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Background: It is difficult to identify pancreatic ductal adenocarcinoma (PDAC) and
mass-forming chronic pancreatitis (MFCP) lesions through conventional CT or MR
examination. As an innovative image analysis method, radiomics may possess potential
clinical value in identifying PDAC and MFCP. To develop and validate radiomics models
derived from multiparametric MRI to distinguish pancreatic ductal adenocarcinoma
(PDAC) and mass-forming chronic pancreatitis (MFCP) lesions.

Methods: This retrospective study included 119 patients from two independent institutions.
Patients from one institution were used as the training cohort (51 patients with PDAC and 13
patients with MFCP), and patients from the other institution were used as the testing cohort
(45 patients with PDAC and 10 patients with MFCP). All the patients had pathologically
confirmed results, and preoperative MRI was performed. Four feature sets were extracted
from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and the artery (A) and portal
(P) phases of dynamic contrast-enhanced MRI, and the corresponding radiomics models
were established. Several clinical characteristics were used to discriminate PDAC and MFCP
lesions, and clinical model was established. The results of radiologists’ evaluation were
compared with pathology and radiomics models. Univariate analysis and the least absolute
shrinkage and selection operator algorithm were performed for feature selection, and a
support vector machine was used for classification. The receiver operating characteristic
(ROC) curve was applied to assess the model discrimination.

Results: The areas under the ROC curves (AUCs) for the T1WI, T2WI, A and, P and
clinical models were 0.893, 0.911, 0.958, 0.997 and 0.516 in the primary cohort, and
0.882, 0.902, 0.920, 0.962 and 0.649 in the validation cohort, respectively. All radiomics
models performed better than clinical model and radiologists’ evaluation both in the
March 2021 | Volume 11 | Article 6209811

https://www.frontiersin.org/articles/10.3389/fonc.2021.620981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.620981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.620981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.620981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.620981/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhangxm@nsmc.edu.cn
mailto:cjr.zhxm@vip.163.com
https://doi.org/10.3389/fonc.2021.620981
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.620981
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.620981&domain=pdf&date_stamp=2021-03-24


Deng et al. Discriminate PDAC From MFCP

Frontiers in Oncology | www.frontiersin.org
training and testing cohorts by comparing the AUC of various models, all P<0.050. Good
calibration was achieved.

Conclusions: The radiomics models based on multiparametric MRI have the potential
ability to classify PDAC and MFCP lesions.
Keywords: radiomics, magnetic resonance imaging, pancreatic ductal adenocarcinoma, mass-forming chronic
pancreatitis, machine learning
BACKGROUND

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with
an overall 5-year survival rate of less than 10% and is a third-
leading cause of death among cancers (1). Radical resection
is the only possible curative treatment in patients with PDAC
(2). However, radical resection may lead to unnecessary
complications and risk of death in benign lesions (3). Mass-
forming chronic pancreatitis (MFCP) is condition causing benign
lesions to form in the pancreas; these lesions easily mimic PDAC
lesions. In clinical practice, MFCP is difficult to differentiate from
PDAC due to their similar presentations of abdominal pain,
weight loss, pancreatic insufficiency, and overlapping radiologic
features (4–7). Overall, 5-11% of patients who underwent a
pancreaticoduodenectomy did so because what were considered
pancreatic malignancies turned out to be benign lesions of the
pancreas (3).Therefore, it is important to discriminate PDAC
lesions from MFCP lesions because their prognosis and
management are so different (8–10). Although many diagnostic
methods for differentiating PDAC lesions from MFCP lesions
have been developed (6, 7, 11–13). Differentiation remains the
most challenging issue faced by radiologists because of the
substantial overlap in imaging findings (14, 15). For example,
PDAC and MFCP lesions result in the dilation of the main
pancreatic duct and the common bile duct (16). Both PDAC and
MFCP lesions are composed of dense fibrous tissue (12). Biopsy is
the most reliable diagnostic method for distinguishing PDAC and
MFCP lesions. However, there are certain limitations, such as a
significant false negative rate and many complications, the
negative rate ranges from 46%-80% (17).

Radiomics can noninvasively extract a large number of
features invisible to the naked eye from traditional pictures
and translate them into high-dimensional data through
machine learning methods (18). Based on the nature of texture
analysis, radiomics relies on the objective calculation by a
computer rather than the subjective diagnosis of radiologist
(19). The utility of radiomics has been applied to the
discrimination of lesions in the lungs, brain, and breasts (20–
22). No study has reported the utility of radiomic-based model in
the discrimination of PDAC and MFCP lesions. Compared with
CT examinations, a series of previous studies have demonstrated
that MRI has a better diagnostic performance for differentiating
MFCP lesions from PDAC lesions (12, 23).

The aim of our study was to develop and validate radiomics
models that extract features from multiparametric MRI and clinical
features to differentiate PDAC lesions from MFCP lesions.
2

METHODS

Patient Selection
Our study was conducted at two institutions in SiChuan
province. Ethical approval to perform this retrospective study
was obtained from each Institutional Review Board (IRB), and
informed consent was waived. Patients with a pathological
diagnosis of either PDAC or MFCP from March 2016 to June
2019 were identified by searching the pathology database
from the two centers. MFCP is defined as chronic
inflammation with focal mass formation confirmed (24). In
total, 198 consecutive patients were identified. Patients were
included in our study if they met the following criteria: (1)
patients had a definitive diagnosis of PDAC or MFCP confirmed
by histopathology; (2) patients underwent an upper-abdomen
MRI examination before surgery or biopsy. We used the
following exclusion criteria: (1) multiple lesions in the pancreas
or no definite mass were found with MRI; (2) MRI examination
was not performed at our institutions or the image quality
was poor; and (3) MRI was performed without contrast
enhancement. The final study sample included 119 patients
(Figure 1). The dataset from institution 1 was used as the
training cohort, and the dataset from institution 2 constituted
the testing cohort. Some clinic and imaging characteristics were
included, such as sex, age, lesion location, lesion size, the
diameter of the largest cross section of the main pancreatic
duct (MPD), the diameter of the largest cross section of the
common bile duct (CBD) and the presence status of CA19-9.
We defined the CA19-9 result as normal at 0 to 34 U/ml, and
abnormal when exceeding.

MRI Image Examination
All patients underwent a 3.0-T MR examination (MR 750, GE
Medical Systems, Waukesha, WI, USA, and Achieva, Philips, the
Netherlands). The general sequences consisted of T2-weighted
imaging (T2WI), precontrast T1-weighted imaging (T1WI), and
the arterial phase and portal-venous phase of dynamic contrast-
enhanced MRI (DCE-MRI). For the DCE-MRI sequence, 20 mL
of gadopentetate dimeglumine (Magnevist; Schering,
Guangzhou, China) was administered intravenously with a
pressure injector (Spectris MR Injection System, MEDRAD,
Inc., USA) at 2–3 mL/s, followed by a 20-mL saline solution
flush. The scanning times were set to 30 s and 60 s after the
contrast agent was injected to obtain the arterial phase and
portal-venous phase images, respectively. Detailed information
on the acquisition parameters is described in Table 1.
March 2021 | Volume 11 | Article 620981
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Image Interpretation
Two experienced radiologists (with 4 and 8 years of experience in
abdominal imaging) processed all the MR images independently
Frontiers in Oncology | www.frontiersin.org 3
and were blinded to the pathological results. They calculated the
size of each lesion by measuring the long and short diameters of
the largest cross-section of the lesion, measured the diameter of
TABLE 1 | The parameters of the 3.0-T MRI scanners.

TR TE Flip angle Selection thickness (mm) Matrix FOV

GE-MR750
T1WI

4.2 2.6 15 5 384×224 26×33

Achieva
T1WI

4 2 10 4 160×160 246×320

GE-MR750 T2WI 2500 100 90 5 320×256 39×33
Achieva T2WI 1200 80 90 7 208×186 261×335
GE-MR750
DCE-MRI

4.2 2.6 15 5 384×224 26×33

Achieva DCE-MRI 4 2 10 4 160×160 246×320
March 202
1 | Volume 11 | Articl
FIGURE 1 | The flowchart of patient enrollment in our study. MRI, magnetic resonance imaging; PDAC, pancreatic ductal adenocarcinoma; MFCP, mass-forming
chronic pancreatitis.
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maximal cross-section of MPD and CBD. PDAC was defined an
irregular mass was hypointensity on axial T1WI, hyperintensity
on axial T2WI, and unobvious enhancement during the artery,
portal venous and delayed phases. MFCP was defined a clear
Frontiers in Oncology | www.frontiersin.org 4
boundary mass was hypointensity on axial T1WI, hyperintensity
on axial T2WI, and gradual enhancement during the dynamic
enhancement (Figure 2). When their results were inconsistent,
the final decision was determined as PDAC or MFCP after
A

B

FIGURE 2 | A 65-year male patient with PDAC showing an ill-defined mass (arrowhead) in the head of pancreas (2a). A hypointensity mass shows on axial T1WI
(A), hyperintensity on axial T2WI (B), and unobvious enhancement during the artery (C) and portal venous (D) phase. A 58-year male patient with MFCP showing an
mass (arrowhead) in the head of pancreas (2b). A hypointensity mass shows on axial T1WI (A), hyperintensity on axial T2WI (B), and gradual enhancement during
the artery (C) and portal venous (D) phase.
March 2021 | Volume 11 | Article 620981
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discussion. We compared the results of radiologist’s evaluation
with pathological results and calculated the discrimination such
as accuracy, sensitivity and so on.

Image Segmentation, Preprocessing and
Feature Extraction
Two experienced radiologists manually delineated the region of
interest (ROI) based on T1WI, T2WI, the arterial phase (A) and
portal-venous phase (P) on the basis of the largest size of the
tumors in an axial image slice, corresponding four independent
feature sets generated and radiomics models established. To
eliminate the volumetric effect of the peripancreatic fat space
or normal pancreas, they slightly delineated within the lesion
(25). The process was implemented by using IBEX (b1.0, http://
bit.ly//IBEXMDAnderson), an open source software program
running on MATLAB 2016b (The MathWorks Inc), the
workflow of radiomic showed in Figure 3. before extracted
features, A Laplacian-of-Gaussian (LoG) filter was applied for
imaging preprocessing, which will help improve the efficiency of
capturing phenotypic features associated with tumor
heterogeneity (26). before feature extraction, all MRI sequences
were normalized using Z-scores in order to reduce the potential
impact introduced by scanning parameters, protocols, scanners,
vendors and eliminate the influence of dimensions (27), was
performed in the training and validation data sets to improve the
repeatability of the analysis (See Supplemental Material 1,
which elucidated the preprocessing methods for the image
and data).

Then, we selected three group features extracted from IBEX:
the intensity histogram using the common fundamental
measurement value to reflect the distribution of gray pixels in
the image; the gray-level co-occurrence matrix (GLCM), which it
Frontiers in Oncology | www.frontiersin.org 5
reflects the measurements of the texture image by pixels with the
same gray level and is mainly used for linear texture analysis; and
the gray-level run-length matrix (GLRLM), which reflects the
comprehensive information about the change in gray levels in
terms of the step size and direction, and reflects the arrangement
rules about different pixels. In total, 410 radiomics features were
identified in each independent feature set (See Supplementary
Table 1).

Intraobserver and Interobserver
Agreement
Fifty patients were randomly selected to have the outline of the
ROI from T1WI, T2WI, the artery and portal venous phase of
multisequence MRI drawn, and the corresponding feature
subsets were generated to evaluate the reproducibility of
radiomics. To assess the intraobserver agreement, observer 1
delineated the ROI twice, with a time between delineations of
more than one week. To evaluate the interobserver agreement,
observer 2 independently delineated the ROI once and compared
these results with the first results from observer 1. The intra- and
interobserver agreement were assessed through intraclass
correlation coefficients (ICC), and an ICC score greater than
0.75 indicates a good agreement (28). Not all radiomics features
achieved satisfactory conformance due to the nature of the voxel
size and gray-level dependence (29). Observer 1 completed all
the image segmentations.

Dimensionality Reduction and Radiomics
Feature Selection
Dimensionality reduction methods were applied to the training
group to avoid dimensional disasters and reduce deviations from
the radiomics features. First, independent samples t-test or
FIGURE 3 | The workflow of radiomic. GLCM, gray level co-occurrence matrix; GLRLM, gray-level run-length matrix.
March 2021 | Volume 11 | Article 620981
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Mann-Whiney U tests were performed to identify features in
each feature set that were significantly different between PDAC
lesions and MFCP lesions. To reduce the risk of type I error, a
false discovery rate (FDR) was applied to correct the P values.
Then, the least absolute shrinkage and selection operator
(LASSO) algorithm was performed for dimensionality
reduction and feature selection before classification (30). One
standard error (1-SE standard, a simple model) was used to
adjust the regularization parameters (l) and feature selection
using 10-fold cross-validation.

Development and Validation of the Optimal
Radiomics Signature
Radiomics features of each feature subset were selected by the
above procedure, and a support vector machine (SVM) with a
Gaussian kernel was applied to establish a nonlinear radiomics
model. The kernel’s parameter size (g, gamma,∈ [0.001,1]) and
the regularization parameters (C, cost,∈[1,100])) were
optimized, and 10-fold cross-validation of the SVM kernel
function was performed to select the best-performing models.
Four radiomics models were established. An independent clinical
model was established using classical imaging and clinical
factors, for example, the size of lesion, the diameter of the
largest cross section of the MPD and CBD, the status of CA19-
9 followed the same tuning procedure described in the
development of radiomics models. The performance of the
four radiomics and clinical models was calculated by the area
under the receiver operating characteristic (ROC) curve (AUC)
and other evaluation metrics, such as the sensitivity, and
specificity. The radiomics and clinical models were also
assessed in the testing cohort. DeLong test was implemented to
compare the AUC of four radiomics models, clinical model and
radiologists’ evaluation both in the training and testing cohort.

Statistical Analysis
Regarding the clinical data, continuous variables, including the
age of the patient and size of the lesion were assessed with
independent samples t-test or Mann-Whiney U tests based on
Frontiers in Oncology | www.frontiersin.org 6
their distributions. Categorical variables, including the sex of the
patient, the result of CA19-9 and the location of the lesion, were
assessed with Pearson chi-square test or Fisher exact test. To
assess the radiologist’s evaluation and pathological results,
Pearson Chi-square was performed. These data were analyzed
by Statistical Package for the Social Sciences (SPSS; IBM SPSS
Statistics for Windows, Version 23.0, IBM Corp, Armonk, NY,
USA). The dimensionality reduction and model building
processes of the radiomics features, including the intensity
histogram, GLCM and GLRLM of each model, were
implemented in R (Version 3.5.2, https://www.r-project.org/).
The LASSO regression, SVM model and ROC curve analyses
were performed by means of the “ggplot2”, “e1071” and “pROC”
packages, respectively. In all tests of differences, a P-value less
than 0.050 was considered a statistical significant.
RESULTS

Clinical Data
In total, 119 patients from two independent institutions were
included in the study. When comparing the results between
radiologists’ evaluation and pathology, no significant difference
was existed (c2 = 0.152, P=0.076). Radiologists had better
accuracy (80.7%), positive predictive value (92.7%) and
sensitivity (84.8%) in identifying PDAC and MFCP, however,
the specificity (50%) and negative predictive value (30.4%) were
poor. The composition of PDAC was higher than that of MFCP
in the training and testing cohorts, but no statistically significant
differences existed between the two cohorts (P=0.769, c2 =
0.086). The baseline characteristics of the two cohorts are
recorded in Table 2. In both the primary and testing cohorts,
there were no significant differences between patients with
PDAC and MFCP in terms of age (P=0.707 vs 0.526), sex
(P=0.507 vs 0.303), lesion location (P=0.648 vs 0.615), lesion
size (P=0.081 vs 0.441), the diameter of the largest cross section
of the MPD and CBD (P=0.745 vs 0.07 and P=0.761 vs 0.142).
TABLE 2 | Patient characteristics and MR image findings for the primary and validation cohorts.

The primary cohort P value The validation cohort P value

PDAC (n = 51) MFCP (n = 13) PDAC (n = 45) MFCP (n = 10)

Age (years) 63 (52, 68) 60 (53, 66) 0.707 62 (54, 69) 57 (52,71) 0.526
Sex 0.507 0.303
Male 37 10 22 7
Female 14 3 23 3
Location 0.648 0.615
Head or neck 46 12 39 9
Body or tail 5 1 6 1
Size (cm2) 5.75 (4.14, 9.99) 5.32 (2.62, 6.09) 0.081 6.96 (4.39,9.445) 6.60 (4.28,7.20) 0.441
MPD (cm) 0.46 (0.32, 0.63) 0.45 (0.29, 0.78) 0.745 0.54 (0.35, 0.74) 0.33 (0.28, 0.44) 0.07
CBD (cm) 1.30 (0.70, 1.60) 1.50 (0.75, 1.85) 0.761 1.30 (0.50, 1.65) 1.00 (0.48, 1.30) 0.142
CA19-9 9 10 <0.05* 12 7 0.051
Normal 42 3 33 3
High
March 2021 | Volume 11 | Article
*represents a statistically significant difference.
MPD: the diameter of the largest cross section of the main pancreatic duct (MPD); CBD: the diameter of the largest cross section of the common bile duct (CBD).
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The CA19-9 level was significantly different in the primary
cohort (P<0.050) while no significant difference in the testing
cohort (P=0.051).

Intraobserver and Interobserver
Agreement
Regarding the interobserver agreement of radiomics features, the
mean values were 0.942 (range: 0.428 to 0.998), 0.943 (range:
0.269 to 0.994), 0.961 (range: 0.505 to 0.999), 0.955 (range: 0.199
to 0.999) for the T1WI, T2WI, A and P feature subsets,
respectively. For the intraobserver agreement, the mean values
were 0.934 (range: 0.442 to 0.999), 0.943 (range: 0.269 to 0.994),
0.940 (range: 0.378 to 0.999), 0.955 (range: 0.199 to 0.999) for the
T1WI, T2WI, A and P feature subsets, respectively. Ultimately,
the number of excluded features in the T1WI, T2WI, A, and P
feature subsets were 27, 21, 11 and 13, respectively, and the
remaining features were analyzed in the next section.

Dimensionality Reduction and Radiomics
Feature Selection
The number of selected features of each separate subset after
univariate analysis and LASSO algorithm implementation are
shown in Table 3. The features selected in each feature set were
used in further modeling analysis. Dimensionality reduction was
performed through two steps; there were 5, 7, 7, and 9 features
included in T1WI, T2WI, A and P models, respectively for
models building (See Supplemental Material 2, which
elucidate the information for the selected features).

Development and Validation of the Optimal
Radiomics Signature
The four radiomics models achieved good performance in the
training and testing cohorts based on SVM modeling. The AUC
of T1WI model, T2WI model, A model and P model were 0.893
[95% confidence interval (CI): 0.780-1], 0.911 (95%CI: 0.823-
0.999), 0.958 (95%CI: 0.889-1), 0.997(95%CI: 0.990-1) in the
training cohorts, The AUC of T1WI model, T2WI model, A
model and P model were 0.882 (95% CI: 0.792-0.972), 0.902
(95%CI: 0.809-0.995), 0.920 (95%CI: 0.821-1), 0.962 (95%CI:
0.907-1) in the testing cohorts. The AUC of clinical model were
0.516 and 0.649 in the training and testing cohorts. The detailed
results were shown in Table 4. When comparing the AUC across
the four radiomics models via the DeLong test, no significant
differences existed between pairs of models (all P > 0.05).
Interestingly, the performance of radiomics models were
superior to clinical model and radiologists’ evaluation
(P<0.050). The ROC curves of five models and radiologists’
Frontiers in Oncology | www.frontiersin.org 7
evaluation in the primary and validation models are shown in
Figure 4.
DISCUSSION

In our study, we compared the radiologists’ evaluation and
pathological results of PDAC and MFCP, there was no
significant difference (P=0.076). Radiologists had a potential
ability to assess the lesions. However, the specificity and
negative predication value was poor. It may lead to
overtreatment of MFCP, which was consistent with previous
study (3). We constructed clinical model by combining the size
of lesion, the diameter of the largest cross section of the MPD
and CBD to identify PDAC and MFCP, however, no good
performance was achieved. These results showed it was difficult
to make a diagnosis of the two diseases based on the traditional
image and clinical data. Interestingly, we develop and validate a
multiparameter MRI-based radiomics method for noninvasive
differentiation of PDAC from MFCP lesions before surgery, and
achieved good performance in both the training and testing
cohorts. Every single feature subset extracted from T1WI, T2WI,
the artery and portal venous phase performed well. These results
suggest that our radiomics model can be used as a quantitative
tool to discriminate PDAC from MFCP lesions preoperatively.
While this discovery was an encouraging initial step, it is
necessary to focus more on a better understanding of the basic
biological principles of measurement through radiomic analysis
and how to better integrate it with other analytical methods for
better clinical application.

Some clinical and imaging characteristics were included in
this study. Only the serum CA19-9 level was significantly
different between patients with PDAC and MFCP in the
training cohort, there was no significant difference in the
validation cohort. this may be related with the small number
of patients in the validation cohort. It indicates that CA19-9 may
be regarded as a serum biomarker to identified PDAC from
MFCP, however, serum CA19-9 had a high false negative rate.
Ren et al. (31) demonstrated that no statistically significant
difference with respect to degree of pancreatic ductal dilatation
was observed between PDAC and MFCP. Our conclusion is
consistent with theirs. Sandrasegaran et al. (24) demonstrated
that there was no significant difference in the lesion size between
PDAC and MFCP. The AUC for size of mass and pancreatic duct
dilatation in differentiating malignant and benign entities are
0.697 and 0.589-0.622, their results suggested that the clinical
and imaging features is poor in differentiate MFCP from PDAC.

In our study, all the A model, P model, T1WI model and
T2WI model achieved good performance in the training and
testing cohorts(the AUCs were 0.893, 0.911, 0.958 and 0.997 vs
0.882, 0.902, 0.920 and 0.962), The reason for these findings may
be associated with the fact that fat-suppressed T1WI, T2WI and
dynamic contrast-enhanced MRI had a good diagnostic effect in
detecting pancreatic cancer, and the tumor-pancreas contrast
was best 40-70 s after injection of the contrast agent (32, 33).
TABLE 3 | The numbers of features selected through the intraobserver and
interobserver agreement tests, univariate analysis and the LASSO algorithm.

T1WI T2WI A P

Original features 410 410 410 410
ICC analysis 383 389 399 397
Univariate analysis and FDR correct 222 287 228 2218
LASSO 5 7 7 9
March 2021 | Volume 11 | Article 620981
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Previous studies have developed several methods for
discriminating PDAC from MFCP lesions. Previous studies
applied perfusion CT to distinguish PDAC from MFCP lesions,
and some perfusion parameters, such as blood flow and blood
volume (6, 7), could provide information to identify PDAC and
MFCP lesions. However, this method involves high amounts of
radiation, and the iodide ion contrast agent is not suitable for
patients with renal dysfunction. Ren et al. (31) showed that CT
texture analysis demonstrates great potential to differentiate
MFCP from PDAC. The combined model based on imaging
features and texture features reveal high pooled sensitivity of
94%, specificity of 92%. Some previous studies had
Frontiers in Oncology | www.frontiersin.org 8
demonstrated that MRI is superior to other preoperative
imaging techniques in identifying in the diagnosis of MFCP and
PDAC. Several studies applied MRI to identify MFCP from
PDAC. Some studies suggested that diffusion weighted imaging
(DWI) can reflect the differences between PDAC and MFCP
lesions; a meta-analysis (13) combined several DWI-related
studies and the summary AUC of 0.91. Our study was superior
to previous results and robust. Shi et al. (11) usedMR elastography
to differentiate PDAC and MFCP lesions, and the mass stiffness
and stiffness ratio achieved AUCs of 0.882 and 0.955, respectively.
Our study developed and validated radiomics models to classify
PDAC and MFCP lesions based on multisequence MRI, and these
TABLE 4 | The performance of the radiomics and clinical models using support vector machine method in the training and testing cohorts.

Sensitivity Specificity AUC (95%
CI)

T1WI
Model

Training
cohort

0.961 0.769 0.893
(0.780-1)

Testing cohort 1 0.733 0.882
(0.792-0.972)

T2WI
Model

Training
cohort

0.941 0.769 0.911
(0.823-0.999)

Testing cohort 0.844 0.900 0.902
(0.809-0.995)

A Model Training
cohort

0.961 0.923 0.958
(0.889-1)

Testing cohort 0.956 0.900 0.920
(0.821-1)

P Model Training
cohort

0.980 1 0.997
(0.990-1)

Testing cohort 0.978 0.900 0.962
(0.907-1)

Clinical
Model

Training
cohort

0.529 0.692 0.516
(0.340-0.692)

Testing cohort 0.422 0.900 0.649
(0.474-0.823)
March 2021 | Volume 11 |
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FIGURE 4 | The ROC curve for the four radiomics models, clinical model and radiologists’ evaluation for the training (A) and testing (B) cohorts. There was no
significant difference among the four radiomics models by comparing the AUC of different models (all P > 0.050). All radiomics performed better than clinical model
and radiologists’ evaluation by comparing the AUC of various models, all P < 0.050.
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results were consistent with this finding. In addition, the MR
elastography technique has a lower resolution than routine MRI.

Radiomics is noninvasive, inexpensive and robust. The high-
dimensional imaging features of radiomics provide more detailed
information on tumors that are difficult to detect with the naked
eye. Our radiomics models achieved good performance; in the
training cohorts, the AUC, sensitivity, and specificity performed
well in the T1WI, T2WI, A and P models. The discriminative
performance of the radiomics model was also remarkable in the
validation cohorts.

Some limitations exist in our research. Firstly, the sample size
was small. In addition, the composition of the PDAC and MFCP
samples are very different; however, there was no difference in
the composition ratio between the training and testing cohorts.
Multicenter and large-scale study would need to be performed.
Last, we performed a two-dimensional analysis of the area of
interest for the largest section of the lesion rather than a three-
dimensional analysis of the entire lesion volume. This approach
is less labor intensive but less sensitive to intratumor variations.
however, previous study (34) identified PDAC and autoimmune
pancreatitis using two-dimensional analysis and achieved good
performance, and our results were satisfactory.
CONCLUSION

In conclusion, our results show that radiomic models based on
multiparametric MRI have the potential to distinguish PDAC
lesions fromMFCP lesions. This method needs to be validated in
a larger sample size for better clinical application.
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