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How cells fuse
Nicolas G. Brukman1*, Berna Uygur2*, Benjamin Podbilewicz1, and Leonid V. Chernomordik2

Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought
about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and
other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar
membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use
diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work
together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present
on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the
proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In
this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their
different working mechanisms in various contexts.

Introduction
The dynamic organization of cells depends on protein-controlled
membrane remodeling processes that divide and fuse mem-
branes. Fusion of intracellular membranes is a key stage in se-
cretion, protein and lipid trafficking, and in the maintenance of
ER and mitochondrial networks, and defects in these fusion
processes have been linked to mitochondrial, lysosomal storage
(Ballabio and Gieselmann, 2009), and degenerative disorders
(Ranieri et al., 2013). Diverse enveloped viruses, including many
human pathogens, infect cells by envelope–cell membrane fu-
sion. Fusion between cells (referred to here as “cell fusion”), the
focus of this review, is essential in fertilization and in devel-
opment of tissues and organs such as skeletal muscles and
placenta.

Fusion processes differ widely in the composition of the
fusing membranes, biological context, and regulatory mecha-
nisms. In some fusions, the proteins that mediate fusion (re-
ferred to as “fusion proteins” or “fusogens”) have to be present
on only one of the fusing membranes (unilateral mechanism).
Other fusions require the same or different fusogens to be
present on both membranes (bilateral homotypic vs. bilateral
heterotypic mechanisms). However, in all fusion processes, the
function of the fusion protein machinery is to drive the transi-
tion from the pre-fusion to post-fusion state by bringing lipid
bilayers into immediate contact, catalyzing the formation of
energy-intensive fusion intermediates, and opening a fusion

pore (Sapir et al., 2008). Fusion itself involves local rupture of
the continuity of each of the lipid bilayers and their rejoining.
The mechanisms and pathways underlying cell fusion have been
studied in both biological and protein-free lipid bilayers using
different theoretical and experimental approaches yielding
several important concepts (Chernomordik and Kozlov, 2008;
Markvoort and Marrink, 2011). Before fusion, characteristic
distances between opposing plasma membranes are controlled
by specific cell–cell adhesion proteins and vary in range from 10
to a few tens of nanometers (Leikina et al., 2004; Dhanyasi et al.,
2015). Bringing membrane bilayers closer to each other requires
displacement of membrane proteins toward the periphery of the
fusion site and, at very close distances comparable with the
thickness of the lipid monolayer (∼2 nm), overcoming very
strong repulsive interactions related to hydration forces or
thermal fluctuations (Chernomordik and Kozlov, 2003).

A strong bending of one or both membrane bilayers brings
them into immediate contact (within a few nanometers) and
facilitates a local disruption and rearrangement of the lipid
monolayers (Chernomordik and Kozlov, 2003). The pathway of
many fusion processes starts with hemifusion, a merger be-
tween contacting monolayers of the fusing bilayers that allows
lipid mixing between themembranes (Chernomordik et al., 1987;
Chernomordik and Kozlov, 2003). A subsequent merger of the
distal monolayers generates a nascent fusion pore and allows
content mixing (Fig. 1). While this fusion-through-hemifusion
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pathway was first described for fusion of protein-free bilayers
formed from lipids that facilitate monolayer curvatures charac-
teristic for either hemifusion intermediates or lipidic pores
(Chernomordik et al., 1987), during biological fusion, proteins
may serve as critical structural components of the early fusion
intermediates. For instance, some studies suggest that Ca2
+-triggered exocytosis involves formation of a proteinaceous
fusion pore, the rim of which is entirely or partially lined by
amino acid residues of transmembrane domains of SNARE pro-
teins (Chang et al., 2017). It has been also suggested that under
some conditions, influenza virus hemagglutinin initiates fusion
by puncturing one of the contacting membranes to form a leaky
“rupture-insertion” structure, and this structure by a yet-
unexplained mechanism facilitates hemifusion and opening of
a fusion pore (Haldar et al., 2018). The place of these inter-
mediates in the productive fusion pathway that yields expanding
fusion pores remains to be clarified. The hypothesis that fusion
starts with a channel-like proteinaceous pore can be substanti-
ated by finding the mechanisms that drive its transition to a
larger lipidic pore and ways to specifically block this transition.
To verify that the rupture-insertion structure is not a branch-off
the normal fusion pathway, leakage measurements will have to
be accompanied by content mixing assays. In our opinion,
striking similarities between lipid dependences and properties of

the key intermediates in diverse biological membrane fusion
processes and in fusion of protein-free lipid bilayers (Chernomordik
and Kozlov, 2003, 2008) argue for similar pathways and suggest
that proteins catalyze a fusion-through-hemifusion fusion
pathway (Fig. 1 B) that is intrinsic for membrane bilayers and
driven by membrane bilayer stresses.

Up to a third of the cell nuclei in animals, from Caenorhabditis
elegans to humans, are found in multinucleated cells formed by
cell fusion (in C. elegans mostly in epithelia and in humans in
skeletal muscle; Podbilewicz and White, 1994). However, most
cells remain mononucleated, emphasizing that cell fusion is
tightly regulated. In this review we discuss different cell fusion
processes and proteins suggested to mediate them, intercalating
videos illustrating the dynamics of cell fusion in different
systems.

Challenges in identifying and exploring cell–cell fusion
Fusion processes mediated by viral and intracellular proteins are
often triggered by calcium (exocytosis), acidification of endo-
somal compartments containing internalized virions (influenza
virus), and/or virus interactions with receptors and fusion co-
factors in host cells (human immunodeficiency virus [HIV] and
Dengue virus). Such events are relatively fast (milliseconds to
hours; reviewed in Jahn and Scheller, 2006; Podbilewicz, 2014).

Figure 1. Mechanisms of cell–cell fusion. (A)
The pathway of cell–cell fusion. Ready-to-fuse
cells (1) recognize and closely appose each other
(2) and undergo hemifusion (3), i.e., the merger
of the outer monolayers of two membrane bi-
layers, allowing redistribution of the lipid mark-
ers between the cells (note that both distal
monolayers of the membranes and cell contents
remain distinct). Opening of a fusion pore in the
hemifusion structure allows the mixing of the
cytoplasmic contents (4), and pore expansion
completes joining of two cells into one (5). While
Myomaker/Myomerger, syncytins, and fusexins
seem to be for now the only proteins necessary
for specific fusion processes, they are most likely
working with other players, some of which, es-
pecially for myoblasts, are already identified.
Fusexins and syncytins mediate all the stages of
the fusion process; in contrast, Myomaker is
required for an early stage involving the transi-
tion to hemifusion, while Myomerger is required
for a later stage between hemifusion and
opening of fusion pores (see the main text). (B)
Schematic representation of the lipid re-
arrangements during the events explained in A.
LPC blocks hemifusion by inhibiting the bending
of the contacting monolayers (Chernomordik
and Kozlov, 2003). (C) Inset from A 2: Protein
fusogens are necessary to overcome the ener-
getic barriers of hemifusion and opening and
expansion of the fusion pore. Examples display
bilateral and homotypic fusions mediated by C.
elegans EFF-1 (upper panel) and Arabidopsis
HAP2 (middle panel) as well as a bilateral and
heterotypic fusion between them (lower panel;
Valansi et al., 2017).
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In contrast, complex andmultistep differentiation processes that
prepare cells for fusion in their biological context may take days,
and the environmental cues that trigger the actual fusion events
(seconds to minutes) are yet to be established.

How do we distinguish proteins involved in the actual fusion
stage from proteins that only function at pre- and post-fusion
stages? Identifying proteins as fusion proteins (fusogens) de-
pends on diverse experimental approaches characterizing their
fusogenic activities and structural characteristics. The gold
standard is that a fusogen (or fusogenic complex) has to be (1)
necessary for fusion, (2) present on the fusing membranes at the
right time and place, and (3) sufficient to fuse membranes that
normally do not fuse. Additionally, a tertiary structure similar to
well-characterized fusogens is commonly used by many re-
searchers for validation of new fusogens. Proteins that meet all
these requirements are considered bona fide fusogens, and we
suggest a scoring system based on gold standards for fusogens
(Table 1). A decade ago, when a similar table was assembled, the
best-characterized fusogens were viral and intracellular; the
only well-characterized cell–cell fusogens were identified in the
placenta of mammals (Syncytins [Syns]) and epithelia of nem-
atodes (Fusion Family [FF]; Oren-Suissa and Podbilewicz, 2007).
Recent studies have suggested new candidate proteins in fusion
of gametes (Hapless 2 [HAP2]) and of muscle cells (Myomaker/
Myomerger; Hernández and Podbilewicz, 2017; Sampath et al.,
2018). Our discussion of different fusion processes and ma-
chineries will focus on recent mechanistic discoveries at the
molecular, structural, and biochemical levels.

Gamete fusion
Sexual reproduction is widely distributed in the tree of life. In
sexually reproducing organisms, permanent or transient cell–
cell fusion is essential for genetic transfer (Video 1). Here wewill
focus on mechanisms of gamete fusion in eukaryotes.

Gamete fusion mediated by HAP2/Germ cell–specific 1 (GCS1)
Recent years have brought about a breakthrough in the identi-
fication of proteins that fuse gametes. HAP2, also named GCS1, is
a type I transmembrane protein that functions in late stages of
gamete fusion in different species including protists (Liu et al.,
2008), flowering plants (Mori et al., 2006; von Besser et al.,
2006), and invertebrates (reviewed in Hernández and
Podbilewicz, 2017). It is localized in at least one of the fusing
membranes at the moment of fertilization and is required for
fusion (i.e., necessary and present; Mori et al., 2006; von Besser
et al., 2006; Liu et al., 2008). Recent evidence in the algae
Chlamydomonas reinhardtii (Fédry et al., 2017; Feng et al., 2018),
the flowering plant Arabidopsis thaliana (Valansi et al., 2017;
Fédry et al., 2018), and the ciliate Tetrahymena thermophila
(Pinello et al., 2017) revealed that HAP2 has similarities with the
eukaryotic somatic fusogen epithelial fusion failure-1 (EFF-1)
and class II viral fusogens. Arabidopsis HAP2 expression in het-
erologous mammalian cells results in their hemifusion and cy-
toplasmic content mixing (Valansi et al., 2017). Moreover,
vesicular stomatitis virus with a deletion of G glycoprotein–
HAP2 virus expressing HAP2 instead of the viral G glycoprotein
effectively enters cells. These studies of the HAP2 sufficiency for

fusion indicate that HAP2 is indeed a bona fide fusogen (Valansi
et al., 2017; Table 1). Yet it remains unclear whether HAP2 from
different species use unilateral, bilateral, or hybrid mechanisms
in vivo and in cell-free systems (Table 2). Arabidopsis HAP2 in-
duces fusion only when it is present in both of the opposing
membranes, suggesting a bilateral mechanism of action, similar
to the related somatic fusogen EFF-1 (Valansi et al., 2017; Fig. 1
C). On the other hand, Chlamydomonas HAP2 is required only in
the minus gamete (Liu et al., 2008), and although some HAP2
expression was detected in Arabidopsis ovules (Borges et al.,
2008), the deletion of this gene produces male-specific steril-
ity (Johnson et al., 2004; von Besser et al., 2006). This implies
that in vivo, sperm HAP2 acts in trans with other unknown egg
proteins or uses a unilateral mechanism (Valansi et al., 2017).
Perhaps, unilateral fusion requires HAP2 and another sperm
protein, and expression of HAP2 alone in a heterologous system
is insufficient for its unilateral action. In the slime mold Dic-
tyostelium discoideum, there are three mating types and at least
two different genes encoding HAP2/GCS1 proteins. Genetic
analyses of the mating-type specific gamete fusion in D. dis-
coideum suggest that the fusogens form complexes in trans
supporting a bilateral mechanism between Type I and II gametes
(Okamoto et al., 2016). The structural similarities between HAP2
proteins and the class II viral fusogens suggest that they share
common functional features. Class II viral fusogens possess an
amphiphilic loop at the tip of domain DII that inserts into and
destabilizes the host cell membrane (reviewed in Podbilewicz,
2014). Structural and biochemical analyses suggest that HAP2
proteins of Chlamydomonas, Arabidopsis, and trypanosomes in-
teract with membranes through similar regions (composed of
loops and/or α-helixes) containing hydrophobic amino acids
(Fédry et al., 2017, 2018; Feng et al., 2018). However, this ability
to interact with membranes does not imply unilateral action:
other cellular fusogens that use bilateral mechanisms have do-
mains that directly interact with membranes, yet still join trans-
complexes which mediate fusion (e.g., atlastins and synapto-
tagmins; Table 2; Chapman, 2008; Faust et al., 2015; Liu et al.,
2015b).

Fertilization in organisms lacking HAP2/GCS1
Despite the wide distribution of HAP2 among eukaryotes, some
lineages like nematodes, fungi, and vertebrates lack any close
HAP2 orthologue (Speijer et al., 2015; Valansi et al., 2017; Fédry
et al., 2018). Although the fusogens involved in gamete fusion in
these HAP2-lacking species are still unknown, several proteins
have been shown to be relevant to this process, especially those
related to the early recognition between gametes (Table 1). Ex-
amples include PRM1 from yeast (Heiman and Walter, 2000),
the SPE-9 class from C. elegans (reviewed in Nishimura and
L’Hernault, 2010; Video 1), and Bindin from sea urchins
(Vacquier and Moy, 1977).

In mammals, certain proteins in both male and female ga-
metes are necessary for gamete fusion, but none have been
determined sufficient for membrane fusion (Wright and
Bianchi, 2016). Izumo1, an immunoglobulin superfamily mem-
ber, localizes to the sperm acrosomal membrane (Inoue et al.,
2005). Following acrosome exocytosis, Izumo1 migrates to the
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Table 1. Examples of candidate fusogens

Protein Family Organism Suggested
fusion event

Fusogenic
scorea

Essential
for fusion
(0–2)

Structural
similarity
to
fusogens
(0–2)

Expressed
at the time
and place
of fusion
(0–2)

Sufficiency
(0–4)b

References

A B C D

HA Class I viral
fusogens

Influenza virus Viral infection 10 + + + + + + + Reviewed in
Kielian and
Rey, 2006

p14 FAST proteins
(Class IV viral
fusogens)

Reptilian
orthoreoviruses

Infected cells 10 + + + + + + + Reviewed in
Key and
Duncan, 2014

E1 Fusexins (Class II
viral fusogens)

Semliki Forest
virus

Viral infection 9.5 + + + + + + ± Reviewed in
Kielian and
Rey, 2006

vSNARES,
tSNARES

SNAREs
(endoplasmic
fusogens)

Eukaryotes and
Archaea

Intracellular
vesicles

9 + + + + + ND + Reviewed in
Jahn and
Scheller,
2006

EFF-1 Fusexins (FF) C. elegans;
Nematodes

Epithelia,
vulva,
pharynx,
axons

9 + + + + + + ND Mohler et al.,
2002;
Shemer et al.,
2004;
Podbilewicz
et al., 2006;
Avinoam
et al., 2011

Syncytins Class I viral
fusogens

Placental
mammals

Placenta,
osteoclasts,
myoblasts,
cancer cells

9 + + + + + + ND Blond et al.,
2000; Mi
et al., 2000;
Bjerregaard
et al., 2006;
Antony et al.,
2007;
Dupressoir
et al., 2011;
Søe et al.,
2011

Atlastins Dynamin
(endoplasmic
fusogen)

Eukaryotes Endoplasmic
reticulum

8 + + + + ND ND + Reviewed in
Hu and
Rapoport,
2016

HAP2/
GCS1

Fusexins (HAP2) Arabidopsis;
plants

Fertilization
(sperm)

8 + + + ND + + ND Mori et al.,
2006; von
Besser et al.,
2006; Valansi
et al., 2017

AFF-1 Fusexins (FF) C. elegans;
Nematodes

Epithelia,
vulva,
pharynx,
dendrites

8 + ± + + + + ND Sapir et al.,
2007;
Avinoam
et al., 2011

Myomaker Multi-pass
transmembrane
protein

Mus musculus;
Human

Myoblasts 6 + ND + + + ND ND Millay et al.,
2013; Bi et al.,
2017;
Gamage
et al., 2017;
Quinn et al.,
2017; Zhang
et al., 2017a;
Leikina et al.,
2018

Myomerger Single-pass
transmembrane
protein

Brukman et al. Journal of Cell Biology 1439

Atlas of cell fusion mechanisms https://doi.org/10.1083/jcb.201901017

https://doi.org/10.1083/jcb.201901017


equatorial segment of the sperm (Satouh et al., 2012), the site of
fusion with the egg. Sperm of Izumo1 knockout mice fails to fuse,
leading to male infertility (Inoue et al., 2005). Females lacking
the GPI-anchored Izumo1 Receptor (Juno) are also infertile due
to defects in gamete fusion (Bianchi et al., 2014). Shortly after
sperm–egg fusion, Juno is shed from the egg membrane, pre-
venting further sperm binding, thus contributing to the block of
polyspermy (Bianchi et al., 2014). Juno and Izumo1 are con-
served among mammals, including humans, where antibodies
against Izumo1 and mutations in Juno are associated with female
infertility (Clark and Naz, 2013; Yu et al., 2018). The interaction
between these adhesion partners is bilateral in humans (Aydin
et al., 2016; Ohto et al., 2016) and appears to be species specific

(Bianchi and Wright, 2015). Heterologous cells expressing Juno
or Izumo1 are able to adhere to sperm or eggs, respectively;
however, this interaction is insufficient to mediate cell–cell fu-
sion, suggesting the existence of additional molecular players
(Inoue et al., 2013, 2015; Chalbi et al., 2014; Kato et al., 2016). In
addition to Izumo1-Juno interactions, the egg-specific tetraspa-
nin CD9 is necessary for gamete fusion (Kaji et al., 2000; Le
Naour et al., 2000; Miyado et al., 2000) but its role seems to
be related to the organization of microvilli (Runge et al., 2007).
In sperm, the immunoglobulin-like protein SPACA6, is essential
for gamete fusion (Lorenzetti et al., 2014). Recently, the egg GPI-
anchored protein Bouncer was shown to be necessary during
Zebrafish gamete fusion (Herberg et al., 2018). Bouncer

Table 1. Examples of candidate fusogens (Continued)

Protein Family Organism Suggested
fusion event

Fusogenic
scorea

Essential
for fusion
(0–2)

Structural
similarity
to
fusogens
(0–2)

Expressed
at the time
and place
of fusion
(0–2)

Sufficiency
(0–4)b

References

A B C D

HAP2/
GCS1

Fusexins (HAP2) T. thermophila;
Trypanosomes

Mating 6 + + + ND ND ND ND Pinello et al.,
2017

HAP2/
GCS1

Fusexins (HAP2) Chlamydomonas;
Algae

Fertilization
(mt− cell)

6 + + + ND ND ND ND Liu et al.,
2008; Fédry
et al., 2017

Bouncer Ly6/uPAR Danio reri and
Oryzias latipes

Fertilization
(egg)

5 + − + + ND ND ND Herberg
et al., 2018

Izumo1 IgSF M. musculus;
Mammals

Fertilization
(sperm)

4 + − + − − ND ND Inoue et al.,
2005, 2013,
2015; Chalbi
et al., 2014

Juno Folate receptors M. musculus;
Mammals

Fertilization
(oocyte)

4 + − + − − ND ND Bianchi et al.,
2014; Kato
et al., 2016

SPE-9 EGF repeats C. elegans;
Nematodes

Fertilization
(sperm)

4 + ND + ND ND ND ND Singson et al.,
1998

Sns IgSF Drosophila FCM 4 + ND + − − ND ND Bour et al.,
2000;
Shilagardi
et al., 2013

Duf/Kirre IgSF Drosophila FC 4 + ND + − − ND ND Ruiz-Gómez
et al., 2000;
Shilagardi
et al., 2013

Bindin Bindins S. purpuratus;
Sea urchins

Fertilization
(sperm)

3 ND ND + ND ND ND + Vacquier and
Moy, 1977;
Glabe, 1985;
Vacquier,
2012

PRM1 Tetraspanin
integral protein

S. cerevisiae;
Yeast

Mating 3 ± ND + − ND ND ND Heiman and
Walter, 2000;
Olmo and
Grote, 2010

The fusogenic score (0–10) was calculated using the following scoring system: + (requirement fulfilled) = max score, − (requirement not fulfilled) = 0 points,
ND (not determined) = 0 points, and ± (requirement partially fulfilled) = half of max score.
aThe fusogenic score (0–10).
b(A) Sufficient in situ (0–1). (B) Fuse heterologous cells (0–1). (C) Fuse pseudo-typed virus (0–1). (D) In vitro liposome fusion (0–1).
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mediates fertilization in a species-specific manner, and its
heterologous expression in eggs of a different fish (Medaka) is
sufficient to induce fusion with Zebrafish sperm (Herberg
et al., 2018). Bouncer has a mammalian orthologue (SPACA4)
that is sperm specific; more studies regarding the fusogenic
role of both Bouncer and SPACA4 are required (Table 1).

At present, gamete fusogens in organisms lacking HAP2-like
proteins remain to be identified. During evolution, HAP2 or-
thologues may have diverged so rapidly that bioinformatic tools
are unable to detect distant phylogenetic relationships. In this
sense, these hypothetical divergent proteins may conserve
structural similarities to HAP2 or to other fusexins (e.g., EFF-
1 and anchor cell fusion failure-1 [AFF-1] from nematodes;
Table 1; Fédry et al., 2017; Pinello et al., 2017; Valansi et al., 2017).
Another possibility is that HAP2 genes were replaced by dif-
ferent fusogens of viral origin acquired by horizontal gene
transfer during evolution. Alternatively, these phylogenetic
groups may depend on new eukaryotic fusogens unrelated to
HAP2 or viral fusogens (Doms, 2017).

Somatic cell fusion and organ formation
In the next sections, we discuss cell–cell fusion in different tis-
sues and organs and focus on fusion processes during the

development of muscles, placenta, bones, stem cells, and
synergid-endoplasm. We also review cell fusion in disease
(cancer and viral infections) and then analyze the detailed map
of cell–cell fusions in C. elegans, describing how fusion proteins
sculpt cells in the epidermal, digestive, reproductive, and ner-
vous systems.

Myoblast fusion
Skeletal muscles are composed of bundles of elongated multi-
nucleated myofibers that form by fusion of mononucleated
myoblasts. Myoblast fusion is necessary for myofiber mainte-
nance, growth, and regeneration (Sampath et al., 2018).

Genetic work in Drosophila melanogaster embryos led to a
model of myoblast fusion in which two distinct populations of
myoblasts differentiate and cooperate during fiber formation.
The founder cells (FCs) seed the formation of specific muscle
fibers by fusion with fusion-competent myoblasts (FCMs; Bate,
1990; Video 2). More recent reports revealed a ring of FCM/FC
adhesion molecules encircling the F-actin–enriched focus
(Kesper et al., 2007). These podosome-like structures formed by
plasma membranes of FCMs insert into FCs (Sens et al., 2010).
The FCs mount a Myosin II– and spectrin-mediated response
that controls the diameter and shape of the protrusions from the

Table 2. Mechanism of action for some of the best candidate fusogens

Protein Organism Homotypic/
Heterotypic

Bilateral/
Unilateral

Dependent on
regulators

Triggers References

HA Influenza virus Heterotypic Unilateral Receptors Low pH Reviewed in Kielian and Rey, 2006

p14 Reptilian
orthoreoviruses

Heterotypic Unilateral Cholesterol, calcium ND Reviewed in Key and Duncan,
2014

E1 Semliki Forest virus Heterotypic Unilateral Cholesterol Low pH Reviewed in Kielian and Rey, 2006

vSNARES,
tSNARES

Eukaryotes and
Archaea

Heterotypic Bilateral Synaptotagmin,
complexin, and others

Docking Reviewed in Jahn and Scheller,
2006

EFF-1 C. elegans;
Nematodes

Hetero/Homo Bilateral Dynamin, vATPase, PS ND Mohler et al., 2002; Shemer et al.,
2004; Podbilewicz et al., 2006;
Avinoam et al., 2011; Neumann
et al., 2015

Atlastins Eukaryotes Homotypic Bilateral Dimerization GTP hydrolysis (?) Reviewed in Hu and Rapoport,
2016

Syncytins Placental mammals Heterotypic Unilateral Receptor, Anxs, PS Externalization of
PS (?)

Blond et al., 2000; Mi et al., 2000;
Bjerregaard et al., 2006;
Dupressoir et al., 2011; Søe et al.,
2011

HAP2/GCS1 Arabidopsis; plants Heterotypic Uni/Bi ND ND Valansi et al., 2017

AFF-1 C. elegans;
Nematodes

Hetero/Homo Bilateral ND ND Sapir et al., 2007; Avinoam et al.,
2011

Myomaker M. musculus; Human Homotypic Bilateral Anxs, PS binding
proteins

PS exposure (?) Millay et al., 2013; Bi et al., 2017;
Gamage et al., 2017; Quinn et al.,
2017; Zhang et al., 2017a; Leikina
et al., 2018

Myomerger Heterotypic Unilateral

HAP2/GCS1 T. thermophila;
Trypanosomes

Hetero/Homo Uni/Bi ND ND Pinello et al., 2017

HAP2/GCS1 Chlamydomonas;
Algae

Heterotypic Unilateral ND ND Fédry et al., 2017

ND, not determined; ?, not confirmed.
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FCMs to promote fusion (Kim et al., 2015; Duan et al., 2018). In
contrast to the mechanism of myoblast fusion at the tip of the
protrusion suggested for Drosophila embryo, later in the devel-
opment of indirect flight muscles, multiple fusion pores are
formed in extended (∼4 µm) and tight (inter-cellular distance of
∼20 nm) membrane contacts (Dhanyasi et al., 2015). Studies in
different organisms have identified molecular components in-
volved in the generation of multinucleated muscle cells includ-
ing actin, adhesion, and endocytic machineries; tetraspanin CD9,
ferlins, JAM-B, and JAM-C receptors; and immunoglobulin
domain–containing membrane receptors such as Kirrel in Ze-
brafish embryo (Tachibana and Hemler, 1999; Srinivas et al.,
2007; Posey et al., 2011; Powell and Wright, 2011; Leikina
et al., 2013; Kim et al., 2015; Schejter, 2016; Sampath et al., 2018).

Formation of muscle fibers is inhibited by the hemifusion-
inhibiting lipid lysophosphatidylcholine (LPC), promoted by the
phosphoinositide PI(4,5)P2, and associated with cell surface
exposure of phosphatidylserine (PS; van den Eijnde et al., 2001;
Hochreiter-Hufford et al., 2013; Leikina et al., 2013; Bothe et al.,
2014; Whitlock et al., 2018). Myoblast fusion is also dependent
on PS-binding proteins annexins (Anxs), stabilins, and the PS-
exposure–mediating protein TMEM16E (Leikina et al., 2013; Kim
et al., 2016; Hamoud et al., 2018; Whitlock et al., 2018). Two
muscle-specific proteins, Myomaker (Tmem8c) and Myomerger
(Gm7325/Myomixer/Minion), have been shown to be essential
for vertebrate myoblast fusion (Millay et al., 2013; Bi et al., 2017;
Gamage et al., 2017; Quinn et al., 2017; Zhang et al., 2017a;
Leikina et al., 2018). Myomaker has seven transmembrane do-
mains, and Myomerger is an 84–amino acid integral membrane
protein with a C-terminal ectodomain (Millay et al., 2013;
Leikina et al., 2018). Expressing both Myomaker and My-
omerger in fibroblasts, but not separately, is sufficient to induce
cell–cell fusion. In contrast to Myomaker, which is able to sup-
port fusion only if expressed in both fusing cells, Myomerger is
required in only one of the cells (Table 2).

To identify the proteins and lipids directly involved in my-
oblast fusion, ready-to-fuse murine myoblasts were accumu-
lated in the presence of LPC without blocking pre-fusion
differentiation, followed by LPC removal to observe robust and
synchronized fusion (Leikina et al., 2013). Specific treatments
such as antibodies and inhibitors applied during LPC removal
focused the analysis of the contributions of candidate proteins
and lipids on the cell fusion stage of myogenesis (Leikina et al.,
2013, 2018). This approach combined with application of three
complementary fusion assays (syncytium formation, lipid mix-
ing, and content mixing) allowed researchers to distinguish
proteins involved only in pre-fusion stages of myogenesis from
proteins involved in hemifusion or in pore formation and ex-
pansion (Fig. 1). It was shown that cell-surface AnxA1 and
AnxA5 (Leikina et al., 2013) and Myomaker (Gamage et al., 2017;
Leikina et al., 2018) function at the hemifusion stage of myoblast
fusion. The transition from myoblast hemifusion to syncytium
formation (multinucleation) depends on cell metabolism, dy-
namin 2 activity, and phosphoinositide PI(4,5)P2 concentration
(Leikina et al., 2013), as well as the cell-surface Myomerger
(Leikina et al., 2018). While fusion of Myomerger-deficient
myoblasts stall at hemifusion, Myomaker-deficient myoblasts

do not form even early hemifusion intermediates, confirming
that Myomaker functions at or upstream of hemifusion and that
Myomerger probably drives pore formation (Leikina et al.,
2018). Myomaker does not need Myomerger to mediate hemi-
fusion, and Myomerger does not need Myomaker to complete
the fusion once hemifusion is reached, demonstrating inde-
pendent and distinct functions of these proteins at different
fusion steps (Fig. 1 A). The specific roles of Myomaker in hem-
ifusion and Myomerger in fusion pore opening, as well as the
mechanisms by which muscle microenvironment trigger and
coordinate fusion-related proteins and lipids in distinct stages of
the fusion pathway, remain to be clarified (Schejter, 2016;
Sampath et al., 2018; Table 2).

Placental trophoblast fusion
Fusion of villous cytotrophoblasts throughout pregnancy gen-
erates syncytiotrophoblast, a giant cell with more than 10 billion
nuclei and an ∼10-m2 surface area that serves as the main fe-
tomaternal barrier (Pötgens et al., 2004; Bolze et al., 2017). This
cell fusion depends on the endogenous retroviral proteins,
namely, Syn1 and Syn2 in primates, and SynA and SynB in ro-
dents. Interactions of Syn1 and Syn2 with their receptors,
ubiquitous neutral amino acid transporters ASCT1 and ASCT2,
trigger this fusogenic restructuring (Pötgens et al., 2004; re-
viewed in Aguilar et al., 2013). Syncytin-mediated trophoblast
fusion is accompanied by formation of podosome-like plasma
membrane protrusions (Wang et al., 2014) and PS exposure
(Pötgens et al., 2004), and involves AnxA5 (Degrelle et al., 2017).
Specific contributions of different syncytins and the mecha-
nisms that ensure the appropriate timing and specificity of this
fusion process (trophoblasts fuse only with each other and the
syncytiotrophoblast) remain to be determined (see Movie S3 in
Wang et al., 2014).

Osteoclast precursor fusion
Bone remodeling during development and in bone maintenance
depends on the balance between bone formation by osteoblasts
and bone resorption by osteoclasts. The latter are generated by
fusion of osteoclast precursors (preosteoclasts) derived from
monocyte/macrophage lineage after macrophage colony stimu-
lating factor and RANKL stimulation (Levaot et al., 2015). Larger
osteoclasts with multiple nuclei resorb bones better than
mononucleated osteoclasts (Lees and Heersche, 1999), and thus
changes in fusion efficiency are expected to disrupt normal bone
remodeling. As with myoblasts and trophoblasts, fusion of pre-
osteoclasts involves actin-enriched podosome-like protrusions
(Oikawa and Matsuo, 2012) and distinct populations of precur-
sor cells that differ in protein expression and in fusion compe-
tence (Levaot et al., 2015; and see Movie 1 therein). Several
proteins, including CD9 (Ishii et al., 2018), a dendritic cell spe-
cific transmembrane protein (Yagi et al., 2005), the endocytotic
machinery including dynamin 2, clathrin, and AP-2 (Shin et al.,
2014; Verma et al., 2014), and Syn1 (Søe et al., 2011), are involved
in osteoclast formation and may function in fusion itself
(Table 1).

Recent analysis using a fusion synchronization approach has
established that dendritic cell specific transmembrane protein

Brukman et al. Journal of Cell Biology 1442

Atlas of cell fusion mechanisms https://doi.org/10.1083/jcb.201901017

https://doi.org/10.1083/jcb.201901017


and Syn1 are involved in the human preosteoclast hemifusion
(Verma et al., 2018). In addition, this fusion stage depends on
TMEM16F-mediated exposure of PS, AnxA5 (PS-binding pro-
tein), and S100A4 (Anx-binding protein; Table 2). Again bearing
similarity to myoblasts, generation of multinucleated osteoclasts
depends on cell metabolism and dynamin 2 (Shin et al., 2014;
Verma et al., 2014) at the stage of the expansion of local mem-
brane connections (Verma et al., 2014). These findings indicate
that preosteoclast fusion is controlled by a complex multiprotein
fusion machinery, and future studies will likely expand the list
of the protein components involved and clarify their role.

Stem cell fusion and fusion in liver and eye
While the role of cell fusion in myogenesis, osteoclastogenesis,
placentogenesis, and fertilization is well established, there are
additional biological processes that have been hypothesized to
depend on fusion. In analogy to fusion of differentiating skeletal
muscle stem cells (satellite cells) that plays a key role in muscle
regeneration, fusion has been suggested to be involved in the
repair and regeneration of other tissues mediated by adult and
embryonic stem cells (Pesaresi et al., 2018). Bone marrow adult
stem cells (BMSCs) differentiate into many lineages including
hepatocytes, neurons, and cardiomyocytes (Terada et al., 2002;
Guo et al., 2018). Through bloodstream circulation, BMSCs come
into contact with different tissues, allowing these cells to be
involved in the regeneration of different types of tissues. Do
BMSCs facilitate the regeneration by fusion to the resident cells?
This hypothesis has been substantiated by reports that bone
marrow–derived cells can fuse with certain types of cells in-
cluding Purkinje neurons, cardiomyocytes, and hepatocytes
(reviewed in Pesaresi et al., 2018). In addition to a possible role
of BMSC fusion, tissue regeneration can also involve fusion
between mesenchymal and embryonic stem cells (Sottile et al.,
2016). In contrast to the very efficient fusion of the satellite cells,
BMSC fusion and mesenchymal stem cell fusion events are very
rare (generally under 2% of cells in the population and as low as
∼1 in 500,000 cells [Terada et al., 2002]). This hinders unam-
biguous analysis of their potential role and mechanism in tissue
regeneration, and the significance of their in vivo regeneration
of tissues other than skeletal muscle is still lacking solid evi-
dence (Kajstura et al., 2005; Lizier et al., 2018; Pesaresi et al.,
2018).

Cell fusion has been also discussed as a possible mechanism
of formation of polyploid liver cells, but while hepatocytes can
fuse in vitro, the physiological relevance in vivo remains con-
troversial (Lizier et al., 2018). In another poorly understood
example of a potentially important cell fusion processes, ter-
minal differentiation of fiber cells in the vertebrate lens results
in their partial fusion that generates the lens syncytia in which
fusion pores connecting constituent cells facilitate intercellular
diffusion but do not expand (Shi et al., 2009).

Fertilization-independent cell fusion between the persistent
synergid and endosperm
In flowering plants, a somatic cell–cell fusion that occurs after
double fertilization has been shown to eliminate the persistent
synergid signaling cell in a process alternative to apoptosis that

is mechanistically independent of sexual cell fusions (Maruyama
et al., 2015; reviewed in Maruyama et al., 2016). The persistent
synergid is necessary for pollen attraction. During plant double
fertilization, the pollen tube releases two sperm into the ovule.
One sperm fuses with the egg while the other fuses to the central
cell to form the endosperm. A few hours later, the endosperm
fuses with the persistent synergid cell (see Movie S1 in
Maruyama et al., 2015). After the fusion, the nucleus of the
persistent synergid cell becomes disorganized while the endo-
sperm nucleus divides. While the gamete fusion events are
HAP2-mediated, and require actin polymerization and protein
secretion, the somatic synergid–endosperm fusion is indepen-
dent of HAP2 and filamentous actin, and dependent on cyclin-
dependent kinases (Motomura et al., 2018).

Cell fusion in disease
Disrupted or unbalanced cell fusion in developmental processes
is linked to human diseases. Defects in sperm–egg fusion lead to
male infertility (Mou and Xie, 2017). Impediments in myoblast
fusion can be perinatally lethal in mice and have been associated
with some human myopathies (Di Gioia et al., 2017; Sampath
et al., 2018). Syncytin-mediated trophoblast fusion is critical
for normal pregnancy, and defects in this fusion have been
linked to preeclampsia (Bolze et al., 2017). Unbalanced bone
remodeling due to excessive and insufficient osteoclast fusion
can lead to osteoporosis and osteopetrosis (Yagi et al., 2005).
Fusion between cells that do not normally fuse has been also
linked to diseases including cancer and viral infections, dis-
cussed in the following sections.

Cell fusion in cancer
In the early 1900s, Otto Aichel suggested that leukocyte-like
characteristics of metastatic cancer cells that facilitate their
migration through the blood are acquired by their fusion with
white blood cells (Aichel, 1911). Since then, many studies have
substantiated the hypothesis that fusion among cancer cells and
between cancer cells and nonmalignant cells can contribute to
initiation and progression of cancer and, specifically, aneu-
ploidy, drug resistance, andmetastatic potential characteristic of
malignant cells. Indeed, cancer cells do fuse with each other
(Noubissi and Ogle, 2016; Uygur et al., 2019). Different cancer
cells also spontaneously fuse with nonmalignant cells. For in-
stance, prostate cancer cells fuse with stromal and skeletal
muscle cells, and breast cancer cells fuse with normal mammary
gland cells and with endothelial cells (Kerbel et al., 1983). Hybrid
cells generated by cancer cell/dendritic cell fusion can actually
induce an anti-tumor immune response and can potentially be
used as a treatment for colorectal and renal cancer (Koido, 2016).
However, in most cases, such hybrid cells have cancer stem cell
properties with elevated metastatic potential, proliferation rate,
and drug resistance (reviewed in Bastida-Ruiz et al., 2016;
Noubissi and Ogle, 2016; Gast et al., 2018; Wang et al., 2018).
Most recently, it has been shown that fusion between cancer
cells and leukocytes increases tumor heterogeneity, and the
number of the hybrid cells in blood of human patients correlates
with cancer stage (Gast et al., 2018; Video 3). The hypothesis that
drastic changes in the properties of the cells upon their fusion
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can initiate and promote malignancy is further supported by the
elegant demonstration that fusion between nontransformed,
cytogenetically stable epithelial cells brought about by a chem-
ical fusogen initiates chromosomal instability, cell transforma-
tion, and malignancy (Zhou et al., 2015).

In a recent study aimed at modeling the effects of muscle cells
surrounding the prostate gland on prostate cancer cells, co-
culturing prostate cancer cells with primary skeletal or smooth
muscle cells resulted in cancer cell fusion (Uygur et al., 2019).
Fusion between cancer cells was found to expand the sub-
populations of the cells with cancer stem cell features, sug-
gesting that this fusion reaction promotes cancer progression.
This novel system obtains a relatively high efficiency of cancer
cell fusionwith 10–20% of cell nuclei located in fusion-generated
multinucleated cells, facilitating the analysis of the underlying
mechanisms (Uygur et al., 2019). Cancer cell fusion in prostate
cancer/muscle cell cocultures involves a placental fusogen Syn1
(implicated in cancer cell fusion [Noubissi and Ogle, 2016]) and
AnxA5 (Uygur et al., 2019). Fusion is associated with up-
regulation of these proteins and is inhibited by blocking their
expression. Human prostate cancer cells have higher levels of
Syn1 and AnxA5 expression than nonmalignant tissues. The case
for the direct involvement in cancer cell fusion is especially
strong for Syn1 as blocking fusogenic refolding of Syn1 with a
peptide inhibitor abolishes fusion (Uygur et al., 2019). Inter-
estingly, ASCT2, a Syn1 receptor, also has a role in cancer cell
fusion, as evidenced by the finding that knocking down ASCT2
or Syn1 inhibits fusion between breast cancer cells and endo-
thelial cells (Bjerregaard et al., 2006). Knocking down ASCT2
also inhibits cell proliferation and growth of different tumors
(Wang et al., 2015).

With regard to the tumor microenvironment, interactions
with muscle apparently trigger fusion of prostate cancer cells by
raising concentrations of anti-inflammatory interleukins 4 and
13 in the medium (Uygur et al., 2019). Cancer cell fusion and
fusion-dependent disease progression can be also triggered by
inflammation, hypoxia, and oxidative stress, and have been as-
sociated with apoptotic pathways (Mohr et al., 2015). All these
fusion-triggering processes have been linked to PS externaliza-
tion, and many different cancer cells have an unusually high cell
surface concentration of PS (Sharma and Kanwar, 2018). It re-
mains to be clarified whether cancer cell fusion also depends on
cell surface PS and at what stage. Better understanding of the
mechanisms and steps of cancer cell fusion their role in cancer
initiation and progression will hopefully help in development of
new diagnostic tools and treatment options for the disease.

Cell fusion in viral infection
In addition to virus–cell membrane fusion, a key stage in en-
veloped virus entry, some viruses are thought to use cell–cell
fusion to spread infection between contacting cells. Cells in-
fected with nonenveloped viruses such as baboon reovirus ex-
press fusion-associated small-transmembrane (FAST) proteins.
FAST proteins facilitate virus spread between the cells by in-
ducing cell fusion between infected and noninfected cells
(Ciechonska et al., 2014; Table 1). T lymphocytes infected with
HIV also express viral fusogen (HIV Env) and have been

reported to form syncytia in lymph nodes of HIV patients and
HIV infected humanized mice as well as in cell culture systems
(reviewed in Symeonides et al., 2015; Compton and Schwartz,
2017). While these Env-mediated syncytia have been suggested
to significantly contribute to HIV spread (Symeonides et al.,
2015), their role in the replication and pathogenesis of HIV-
1 in vivo, and, more generally, the role of cell–cell fusion in
different viral infections, still await additional analysis
(Compton and Schwartz, 2017).

Cell fusion sculpts tissues in C. elegans
The complete anatomy of C. elegans is known at EM resolution
(White, 1988), and this is the only known organism with an
invariant cell lineage (Sulston et al., 1983), revealing that one
third of all the somatic cells that are born as mononucleated cells
fuse during development to become multinucleated
(Podbilewicz and White, 1994). The timing and locations of the
somatic cell–cell fusions during morphogenesis of the embry-
onic epidermis are fully described (Video 4; Podbilewicz and
White, 1994; Mohler et al., 1998; del Campo et al., 2005;
Gattegno et al., 2007). During postembryonic (larval) develop-
ment, additional cells merge with the major embryonic syncy-
tium hyp7 forming the largest worm cell, containing 139 nuclei
in the adult hermaphrodite (Podbilewicz and White, 1994;
Yochem et al., 1998). Additional multinucleate cells form in the
epidermis and during organogenesis of the vulva, uterus, and
hymen in the reproductive system (Sharma-Kishore et al., 1999;
Kolotuev and Podbilewicz, 2008; Weinstein and Podbilewicz,
2016). In the digestive system, fusions occur in epithelial and
myoepithelial cells of the pharynx and in different glands
(Shemer et al., 2004). All these cell fusions are highly regulated
at the transcriptional, translational, and posttranslational levels
to ensure only correct partners fuse in spatial and temporal
settings (Shemer and Podbilewicz, 2002; Margalit et al., 2007;
Sapir et al., 2007; Alper and Podbilewicz, 2008; Brabin et al.,
2011). Precise combinations of signaling pathways including
Notch, Wnt, and growth factors control each cell fusion event
(Cassata et al., 2005; Rasmussen et al., 2008) in unison with
microRNAs and heterochronic genes that temporally regulate
the merger of cells and intracellular trafficking of fusogens and
actin cytoskeleton which tightly control the correct localization
and activity of the fusion machinery itself (Shinn-Thomas et al.,
2016; Smurova and Podbilewicz, 2016; Zhang et al., 2017b).

EFF-1 and AFF-1 merge cells to sculpt epithelia and tubular organs
Genetic screens in C. elegans identified two genes essential for
developmental cell fusion events (reviewed in Hernández and
Podbilewicz, 2017). Mutations in eff-1 result in failure in most
fusion events in the epidermis, reproductive, and digestive
systems (Mohler et al., 2002). It is essential to define the shape
of the epidermis, vulva, pharynx, and uterus. Loss of function of
EFF-1 also results in abnormal cell fates and defective migration
of unfused cells, and lower fertility (reviewed in Podbilewicz
and Chernomordik, 2006; Shinn-Thomas and Mohler, 2011).
EFF-1 is a type I membrane glycoprotein with primary sequence
similarity to proteins in arthropods, ctenophores, some protists,
and chordates (reviewed in Avinoam and Podbilewicz, 2011),
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and its crystal structure reveals similarity to viral class II gly-
coproteins (Pérez-Vargas et al., 2014). The second gene identi-
fied was named aff-1. It is a paralog of eff-1 and is essential for cell
fusions in the formation of the hymen, vulva, epidermis, and
pharyngeal muscles (Sapir et al., 2007).

Genetic mosaic analysis at single-cell resolution in C. elegans,
ectopic expression in insect cells, and analyses of cell fusion
dynamics showed that EFF-1 is required in both fusing cells
(Shemer et al., 2004; del Campo et al., 2005; Podbilewicz et al.,
2006; Gattegno et al., 2007; Yang et al., 2017). AFF-1 is also re-
quired in both fusing cells in worms, insect, and mammalian
cells (Sapir et al., 2007; Avinoam et al., 2011). EFF-1::GFP is
rapidly endocytosed via dynamin-dependent receptor-mediated
endocytosis and mostly localized in RAB-5–positive early endo-
somes. Failure to endocytose EFF-1 results in excess fusion and
lethality (Smurova and Podbilewicz, 2017; Video 4). Independent
support for the bilateral mechanism for EFF-1 and AFF-1 comes
from fusion between pseudotyped vesicular stomatitis virus
with a deletion of G glycoprotein–AFF-1 to cells (Avinoam et al.,
2011; Fridman, 2012). Even more remarkable, EFF-1 and HAP-
2 can similarly interact in trans in such heterologous systems
(Valansi et al., 2017; Fig. 1 C).

Although EFF-1 and AFF-1 are required in both fusing
membranes in vivo (C. elegans) and in simpler systems (re-
viewed in Podbilewicz, 2014), these fusogens may possess some
supplementary unilateral activity via partial insertion of am-
phipathic domains, as noted for HAP2, only presumably much
weaker (Liu et al., 2008; Fédry et al., 2017, 2018). Moreover,
EFF-1/AFF-1–mediated fusions apparently involve lateral coop-
eration in cis between fusogens (Avinoam et al., 2011). This has
also been shown for intracellular fusogenic complexes such as
synaptotagmins, SNAREs, and atlastins (Earles et al., 2001;
Hernandez et al., 2014; Liu et al., 2015a). The solved structures of
EFF-1 and HAP2 provide a framework to help determine the
mechanisms of action of these exoplasmic fusogens (fusexins;
Table 1), and their ability to act in a heterotypic way demon-
strates mechanistic conservation of action even between plants
and animals (Fig. 1 C and Table 2).

Neuronal fusion
Neuronal fusion was documented in invertebrates more than 50
yr ago (Hoy et al., 1967), and in the vertebrate peripheral ner-
vous system (reviewed in Giordano-Santini et al., 2016). A sys-
tem to cut axons using laser microsurgery (axotomy) was
implemented in C. elegans (Yanik et al., 2004) and was used in a
breakthrough experiment which determined that EFF-1 fuses
cut axons in the PLM mechanosensory neuron (Ghosh-Roy and
Chisholm, 2010). EFF-1 directly mediates the reconnection pro-
cess, and RAB-5–mediated endocytosis of EFF-1 controls the
axonal fusion remodeling (Linton et al., 2018). Based on rescue
experiments, EFF-1 acts cell-autonomously in the PLM neuron
during the axonal auto-fusion process (Fig. 2), and EFF-1::GFP
localizes to the regenerating growth cone (Neumann et al.,
2015). The reconnection by fusion of the severed PLM axons
enables a recovery of the neuronal function of touch sensitivity,
and intra-axonal vesicular transport is also restored (Video 5).
PS exposure on the axonal outer membrane correlates with

axonal fusion and increases with age, although auto-fusion ca-
pability itself declines with age. The microRNA let-7 also inhibits
the ability to recover functionality by EFF-1–mediated auto-
fusion (Abay et al., 2017; Basu et al., 2017). Similar to its role
in muscle fusion, PS is exposed and binds to secreted trans-
thyretin (TTR-52) following axotomy. Axonal regeneration de-
pends on, among others, NRF-5 (secreted lipid binding protein)
and various components of the phagocytosis pathway (e.g., the
engulfment receptor CED-1, CED-6 [Engulfment Adaptor PTB
Domain, GULP1], and CED-7 [ABC transporter]; Neumann et al.,
2015). The mechanisms underlying axonal repair by self-fusion
following experimental injury in C. elegans have potential future
applications in neurodegeneration and repair of neuronal in-
juries in vertebrates (Ghosh-Roy and Chisholm, 2010; Neumann
et al., 2011). In summary, EFF-1–mediated auto-fusion is highly
regulated and plays a vital role in recovery of injured axons both
structurally and functionally.

EFF-1 has also been shown to control morphogenesis and
maintenance of the stereotypic and complex dendritic trees of
the PVD neuron (Oren-Suissa et al., 2010). EFF-1 can fuse and
“prune” dendrites to model them during larval development,
through adulthood and in response to laser microsurgery (den-
drotomy; reviewed in Soulavie and Sundaram, 2016). In contrast
with the PLM axon, cut dendrites can auto-fuse in a process that
requires AFF-1 noncell autonomously (Oren-Suissa et al., 2010,
2017). Dendrotomy induces production of AFF-1–containing ex-
tracellular vesicles derived from epidermal seam cells. A model
was proposed in which AFF-1 proteins on extracellular vesicles
fuse the dendrites and repair the lesion remodeling the dendritic
trees from the outside (Oren-Suissa et al., 2017; Fig. 2). Another
extrinsic function for EFF-1 in the sculpting of PVD dendritic
trees is based on the epidermal localization of SAX-7(L1CAM) Ig
domain protein (Zhu et al., 2017) and was recently reviewed
(Inberg et al., 2019). Reduction in EFF-1 activity resulted in
sprouting of dendrites, increasing the probability of repair by
fusion (Oren-Suissa et al., 2017). Similar to axonal repair, den-
dritic regeneration is impaired in older adults, but can be res-
cued by ectopic expression of AFF-1 or through mutations in
DAF-2 (Insulin growth factor-1 receptor), which is related to
increased lifespan (Kravtsov et al., 2017). In summary, age-
dependent remodeling of arborized dendrites is dependent on
fusogens through auto-fusion and extracellular vesicles.

Other functions of cell–cell fusogens in auto-fusion,
endocytosis, and phagocytosis
Some cell–cell fusogens also seem to play roles in other fusion
processes. In different organisms, there are examples of a single
cell fusing different parts of its own membrane to generate
single-cell donuts (reviewed in Sundaram and Cohen, 2017). In
C. elegans, EFF-1 and AFF-1 independently mediate auto-fusion of
cells that wrap and form donuts that connect to construct tubes
in the excretory and digestive systems (Rasmussen et al., 2008;
Stone et al., 2009; Fig. 2). The formation of small capillaries in
vertebrates also uses auto-fusion strategies during vascular
pruning (Lenard et al., 2015). Thus, auto-fusion can be a uni-
versal strategy to sculpt seamless donuts and small-scale tube
structures (Soulavie and Sundaram, 2016).
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Another novel function for AFF-1 during excretory duct
elongation in C. elegans was recently uncovered (Soulavie et al.,
2018). Using inducible AFF-1 degradation, it was shown how
AFF-1 is necessary for auto-fusion of a seamless donut as pre-
viously discussed (Stone et al., 2009), but its subsequent elon-
gation to form a tube is independent of its early function
(Soulavie et al., 2018). During auto-fusion, AFF-1::mCherry lo-
calizes to apical junctions, while during subsequent tube cell
elongation, it localizes mostly to basal membranes. During en-
docytosis, AFF-1 localizes at the necks of endocytic invaginations
(Fig. 2). aff-1 mutants in C. elegans have a shortened excretory
duct cell, with accumulated membrane inclusions and vesicles
suggesting a block in endocytosis from the basal membrane
(Soulavie et al., 2018). This work suggests that AFF-1 mediates
scission of basal membrane endosomes and facilitates polarized
apical exocytosis to elongate seamless tubes. These results un-
cover a novel and exciting function for the exoplasmic fusogen
AFF-1 in endocytic fission and seamless tube elongation by
membrane scission. It is conceivable that other exoplasmic
fusogens such as syncytins, HAP2, and Myomaker/Myomerger
have similar endocytic and tube elongation functions in pla-
centa, gametes, and muscles, respectively.

EFF-1 has another unexpected role in a novel engulfment
pathway clearing the distal process of the C. elegans tail spike cell
(TSC) and the CEM sex-specific neuron. Mutants in eff-1 fail to
clear the distal TSC segment, and this phenotype can be rescued
by expressing EFF-1 in the epidermal hyp10 cell (Ghose et al.,
2018). This clearance pathway is independent of the classic en-
gulfment pathways that eliminate the soma through CED-5/
DOCK180 and CED-1. Thus, EFF-1 acts as a fission-inducing
component necessary for sealing of the phagosome contain-
ing the distal process of the TSC. In eff-1 mutants, the phago-
some containing the distal process is unsealed, as evidenced by
FRAP of muscle-secreted GFP surrounding the distal segment,
proving continuity of extracellular GFP into the phagosome
area. Moreover, EFF-1 localizes to the phagosome arm tips at
the putative sealing region (Ghose et al., 2018). Previous

investigations have proposed that the fission machinery re-
sponsible for endocytic and phagocytic scission acts from the
endoplasmic (cytoplasmic) domain of the cellular membranes
in eukaryotes. However, EFF-1 mediates sealing of the phago-
some by a scission-inducing activity from the exoplasmic do-
main of the plasma membrane (Fig. 2). This surprising
discovery may solve the mystery of the identity of the fission
machinery that seals the phagosome. This mechanism for
sealing of phagosomes may even have evolutionary im-
plications in the origin of eukaryotes.

Concluding remarks
Fusion of plasma membranes is an essential and dynamic stage
in fertilization and organ development, and in pathological
processes like viral infections, cancer, and neuronal injury
(Videos 1, 2, 3, 4, and 5). The identification of fusogens requires a
complex analysis, and we suggest a scoring system based on the
gold standards suggested above (Table 1). Ongoing work on
identification of proteins that mediate cell fusion has to consider
that in this multistep pathway fusion-initiation and fusion-
completion may be performed by different proteins, neither of
which can mediate fusion on its own. Moreover, each of the
fusion stages can depend on the concerted activity of several
proteins (Fig. 1). The identity of fusogens involved in gamete
fusion in vertebrates, nematodes, and fungi is still missing, and
even characterized cell fusion mechanisms are still not com-
pletely elucidated (Table 2). Cell–cell fusogens also function in
diverse and unexpected cellular processes such as endocytic
scission, sealing of phagosomes, auto-fusion during tube for-
mation, remodeling of injured neurons, and fusion of extracel-
lular vesicles to cells (Fig. 2). These recently discovered
functions of eukaryotic fusogens promise to reveal universal
mechanisms essential to every aspect of life. In the last decade it
has become widely accepted that while many proteins control
different aspects of cell fusion, only the fusogens are both nec-
essary and sufficient to merge cells together. Recent structural
data indicate eukaryotic fusogens have striking structural and

Figure 2. Alternative functions for cell–cell fusogens.
Membrane remodeling activity of EFF-1 and AFF-1 proteins is
not limited to mediating cell–cell fusion events. Auto-fusion: a
single cell fuses with itself to form donut-shaped cells that can
stack and elongate to form tubes, or alternatively join a severed
process, as in neuronal regeneration. Extracellular vesicle fu-
sion: AFF-1 proteins can mediate the fusion between a vesicular
carrier and the cell. Phagocytosis (EFF-1–mediated) and endo-
cytosis (AFF-1–mediated): Fission events occur to seal the fis-
sion pore of the forming intracellular vesicle. Note that while
endoplasmic fusogens (e.g., SNAREs and atlastins) act from the
cytoplasmic space (light blue areas), EFF-1 and AFF-1 cell–cell
fusogens induce fusion from the extracellular space (exoplasmic
fusogens in white areas).
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functional similarities with better-characterized intracellular
and viral fusogens, which opens exciting avenues for new can-
didate discoveries. Another crucial aspect involves the tran-
scriptional, translational, and posttranslational regulation of the
cell fusion process. In addition, membrane lipid composition,
intracellular trafficking, and the cytoskeleton alter the activity,
localization, and expression of fusogens so that they fuse the
right cells at the right place and time.

As discussed above, some mechanistic motifs, including fu-
sion dependence on actin-enriched protrusions, PS, AnxA5, and
dynamin, are apparently shared by several different cell fusion
processes, suggesting that some of the regulatory mechanisms
can be conserved. Future research will determine how fusogens
fuse cells, how cellular machineries regulate their activity, and
the identity of yet unidentified fusogens.

Online supplemental material
Video 1 shows sperm–oocyte fusion in C. elegans. Video 2 shows
myoblast fusion in Drosophila embryos. Video 3 shows mouse-
derived macrophage-cancer cell fusion in vitro. Video 4 shows
syncytia formation in the dorsal epidermis in C. elegans embryos.
Video 5 shows axonal fusion: neuronal repair mechanism.
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