM-index, the genome is divided into a
large set of small FM-indexes. Read strings are first mapped to
the global FM-index to find candidate locations, and the remain-
ing bases are aligned with a local index, combining extension by
direct comparison of sequences and further local index search
of unaligned fragments.

The RNA-seq data (SRA496374) was deposited in the Sequence
Read Archive database from the publicly available repository
NCBI, https://www.ncbi.nlm.nih.gov/sra/?term=SRA496374. Fur-
ther supporting data are available in the GigaScience repository,
GigaDB [66].

Figure S1. Diagram representing the de novo assembly strate-
gies, run independently for each Vaccinium species. The set
of control and treatment reads produced by different correc-
tion and trimming strategies were used as input. The control
read files were assembled (A) independently as were the treat-
ment read files (B). From here, each set of control sample tran-
scripts was combined with the treatment sample transcripts
(i.e., the Skewer corrected control transcripts were merged with
the Skewer corrected treatment transcripts, the Trimmomatic
uncorrected control transcripts were merged with the Trimmo-
matic uncorrected treatment transcripts, etc.) (C). These merged
transcript sets were then clustered with either CD-HIT (D) or
RapClust (E). This results in eight clustered assemblies. A sec-
ond assembly strategy merged the control and treatment reads
prior to assembly (F). These sets of transcripts were also clus-
tered with either CD-HIT (G) or RapClust (H), also resulting in
another set of eight clustered assemblies.(.jpg).

Figure S2. Subdivision in categories of reads mapped to the
reference genome performed by HTSeq. Except in the case of
STAR, which does not report not mapped reads, height of bars up
to red resembles the number of trimmed reads. Options are or-
dered by correction state, mismatch tolerance options and trim-
ming software. (.tiff).

Figure S3. Mapping results to the reference genome catego-
rized by overlapping gene feature. (.tiff).

Figure S4. Subdivision in categories of reads mapped to de
novo assemblies performed by HTSeq. In specific cases with
HISAT2 and STAR, multiple aligned reads are counted multiple
times, overestimating the total number of reads. Options are or-
dered by correction state, trimming software and type of assem-
bly. (.pdf).

Table S1. Description of main algorithms used on this work.
Brief algorithmic explanations, software claims and major find-
ings are included for programs tested at (A) pre-processing of
RNA-Seq reads, (B) de novo assembly of transcriptomes and re-
dundancy reduction by clustering, and (C) mapping of short

reads to both blueberry reference genome and Trinity assem-
blies clustered with CD-HIT. BWT, Burrows-Wheeler Transform;
FM-index, Full-text index in Minute space. (.xIsx).

Table S2. Variation in number and length of reads after pre-
processing. Number of reads before and after trimming with ei-
ther Skewer or Trimmomatic and using (cor) or not (Uc) error
correction. Last column indicate average length of reads after
trimming the 101-bp raw reads. Values are mean =+ sd of 8 sam-
ples. (.xIsx).

Table S3. Mapping and annotation metrics of Trinity clus-
tered assemblies to V. corymbosum reference genome. Tran-
scripts mapped either uniquely to the genome (uniq), to mul-
tiple locations (mult), with translocations (transloc) or did not
map (out). Subdivision based on annotation includes “All map-
ping transcripts” (map), “Mapping transcripts with CDS” (cds)
and “CDS with blast hit” (blast). (.txt)

Table S4. Read mapping rates. Proportion of reads mapped
from each combination of error correction, trimming software,
mismatch tolerance or assembly samples, when appropriate, to
either the reference genome or de novo assemblies after cluster-
ing with CD-HIT. (.xslx).

2s: two-sample; 4s: four-sample; bp: base-pair; BUSCO: Bench-
marking Universal Single-Copy Orthologues; BWT: Burrows-
Wheeler transform; cds: coding DNA sequence; cor: Use of er-
ror corrected reads by Rcorrector; FM-index: Full-text index in
Minute space; GSNAP: Genomic Short-read Nucleotide Align-
ment Program; NCBI: National Center for Biotechnology Infor-
mation; ORF: open reading frame; RNA-seq: RNA sequencing;
Uc: Use of not corrected (or uncorrected) reads; VA: Vaccinium
arboreum; VC: Vaccinium corymbosum.
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