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Abstract The first order conditional estimation (FOCE)

method is still one of the parameter estimation workhorses

for nonlinear mixed effects (NLME) modeling used in

population pharmacokinetics and pharmacodynamics.

However, because this method involves two nested levels

of optimizations, with respect to the empirical Bayes esti-

mates and the population parameters, FOCE may be nu-

merically unstable and have long run times, issues which

are most apparent for models requiring numerical integra-

tion of differential equations. We propose an alternative

implementation of the FOCE method, and the related

FOCEI, for parameter estimation in NLME models. Instead

of obtaining the gradients needed for the two levels of

quasi-Newton optimizations from the standard finite dif-

ference approximation, gradients are computed using so

called sensitivity equations. The advantages of this ap-

proach were demonstrated using different versions of a

pharmacokinetic model defined by nonlinear differential

equations. We show that both the accuracy and precision of

gradients can be improved extensively, which will increase

the chances of a successfully converging parameter esti-

mation. We also show that the proposed approach can lead

to markedly reduced computational times. The

accumulated effect of the novel gradient computations

ranged from a 10-fold decrease in run times for the least

complex model when comparing to forward finite differ-

ences, to a substantial 100-fold decrease for the most

complex model when comparing to central finite differ-

ences. Considering the use of finite differences in for in-

stance NONMEM and Phoenix NLME, our results suggests

that significant improvements in the execution of FOCE are

possible and that the approach of sensitivity equations

should be carefully considered for both levels of

optimization.

Keywords Nonlinear mixed effects modeling � First
order conditional estimation (FOCE) � Sensitivity equations

Introduction

Nonlinear mixed effects (NLME) models are suitable

in situations where sparse time-series data is collected from

a population of individuals exhibiting inter-individual

variability [10]. This property has rendered NLME models

popular in both pharmacokinetics and pharmacodynamics,

and several public and commercial software packages have

been developed for performing NLME modeling within

these fields [13]. These modeling softwares include the

well-known NONMEM [5], which was the first program to

be developed and still is one of the most widely used, but

also a number of other programs such as Phoenix

NLME [21] and Monolix [15]. A core part of their func-

tionality consist of various methods for addressing the

problem of parameter estimation in NLME models, and

several studies have been devoted to describing and com-

paring different aspects of these methods [4, 8, 9, 11,

12, 22].
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The ‘‘mixed effects’’ in NLME refers to the fact that these

models contain both fixed effect parameters, having the same

value for all individuals, and random effect parameters,

whose value differ from one individual to another and whose

distribution in the population is determined by some statis-

ticalmodel.A common approach to the parameter estimation

problem in NLME models is based on maximizing the so

called population likelihood. The population likelihood is a

function of the fixed effect parameters only, and it is obtained

by marginalizing out the random effects from the joint dis-

tribution of data and random effects. However, the integral

required for the marginalization lacks a closed-form solution

for all realistic problems. Because of this, maximum likeli-

hood parameter estimation for NLME models revolves

around different numerical approximation methods for

computing this integral. One of the main approaches for

tackling the problem is a class of related methods based on

the so called Laplacian approximation [25]. It includes the

popular and widely used first order conditional estimation

(FOCE)method, which is a special case of the closely related

FOCEwith interaction (FOCEI).With the FOCE and FOCEI

methods, the approximation of the integral involves a Taylor

expansion around the values of the random effect parameters

that maximize the joint distribution. This means that one

optimization problem per individual has to be solved for

every evaluation of the approximated population likelihood.

Since the aim is to maximize the (approximated) population

likelihood, which constitutes the original optimization

problem, conditional estimation methods such as FOCE

produce a parameter estimation problem involving two

nested layers of optimizations. For some NLME parameter

estimation problems this results in long execution times, and

in difficulties with numerical precision making the opti-

mizations unstable and limiting the precision of estimates

and the ability of obtaining confidence intervals. These is-

sues are particularly pronounced for models that are for-

mulated by systems of differential equations which are

lacking analytical solutions [4, 7, 8].

The optimization problems resulting from the FOCE and

FOCEI approximations, and other closely related ap-

proximations, are typically solved using gradient-based op-

timization methods such as the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) quasi-Newton method [20]. For problems

where analytical expressions for the function and its gradient

are not available, it is common that gradients are computed by

finite difference approximations. We instead propose another

approach for determining the gradient of the FOCE and

FOCEI approximations of the population likelihood. Our

approach is based on formally differentiating the likelihoods

used at the two levels of optimization, and computing the

required derivatives of the model state variables using so

called sensitivity equations. The proposed approach for

computing gradients is readily applicable for the inner level of

the nested optimization problem. However, we also derive the

necessary theory for computing gradients through the ap-

proach of sensitivity equations at the outer level optimization.

This step is the more challenging, and requires that sensi-

tivities up to second order of the state variables with respect to

the parameters and random parameters are obtained. Being

able to compute the gradient of the FOCE or FOCEI ap-

proximations of the population likelihood using the approach

introduced in this paper is a great advantage as it circumvents

the need for repeatedly having to solve the inner level opti-

mization problem for obtaining the outer level gradients from

a finite difference approximation.

This paper is organized in the following way. First, the

mathematical theory is introduced. Here we recapitulate

NLMEmodels based on differential equations, including the

formulation of the population likelihood and its ap-

proximations, as well as derive expressions for both the

gradients of the individual joint log-likelihoods with respect

to the random effect parameters, used for the inner level

optimization problems, and the gradient of the approximate

population likelihood with respect to the fixed effect pa-

rameters, used for the outer level optimization problem.

Then, we apply the sensitivity approach for computing the

gradients for different versions of a benchmark model.

Compared to the finite difference approximation, the pro-

posed approach leads to both higher precision and better

accuracy of the gradient, as well as decreased computational

times. Finally, the presented results are discussed and pos-

sible future extensions are outlined.

Theory

Various definitions and results from matrix calculus are

used in the derivations of this section. These can be found

in the ‘‘Appendix 1’’ section.

The nonlinear mixed effects model

Consider a population of N subjects and let the ith indi-

vidual be described by the dynamical system

dxiðtÞ
dt

¼ f
�
xiðtÞ; t;ZiðtÞ; h; gi

�

xiðt0Þ ¼ x0i
�
Ziðt0Þ; h; gi

�
;

ð1Þ

where xiðtÞ is a set of state variables, which for instance

could be used to describe a drug concentration in one or

more compartments, and where ZiðtÞ is a set of possibly

time dependent covariates, h a set of fixed effects pa-

rameters, and gi a set of random effect parameters which

are multivariate normally distributed with zero mean and

covariance X. The covariance matrix X is in general un-

known and will therefore typically contain parameters
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subject to estimation. These parameters will for conve-

nience of notation be included in the fixed effect parameter

vector h. Fixed effects parameters will hence be used to

refer to all parameters that are not random, not being

limited for parameters appearing in the model differential

equations. A model for the jth observation of the ith indi-

vidual at time tji is defined by

yij ¼ h
�
xij; tji ;ZiðtjiÞ; h; gi

�
þ eij; ð2Þ

where

eij 2 N
�
0;Rij

�
xij; tji ;ZiðtjiÞ; h; gi

��
; ð3Þ

and where the index notation ij is used as a short form for

denoting the ith individual at the jth observation. Note that

any fixed effect parameters of the observational model are

included in h. Furthermore, we let the expected value of the

discrete-time observation model be denoted by

ŷij ¼ E
�
yij
�
: ð4Þ

The population likelihood

Given a set of experimental observations, dij, for the in-

dividuals i ¼ 1; . . .;N at the time points tji , where

j ¼ 1; . . .; ni, we define the residuals

�ij ¼ dij � ŷij; ð5Þ

and write the population likelihood

LðhÞ ¼
YN

i¼1

Z
p1
�
dijh; gi

�
p2
�
gijh
�
dgi; ð6Þ

where

p1
�
dijh; gi

�
¼
Yni

j¼1

exp
�
� 1

2
�TijR

�1
ij �ij

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
2pRij

�q ð7Þ

and

p2
�
gijh
�
¼

exp
�
� 1

2
gTi X

�1gi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
2pX

�q ; ð8Þ

and where di is used to denote the collection of data from

all time points for the ith individual.

The FOCE and FOCEI approximations

The marginalization with respect to gi in Eq. 6 does not

have a closed form solution. By writing Eq. 6 on the form

LðhÞ ¼
YN

i¼1

Z
expðliÞ dgi; ð9Þ

where the individual joint log-likelihoods are

li ¼ � 1

2

Xni

j¼1

�TijR
�1
ij �ij þ log det

�
2pRij

�� �

� 1

2
gTi X

�1gi �
1

2
log det

�
2pX

�
;

ð10Þ

a closed form solution can be obtained by approximating

the function li with a second order Taylor expansion with

respect to gi. This is the well-known Laplacian ap-

proximation. Furthermore, we let the point around which

the Taylor expansion is done to be conditioned on the gi
maximizing li, here denoted by g�i ; I.e., the expansion is

done at the mode of the posterior distribution. Thus, the

approximate population likelihood, LL, becomes

LðhÞ � LLðhÞ ¼
YN

i¼1

exp
�
liðg�i Þ

�
det

�Dliðg�i Þ
2p

	 
�1
2

 !

:

ð11Þ

Here, the Hessian Dliðg�i Þ is obtained by first differentiating

li twice with respect to gi, and evaluating at g�i . If we let gik
denote the kth component of gi, we have

dli

dgik
¼� 1

2

Xni

j¼1

 

2�TijR
�1
ij

d�ij
dgik

� �TijR
�1
ij

dRij

dgik
R�1

ij �ij

þ tr R�1
ij

dRij

dgik

	 
!

� gTi X
�1 dgi

dgik
:

ð12Þ

Differentiating component-wise again, now with respect to

the lth component of gi, we get the elements of the Hessian

d2li

dgikdgil
¼�1

2

Xni

j¼1

 

2
d�Tij
dgil

R�1
ij

d�ij
dgik

�2�TijR
�1
ij

dRij

dgil
R�1

ij

d�ij
dgik

þ2�TijR
�1
ij

d2�ij
dgikdgil

��TijR
�1
ij

d2Rij

dgikdgil
R�1

ij �ij

þ2�TijR
�1
ij

dRij

dgik
R�1

ij

dRij

dgil
R�1

ij �ij

�2�TijR
�1
ij

dRij

dgik
R�1

ij

d�ij
dgil

� tr R�1
ij

dRij

dgil
R�1

ij

dRij

dgik

	 


þ tr R�1
ij

d2Rij

dgikdgil

	 
!

�dgTi
dgil

X�1 dgi
dgik

;

ð13Þ

where the last term is really just the klth element of X�1,

X�1
kl . The expression for the elements of the Hessian may

be approximated in different ways, with the main purpose

of avoiding the need for computing the costly second order

derivatives. We apply a first order approximation, where

terms containing second order derivatives are ignored, and

write the elements of the approximate Hessian, Hi, as
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Hikl ¼ � 1

2

Xni

j¼1

 

al BaTk þ tr �cl ck½ �
!

� X�1
kl ; ð14Þ

where

ak ¼
d�Tij
dgik

� �TijR
�1
ij

dRij

dgik

 !

; ð15Þ

B ¼ 2R�1
ij ; ð16Þ

and

ck ¼ R�1
ij

dRij

dgik
: ð17Þ

This variant of the Laplacian approximation of the popula-

tion likelihood is known as the first order conditional esti-

mation with interaction (FOCEI) method. The closely related

first order conditional estimation (FOCE) method is obtained

by ignoring the dependence of the residual covariance matrix

on the random effect parameters. The rationale for excluding

the second order terms is that their expected values are zero

for an appropriate model, as shown in the ‘‘Appendix 2’’

section. The Appendix also shows how the Hessian may be

slightly further simplified, using similar arguments, to arrive

at the variant of FOCE used in NONMEM. Those additional

simplifications are however of relatively little importance

from a computational point of view, since the components

needed to evaluate these Hessian terms have to be provided

for the remaining part of the Hessian anyway. We will

therefore restrict the Hessian simplification by expectation to

the second order terms only. Furthermore, we will from now

on for convenience consider the logarithm of the FOCEI

approximation to the population likelihood, LF ,

log LðhÞ � log LFðhÞ ¼
XN

i¼1

liðg�i Þ �
1

2
log det

�Hiðg�i Þ
2p

	 
� �
:

ð18Þ

Gradient of the individual joint log-likelihood

with respect to the random effect parameters

We now turn to the computation of the gradient of the in-

dividual joint log-likelihoods, liðgiÞ, with respect to the

random effect parameters, gi, using the approach of sensi-

tivity equations. Consider the differentiation done in Eq. 12.

Given values of h and gi, the quantities �ij,Rij, andX can be

obtained by solving the model equations. However, we ad-

ditionally need to determine d�ij=dgik and dRij=dgik. Ex-
panding the total derivative of these quantities we see that

d�ij
dgik

¼
d
�
dij � ŷij

�

dgik
¼ � oh

ogik
þ oh

oxij

dxij
dgik

� �
; ð19Þ

and

dRij

dgik
¼ oRij

ogik
þ oRij

oxij

dxij
dgik

: ð20Þ

The derivatives of h and Rij are readily obtained since

these expressions are given explicitly by the model for-

mulation. In contrast, the derivative of the state variables,

xij, are not directly available but can be computed from the

so called sensitivity equations. The sensitivity equations

are a set of differential equations which are derived by

differentiating the original system of differential equations

(and the corresponding initial conditions) with respect to

each random effect parameter gik,

d

dt

dxi
dgik

� �
¼ of

ogik
þ of

oxi

dxi
dgik

� �

dxi
dgik

� �
ðt0Þ ¼

ox0i
ogik

:

ð21Þ

The solution to the sensitivity equations can be used to

evaluate the derivatives in Eqs. 19 and 20, which in turn

are needed for the gradient of the individual joint log-

likelihoods. Importantly, these derivatives are also used for

computing the approximate Hessian, Eq. 14, appearing in

the approximate population log-likelihood.

In the unusual event that one or more of the random

effect parameters only appear in the observational model,

all sensitivities of the state variables with respect to those

parameters are trivially zero. Note also that the sensitivity

equations for all but trivial models involve the original

state variables, which means that the original system of

differential equations has to be solved simultaneously.

Thus, if there are q non-trivial sensitivities and n state

variables, the total number of differential equations that has

to be solved in order to be able to compute li and dli=dgi
for each individual is

nð1þ qÞ: ð22Þ

Gradient of the approximate population log-

likelihood with respect to the fixed effect parameters

We now derive the expression for the gradient of the ap-

proximate population log-likelihood, log LFðhÞ, with re-

spect to the parameter vector h. Differentiating log LF with

respect to the mth element of h gives

log LF

dhm
¼
XN

i¼1

dliðg�i Þ
dhm

� 1

2
tr H�1

i ðg�i Þ
dHiðg�i Þ
dhm

	 
� �
: ð23Þ

Here it must be emphasized that all derivatives with respect

to components of the parameter vector h are taken after

replacing gi with g�i . This is critical since g�i is an implicit
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function of theta, g�i ¼ g�i ðhÞ. In other words, we have to

account for the fact that the gi maximizing the individual

joint log-likelihood changes as h changes.

To determine the total derivatives with respect to com-

ponents of the parameter vector h we will be needing the

following result. Consider a function v which may depend

directly on the parameters h and gi, and on the auxiliary

function w representing any indirect dependencies of these

parameters,

v ¼ v
�
wðh; giÞ; h; gi

�
: ð24Þ

We furthermore introduce the function z to denote the

evaluation of v at gi ¼ g�i ðhÞ,

z ¼ z
�
wðh; g�i ðhÞÞ; h; g�i ðhÞ

�
¼ vjgi¼g�

i
ðhÞ: ð25Þ

Separating the complete dependence of z on h into partial

dependencies we get that

d

dh
vjgi¼g�

i
ðhÞ

� �
¼ dz

dh

¼ oz

ow

dw

dh
þ oz

oh
þ oz

og�i

dg�i
dh

¼ oz

ow

ow

oh
þ oz

ow

ow

og�i

dg�i
dh

þ oz

oh
þ oz

og�i

dg�i
dh

¼ oz

ow

ow

oh
þ oz

oh
þ dz

dg�i

dg�i
dh

¼ o

ow
vjgi¼g�

i
ðhÞ

� � ow
oh

þ o

oh
vjgi¼g�

i
ðhÞ

� �

þ d

dg�i
vjgi¼g�

i
ðhÞ

� � dg�i
dh

¼ ov

ow

ow

oh

� �




gi¼g�

i
ðhÞ
þ ov

oh

� �




gi¼g�

i
ðhÞ

þ dv

dgi

� �




gi¼g�

i
ðhÞ

dg�i
dh

¼ dv

dh






gi¼g�

i
ðhÞ
þdv

dgi






gi¼g�

i
ðhÞ

dg�i
dh

:

ð26Þ

Thus, the total derivative with respect to h after insertion of

g�i is equal to the sum of total derivatives with respect to h

and gi before insertion of g�i , where the second derivative is

multiplied with the sensitivity of the random effect opti-

mum with respect to the parameters h. It is straightforward

to see that this result holds also when differentiating func-

tions that only exhibit a subset of the possible direct and

indirect dependencies of Eq. 24, for instance functions with

just an indirect dependence on the two kind of parameters.

Applying the results from Eq. 26 to the first term within

the summation of Eq. 23, we have that

dliðg�i Þ
dhm

¼ dliðgiÞ
dhm






gi¼g�

i
ðhÞ

þ dliðgiÞ
dgi






gi¼g�

i
ðhÞ

dg�i
dhm

: ð27Þ

However, since dli=dgi evaluated at g
�
i is zero by definition,

the second term of the right hand side of Eq. 27 disappears

and

dliðg�i Þ
dhm

¼ dliðgiÞ
dhm






gi¼g�

i
ðhÞ

¼
"

� 1

2

Xni

j¼1

 

2�TijR
�1
ij

d�ij
dhm

� �TijR
�1
ij

dRij

dhm
R�1

ij �ij

þ tr R�1
ij

dRij

dhm

	 
!

þ 1

2
gTi X

�1 dX
dhm

X�1gi

� 1

2
tr X�1 dX

dhm

	 
#

gi¼g�
i
ðhÞ

: ð28Þ

Using asterisks to denote that gi has been replaced with g�i ,

we also get the following for the derivative of the second

term within the summation of Eq. 23,

dHiklðg�i Þ
dhm

¼�1

2

Xni

j¼1

 
da�l
dhm

B� a�Tk þa�l
dB�

dhm
a�Tk þa�l B

� da
�T
k

dhm

þ tr � dc�l
dhm

c�k � c�l
dc�k
dhm

	 
!

�dX�1
kl

dhm
;

ð29Þ

where

da�k
dhm

¼ d

dhm

d�Tij
dgik

 !�

�
��Tij
dhm

R��1
ij

dRij

dgik

� ��

þ ��Tij R
��1
ij

dR�
ij

dhm
R��1

ij

dRij

dgik

� ��

� ��Tij R
��1
ij

d

dhm

dRij

dgik

� ��
;

ð30Þ

dB�

dhm
¼� 2R��1

ij

dR�
ij

dhm
R��1

ij ; ð31Þ

and

dc�k
dhm

¼ �R��1
ij

dR�
ij

dhm
R��1

ij

dRij

dgik

� ��
þR��1

ij

d

dhm

dRij

dgik

� ��
:

ð32Þ

We now continue to expand the terms in Eqs. 28–32 con-

taining derivatives with respect to hm. The terms dX=dhm
and dX�1

kl =dhm are obtainable by straightforward differen-

tiation. Noting that the terms ��ij, ðd�ij=dgikÞ�, R�
ij, and

ðdRij=dgikÞ�, have indirect and/or direct dependence on h
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and g�i , we apply the results from Eq. 26 and expand the

remaining derivatives. First,

d��ij
dhm

¼ d�ij
dhm






gi¼g�

i
ðhÞ

þ d�ij
dgi






gi¼g�

i
ðhÞ

dg�i
dhm

: ð33Þ

Here, d�ij=dgi was determined previously in Eq. 19, and

the derivative in the first term is given by

d�ij
dhm

¼
dðdij � ŷijÞ

dhm
¼ � oh

ohm
þ oh

oxij

dxij
dhm

� �
: ð34Þ

The sensitivity of the random effect optimum with respect

to the fixed effect parameters, dg�i =dh, must also be de-

termined, which we will return to later. Then,

dR�
ij

dhm
¼ dRij

dhm






gi¼g�

i
ðhÞ
þdRij

dgi






gi¼g�

i
ðhÞ

dg�i
dhm

; ð35Þ

where dRij=dgi was determined in Eq. 20, and

dRij

dhm
¼ oRij

ohm
þ oRij

oxij

dxij
dhm

: ð36Þ

Next,

d

dhm

d�ij
dgik






gi¼g�

i
ðhÞ

 !

¼ d

dhm

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ
þ d

dg

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ

dg�i
dhm

¼ d

dhm

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ
þ
X

l

d

dgil

d�ij
dgik

� �� �




gi¼g�

i
ðhÞ

dg�il
dhm

¼�
 

o2h

ogikohm
þ o2h

ogikoxij

dxij
dhm

þ o2h

oxijohm
þ o2h

ox2ij

dxij
dhm

 !
dxij
dgik

þ oh

oxij

d2xij
dgikdhm

!





gi¼g�

i
ðhÞ

�
X

l

 
o2h

ogikogil
þ o2h

ogikoxij

dxij
dgil

þ o2h

oxijogil
þ o2h

ox2ij

dxij
dgil

 !
dxij
dgik

þ oh

oxij

d2xij
dgikdgil

!





gi¼g�

i
ðhÞ

dg�il
dhm

;

ð37Þ

where we after the third equality have used the results from

Eq. 19. The derivative of ðdRij=dgikÞ� with respect to hm is

done in a highly similar way and is left to the reader as an

exercise.

In the above expressions, derivatives of h and Rij are

obtained by direct differentiation. The derivatives of the

state variables are determined by the previously derived

sensitivity equation in Eq. 21 and by the additional sensi-

tivity equations

d

dt

dxi
dhm

� �
¼ of

ohm
þ of

oxi

dxi
dhm

� �

dxi
dhm

� �
ðt0Þ ¼

ox0i
ohm

;

ð38Þ

d

dt

d2xi
dgikdhm

� �
¼ o2f

ogikohm
þ o2f

ogikoxi

dxi
dhm

þ o2f

oxiohm
þ o2f

o2xi

dxi
dhm

� �
dxi
dgik

� �

þ of

oxi

d2xi
dgikdhm

� �

d2xi
dgikdhm

� �
ðt0Þ ¼

o2x0i
ogikohm

;

ð39Þ

and

d

dt

d2xi
dgikdgil

� �
¼ o2f

ogikogil
þ o2f

ogikoxi

dxi
dgil

þ o2f

oxiogil
þ o2f

o2xi

dxi
dgil

� �
dxi
dgik

� �

þ of

oxi

d2xi
dgikdgil

� �

d2xi
dgikdgil

� �
ðt0Þ ¼

o2x0i
ogikogil

:

ð40Þ

As noted previously, all sensitivity equations must be

solved simultaneously with the original differential

equations for all but trivial models. However, since one or

more parameters in the vector h may not appear in the

differential equation part of the model (such as pa-

rameters appearing only in X), there may be sensitivities

which are trivially zero. If there are p non-trivial sensi-

tivities among the parameters in h, q non-trivial sensi-

tivities among the parameters in g, and n state variables,

the total number of differential equations that has to be

solved in order to be able to compute logLF and

d logLF=dh for each individual is

n
�
1þ q

��
1þ pþ q=2

�
: ð41Þ

Finally, we need to determine dg�i =dh. At the the optimum

of each individual joint log-likelihood we have that

dli

dgi
¼ 0; ð42Þ

or put differently,

dli

dgi






gi¼g�

i
ðhÞ
¼ 0: ð43Þ

This equality holds for any h, and thus
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d

dh

dli

dgi






gi¼g�

i
ðhÞ

 !

¼ 0: ð44Þ

Recognizing that dli=dgi fulfills the requirements of ap-

plying the results from Eq. 26, we can write this as

d

dh

dli

dgi






gi¼g�

i
ðhÞ

 !

¼ d2li

dgidh






gi¼g�

i
ðhÞ
þd2li

dg2i






gi¼g�

i
ðhÞ

dg�i
dh

¼ 0:

ð45Þ

By rearranging terms and inverting the matrix, we finally

get that

dg�i
dh

¼ � d2li

dg2i






gi¼g�

i
ðhÞ

 !�1
d2li

dgidh






gi¼g�

i
ðhÞ
: ð46Þ

The second order derivatives of the individual joint log-

likelihoods with respect to the random effect parameters

were previously derived in Eq. 13. In contrast to the first

order approximation of the Hessian used in the approximate

population log-likelihood, the second order derivatives of �ij
and Rij are kept. These are obtained by differentiating

Eqs. 19 and 20 once more with respect to gi (not shown).

This in turn requires the second order sensitivity equations of

the state variables with respect to gi, which were previously

provided in Eq. 40. In addition to second order derivatives of

the individual joint log-likelihoods with respect to the ran-

dom effect parameters, Eq. 46 also requires the second order

mixed derivatives, which are given by

d2li

dgikdhm
¼� 1

2

Xni

j¼1

 

2
d�Tij
dhm

R�1
ij

d�ij
dgik

� 2�TijR
�1
ij

dRij

dhm
R�1

ij

d�ij
dgik

þ 2�TijR
�1
ij

d2�ij
dgikdhm

� �TijR
�1
ij

d2Rij

dgikdhm
R�1

ij �ij

þ 2�TijR
�1
ij

dRij

dgik
R�1

ij

dRij

dhm
R�1

ij �ij

� 2�TijR
�1
ij

dRij

dgik
R�1

ij

d�ij
dhm

þ tr R�1
ij

dRij

dhm
R�1

ij

dRij

dgik
þR�1

ij

d2Rij

dgikdhm

	 
!

� gTi X
�1 dX

dhm
X�1 dgi

dgik
:

ð47Þ

Here, all terms have previously been introduced except

d2�ij=dgikdhm and d2Rij=dgikdhm, which are provided

within the derivation of Eq. 37 and through a correspond-

ing derivation involving Rij.

Better starting values for optimization of random

effect parameters

Computing the approximate population log-likelihood and

its gradient with respect to the parameters h requires the

determination of g�i for every individual. The first time

log LF and its gradient are evaluated it is reasonable to

initiate the inner level optimizations for g�i with gi ¼ 0.

However, in the subsequent steps of the optimization with

respect to h, better starting values for gi can be provided.

One way of choosing the starting values g0i for the opti-

mization of gi is to set them equal to the optimized value

from the last step of the outer optimization. If we for

simplicity of notation from now on suppress the index of gi
denoting the individual, i, and instead let the the index s

denote the step of the outer optimization with respect to h,

this can be expressed as g0sþ1 ¼ g�s . This will be particularly

helpful as the optimization converges and the steps in h

become smaller. Using g� from the evaluation of log LF as

starting value is also a good strategy when computing the

gradient of log LF by a finite difference approximation.

If the sensitivity approach is used for computing the

gradient of log LF , even better starting values of g can be

provided. This is accomplished by exploiting the fact that

the sensitivity dg�=dh happens to be part of the gradient

calculation. By making a first order Taylor expansion of

the implicit function g�ðhÞ, we propose the following up-

date of the starting values of the random effect parameters

Fig. 1 Starting values for finding optimal random parameter values.

The hypothetical relationship between a parameter h and the optimal

value of a random effect parameter g� is depicted by the solid curve,

and the optimal values of g for two consecutive h of the optimization,

hs and hsþ1, are shown as black points. The two approaches for

selecting starting values g0sþ1 are shown as dashed lines and gray

points, with the label (A) for using the previous value and (B) for

using the gradient based update
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g0sþ1 ¼ g�s þ
dg�s
dh

ðhsþ1 � hsÞ: ð48Þ

The two approaches for choosing g0sþ1 are illustrated in

Fig. 1.

Results

Based on the theory presented in the previous section, we

propose an alternative implementation of the FOCE and

FOCEI methods for parameter estimation of NLME models

based on differential equations. The steps of this novel

approach are outlined in Algorithm 1. The crucial points

are the computation of gradients using sensitivity equa-

tions, for both the inner and outer problem, and the way

that starting values for the inner problem are determined.

The algorithm was evaluated using a two-compartment

model with a capacity-limited elimination. This is a mod-

erately complex pharmacokinetic model that requires the

numerical solution of differential equations. All details re-

garding the model, including model equations, parameters

used for simulating data, the starting values for the parameter

estimation, and the parameter estimates, can be found in the

‘‘Appendix 3’’ section. A short summary of the model is

shown in Table 1. Briefly, four versions of the model (M1-

M4) were used. In modelM1, some parameters were fixed to

the true values, hence excluded from the estimation. Three

random effect parameters were introduced but their

covariance matrix was limited to a diagonal matrix. Obser-

vations were modeled using a normally distributed additive

error. All parameters were estimated in modelM2, including

the full covariance matrix for the random effect parameters.

In model M3, an additional random effect parameter was

introduced and the full covariance matrix was extended ac-

cordingly. The observational model was also altered to in-

clude measurements from both compartments, and the error

in the measurements from the first compartments was mod-

eled with both an additive and proportional term. Model M4

is the same asM3 but for thismodel the parameter estimation

was performed with FOCEI instead of FOCE.

Improving gradient precision and accuracy

We compared our proposed method of computing the

gradient of the approximate population log-likelihood,

log LF , with respect to h to the more straightforward ap-

proach of finite difference approximation. Two versions of

the finite difference approximations were considered, a

forward difference and a central difference. To investigate

the precision and accuracy of these approximations, we

first determined the estimate of h for model M1. We then

computed all 6 elements of the gradient at this point in

parameter space using different values of the relative step

size, 10�h. The details of the comparison are explained in

the methods section. In addition, we computed the gradient

using the approach based on sensitivity equations. A

comparison of the two approaches is shown in Fig. 2,

Algorithm 1 Parameter estimation algorithm
s := 0, θs := θstarting Initialize algorithm
for all individuals do

u := 0, ηu
s := 0

end for
repeat Solve the outer problem

for all individuals do
u := 0
repeat Solve the inner problem

Solve for x and the sensitivities dx/dη
Compute l and dl/dη
Update ηu+1

s according to BFGS
u := u+ 1

until η∗
s is obtained

end for
for all individuals do

Set η := η∗
s

Solve for x and the sensitivities dx/dη, dx/dθ, d2x/dη2, and d2x/dηdθ
end for
Compute logLF and d logLF /dθ
Update θs+1 according to BFGS
for all individuals do Set starting values for inner problem

η0
s+1 = η∗

s + dη∗
s

dθ
(θs+1 − θs)

end for
s := s+ 1

until convergence of θ
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where each row shows one element of the gradient at two

levels of magnification.

The left column of Fig. 2 shows a pattern that appears to

be consistent for all parameters; for large h, i.e. small step

sizes, the result of the finite difference approach is

dominated by numerical noise for both forward and central

differences. Thus, for this particular model, and for this

particular point in parameter space, the finite difference

approximations have low precision as h increases beyond

3. For small h, i.e. large step sizes, there is a trend of

severely decreased accuracy for the forward differences.

Looking at the values of the gradient from the approach of

sensitivity equations, it is clear that for h around 2 and

smaller, forward differences produces values of elements

of the gradient that are up to two orders of magnitude

larger, and with a wrong sign in four of six cases. The

behavior of the central difference approximation for small

and intermediate h is best viewed in the right column,

where the scales of the axis have been chosen differently.

For the three first elements of the gradient, namely the

derivatives of log LF with respect to Vmax, V1, and Km, the

central difference approximation appears to be accurate but,

on the scale of the size of the gradient computed according to

the sensitivity equation approach, the limits in precision are

visible. For the derivatives with respect to the the parameters

of X, x11, x22, and x33, there are obvious issues with both

accuracy and precision of the approximation, producing

derivatives that are both of wrong size and sign. The fact that

the approximation starts to deviate systematically for h less

than 2 indicates that in these parameter directions, and on this

scale, an expansion of the approximate log-likelihood

function has a significant contribution of third order terms

and higher, causing a bias in the approximation of the gra-

dient using central differences.

The approach of determining the gradient using sensi-

tivity equations is also subject to numerical errors. By re-

peated evaluation of the gradient using randomized values

for the starting values of the inner optimization problem,

we determined the relative standard error. For all 6

parameter directions of the gradients, the relative standard

errors were between 0.1 and 1 %. Thus, these numerical

errors are so small that they would not even be visible on

the scales of Fig. 2.

Improving computational time

We investigated the improved computational times result-

ing from replacing finite difference approximations of the

gradients in the inner and outer problem with gradients

computed using sensitivity equations, and from using better

starting values for the inner problems. The contribution

from each of these three steps, as well as their accumula-

tive effect, are shown in Fig. 3.

For the first step of improvement, using gradients based

on sensitivity equations for the inner problem, computa-

tional times for models M1 and M2 (with 3 random effect

parameters) decreased to almost a third compared to the

approximation using forward differences, and to a fifth

compared to central differences. The ratio of these two

relative decreases is reasonable considering that the for-

ward difference approximation requires 4 function

evaluations and the central difference requires 7 evalua-

tions. Model M3 and M4 contain one additional random

effect parameter and the gains in speed were slightly larger

compared to both variants of the finite difference

approximation.

Replacing the finite difference approximation of the

gradient in the outer problem with the approach based on

sensitivity equations results in further improvement of

computational times. As the number of parameters in the

outer optimization problem increase from 6 to 18 for the

models M1 to M3, the reduction in computational times

improves from 29 to 14 % when compared to forward

differences, and from 16 to 7 % compared to central dif-

ferences. Although model M4 is identical to M3, the re-

duction in computational times are slightly less for this

model. This is because M4 uses FOCEI for estimating

parameters, which compared to FOCE requires more time

Table 1 Overview of benchmark models showing the method used,

the numbers of different types of parameters, and the total number of

ordinary differential equations (ODEs) per individual for the inner

and outer problem (including the number of sensitivity equations

according to Eqs. 22 and 41)

Model M1 M2 M3 M4

Method FOCE FOCE FOCE FOCEI

Total number of fixed effect parameters (h) 6 12 18 18

Parameters in the ODE model 3 5 5 5

Parameters in the observational model 0 1 3 3

Parameters in the random effect covariance matrix 3 6 10 10

Number of random effect parameters (g) 3 3 4 4

ODEs per individual, inner problem 8 8 10 10

ODEs per individual, outer problem 44 60 80 80

J Pharmacokinet Pharmacodyn (2015) 42:191–209 199

123



for putting together the more complex gradient expressions

once the sensitivity equations have been solved. Again it is

reasonable to expect a nearly doubled factor of decrease

when comparing central and forward finite differences

since the former need almost twice as many function

evaluations.

The final step of improvement is only applicable when

gradients for both the inner and outer problem are com-

puted using the approach based on sensitivity equations.

Thus, the distinction between forward and central differ-

ences is no longer of importance. The decrease in com-

putational times were around 70 % for models M1 to M3,

and somewhat less for model M4, which again benefits less

due to its larger overhead of having to compute all inter-

action terms.

The accumulated effect of all the steps range from a

decrease in computational times to 7 % for the least

complex model when comparing to forward differences, to

the substantial decrease to 1 % for the most complex model

when comparing to central differences.

Discussion

This article has demonstrated a novel approach to the

computation of gradients needed for the FOCE and FOCEI

approximation of the population likelihood encountered in

NLME modeling. We have derived the analytic expres-

sions for the gradients of both the individual and popula-

tion log-likelihoods as well as the so called sensitivity

equations, whose solution is a necessity for evaluating the

gradient expressions.

Using sensitivity equations to compute the gradient for

the inner problem is quite straightforward. As we under-

stand it, approaches along these lines are in fact used for

the inner problem, at least to some extent, in softwares such

as NONMEM and Phoenix NLME. For the approximate

population log-likelihood on the other hand, the sensitivity

approach to gradient computation is complicated by the

fact that this function depends on the nested optimization

of the individual joint log-likelihoods. In this work we

have, to the best of our knowledge, for the first time

demonstrated how sensitivity equations can be used for

computing the gradient of the FOCE and FOCEI ap-

proximations to the population log-likelihood. A key step

to obtain this gradient involves the derivative of the opti-

mal random effect parameters with respect to the fixed

effect parameters. It was shown that this derivative could

be determined given second order sensitivity equations.

Abandoning the finite difference approximation of gra-

dients in favor of the approach of sensitivity equations

were shown to have two advantages; gradients could be

computed with a higher precision and computational times

were substantially reduced. Though, implementation of the

presented method is more challenging compared to finite

difference FOCE/FOCEI, and the limitations of the

Laplacian approximation are still present.

Fig. 2 Precision and accuracy of the approximate population log-

likelihood gradient. Each row displays one element of the gradient,

and the left and right columns show two different levels of

magnification, respectively. Evaluations of the derivatives of logLF
using forward and central differences with different relative step sizes

are shown as blue and red dots, respectively. A single evaluation of

the derivatives using the approach based on sensitivity equations is

indicated by a black line, and the value zero is shown as a dashed line

for comparison
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Increased precision and accuracy of gradients

The optimization of the approximate population log-likeli-

hood log LF with respect to h would typically be performed

with a quasi-Newton method. A straightforward approach

to obtaining the gradient needed for such methods is to

compute it from a finite difference approximation. How-

ever, the finite difference approach may result in issues with

both precision and accuracy of the gradient. We demon-

strated this for the computation of the gradient in the outer

problem, evaluated close to the optimum of log LF .

Although the use of central differences with an appropriate

step length could avoid the worst problems, precision and

accuracy were still inferior compared to the approach based

on sensitivity equations. The potential limitations of com-

bining NLME models based on differential equations with

likelihood optimization using gradients computed by finite

differences have previously been recognized [3]. The issues

with the finite difference approximation depend both on

numerical limitations and on the approximation itself. First

of all, evaluation of log LF can only be done to a certain

precision. This is especially evident for models based on

differential equations, whose solution involves adaptive

schemes for numerical integration. In addition to the nu-

merical precision of functions like log, which is high, the

precision of log LF depends on the precision of the solutions

to the differential equations, and the precision of computing

derivatives with respect to g. The precision of logLF also

has a strong dependence on the precision of g�, which in

turn again depends on the solutions of differential equations

and, if the inner level optimization problem is performed

using a gradient-based method, depends on computing

derivatives of the individual joint log-likelihoods with re-

spect to g. Secondly, taking finite differences of log LF will

amplify numerical errors, resulting in increasingly poor

precision of the gradient as the step size is decreased. On the

other hand, taking too long steps will decrease the accuracy

of the approximation due to the increasing impact of higher

order terms in an expansion of log LF (forward differences

is only exact up to first order terms, and central differences

is only exact up to second order terms). Even if it for a given

model in some cases would be possible to customize the

step length for the finite difference approximation (which

typically would be different in each separate parameter

direction) using an analysis like the one performed here, it

would be infeasible in practice since such an investigation

may take longer time than solving the parameter estimation

problem itself. Adding further to the problem, the choice of

a suitable step size will most certain be different depending

on the point in parameter space, thus constantly requiring a

reevaluation of the step size.

There are several advantages of being able to compute

gradients with an improved precision and accuracy

(i) Parameter estimates can be computed with higher pre-

cision, or alternatively, the same precision can be obtained

but with shorter run times since we may afford to reduce

the precision of the inner problem while still maintaining a

similar precision in the outer problem [11]. (ii) Premature

termination and convergence problems of the parameter

estimation algorithm can be avoided or at least reduced [8,

24]. (iii) May enable the calculation of standard errors of

the parameter estimates in cases where this was not pos-

sible due to the numerical issues of the finite difference

approach [7]. However, we want to point out that for many

points in the parameter space the limited precision and

accuracy of the finite difference approach may not be

crucial for the progression of the optimization as long as

the approximation of the gradient results in a true ascent

direction of the function being maximized.

Decreased computational times

The relative decrease in computational times were inves-

tigated for the successive application of three specific steps

toward improvement, namely (i) Gradients based on sen-

sitivity equations in the inner problem, (ii) Gradients based

on sensitivity equations in the outer problem, and (iii)

Better starting values for the inner problem. In all cases of

applying the two first steps, we found that the decrease in

computational times were substantially larger when com-

paring to central differences instead of forward differences.

This was anticipated since central differences requires al-

most twice as many function evaluations as forward dif-

ferences. Moreover, for both the inner and outer levels of

optimization, the gains in computational times tended to be

larger for models with higher number of parameters. For

instance, the run time improvements of providing gradients

from sensitivity equations in the outer problem were more

than doubled for model M3 with 18 parameters compared

to model M1 with 6 parameters. It was also observed that

the improvement factor in the outer optimization was

slightly lower for FOCEI compared to FOCE. Although the

number of ODEs to be solved in both the inner and outer

problem is the same, this was expected considering that the

FOCEI method is based on more extensive expressions for

both the likelihood and its gradient.

There are two main reasons why the approaches based

on sensitivity equations should be faster. First of all, the

right hand side of the sensitivity equations has lots of

common subexpressions both with other sensitivity equa-

tions and with the original system of differential equations.

Thus, the cost of evaluating the right hand side for the

combined system of the original differential equations and

the sensitivity equations can be surprisingly small. Fur-

thermore, since the sensitivity equations are linear in the

sensitivity state variables, there is typically little extra
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effort needed in the adaptive time stepping of the differ-

ential equations solver for accommodating these additional

equations. For the inner problem this means that it is faster

to solve the combined system, yielding in total nð1þ qÞ
differential equations, rather than having to solve the n

original differential equations 1þ q times, which would

have been the case using forward finite differences. Se-

condly, the use of sensitivity equations in the outer level

optimization avoids the repeated need of having to solve

the inner problems for perturbed values of the outer pa-

rameters. The exact improvement made at this step de-

pends on several factors of which perhaps the most

important one is the desired precision (and hence the

number of iterations required) of the inner optimizations

needed for every parameter perturbation of a finite differ-

ence approximation (had this alternative been used

instead).

We furthermore note that the computation of gradients

based on sensitivity equations is highly amenable to par-

allelization, something which may be exploited to speed up

computations considerably. The potential gains of doing

this are expected to be similar to those of parallelizing the

computation of the population log-likelihood itself [11].

In addition to the reduced computational times coming

from the two steps of improved gradient computations, a

third level of speed up was obtained by choosing more

informed starting values for the inner problem. Although

this improvement was not as substantial as the others, the

gains from this step may be quite dependent on the starting

values of the outer optimization problem. As the outer level

optimization converges, the steps in h become successively

smaller, which in turn means that the linear approximation

of g�ðhÞ becomes better. Thus, the overall improvement in

computational time will depend on how much of the op-

timization that was spent in these ‘‘later stages’’ of con-

vergence. This means that it is likely that the relative

improvement will be larger if the optimization had been

started closer to the optimum.

Setting the results of Fig. 3 in relation to commercial

softwares for NLME parameter estimation, we would like

to comment on a mixed analytical/finite difference ap-

proach to the differentiation of the FOCE likelihood with

respect to the parameters of the random effect covariance

matrix X, which is used as default by NONMEM (when

the SLOW option is not selected). Since these parameters

do not normally directly influence neither the residuals, nor

the residual covariance matrix, their part of the likelihood

gradient is less complicated compared to other parameters.

As shown by the theory in this paper, their part of the

gradient may be computed using only second order g

sensitivities (Eq. 40), not requiring first order h or second

order mixed sensitivities (Eqs. 38 and 39, respectively).

Although NONMEM FOCE does not use second order g

sensitivities, it still utilizes this technique by performing a

central finite difference evaluation on the first order g

sensitivities. While this is slower than performing com-

pletely analytical second derivatives, along with some

erosion of precision, it is certainly faster than the SLOW

FOCE method, which must perform the inner problem re-

optimizations at each outer level perturbation of the X-

parameters. The derivatives of the likelihood with respect

to the remaining parameters are still obtained from finite

differences.

The degree of improvement of speed for the S-S ap-

proach compared to an approach that is mixing finite dif-

ferences and analytical methods at the outer level, i.e, an S-

F/S approach, may therefore be less substantial than what

can be achieved for going from S-F to S-S. Under the

realistic assumption that all perturbed evaluations of log LF
are equally costly, and further assuming that the X-part of

the gradient can be obtained at a computationally in-

significant cost (ignoring the relatively few extra evalua-

tions needed for the central finite difference of the first

order g sensitivities), the reference time of 100 % for going

from forward differences S-F to S-S in Fig. 3 would

change to ðð1þ Ph � PXÞ=ð1þ PhÞÞ100 % if instead going

from S-F/S to S-S, where Ph is the total number of pa-

rameters and PX is the number of X-parameters. The ref-

erence time for going from central differences S-F to S-S

would for S-F/S to S-S similarly change to

ðð1þ 2Ph � 2PXÞ=ð1þ 2PhÞÞ100 %. For model M1 this

would mean that the improvements to 29 and 16, for for-

ward and central differences, respectively, should be

compared to the S-F/S references of 57 and 54, rather than

to 100, and for model M3 the improvements to 14 and 7

should be compared to 47 and 46. In general, one would

expect the advantage of the S-S approach to decrease as the

fraction of X-parameters with respect to the total number

of parameters increases, e.g., for problems with many

random effect parameters when estimating the full random

effect covariance matrix. It must however be emphasized

that this is a mixed analytical/finite difference approach,

and may as such have lower precision and accuracy com-

pared to the S-S approach. Moreover, the remaining part of

the gradient will still be completely derived from finite

differences, and is expected to have the same comparable

quality to the S-S approach as demonstrated in the results

section.

Extending the line of thought, one could also consider a

hybrid between the above S-F/S approach and the S-S

approach, where the derivatives of log LF with respect to

the X-parameters are computed according to the exact

approach presented in this work but where the deriva-

tives for the remaining parameters of the outer level

problem are obtained from a finite difference approach.

This would indeed require the second order sensitivity

202 J Pharmacokinet Pharmacodyn (2015) 42:191–209

123



equations with respect to g, but not the first order h or

the mixed second order sensitivity equations. The accu-

racy and precision would still be lower for the part of

the gradient obtained from finite differences but the

elements corresponding to the parameters of X would be

of the same quality as the S-S approach, i.e., without

approximations.

Challenges and limitations

Moving from a convenient proof-of-concept environment

such as Mathematica, in which the proposed method cur-

rently is implemented, to a more stand-alone environment

of a commercial software may present various challenges.

One of the most obvious challenges is the integration of

Fig. 3 Comparison of relative

estimation times. The relative

computation times expressed in

percentage are shown for going

from one scheme for obtaining

gradients to another. Results are

shown for the model variants

M1-M4, using either a forward

or central implementation of the

finite difference approach. F-F

denotes the use of finite

differences for both the inner

and outer problem, S-F the use

of gradients based on sensitivity

equations for the inner problem,

S-S the use of gradients based

on sensitivity equations for both

inner and outer problems, and S-

S-g denotes the additional

implementation of the better

starting values for the inner

problem
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functionality for performing symbolic differentiation. This

is essential since the sensitivity equations, i.e., the differ-

ential equations in Eqs. 21, 38, 39, and 40, are model

specific and have to be derived for every new model, in

order to apply the results of this paper. It also applies to the

derivatives of h, Rij, and X, which too are model specific.

Since differential equation models may be quite complex,

and because second order derivatives are needed, it is not

realistic to perform these derivations manually, and a tool

that can perform symbolic differentiation will be required.

To this end, one may consider to look at free symbolic

packages such a SymPy [23]. The use of tools for symbolic

analysis may furthermore be crucial to exploit the existence

of common subexpressions, e.g., in the right hand sides of

the sensitivity equations.

An alternative approach, which does not require sym-

bolic differentiation, would be to use so called automatic

differentiation (AD) [19]. The idea of AD is that every

mathematical function that can be written as a computer

program can be differentiated by applying the chain rule of

differentiation, leading to the differentiation of every ele-

mentary operation of that computer program. Even though

AD in principle could be applied directly to the ap-

proximate population likelihood, whose gradient we wish

to compute, this would in practice be infeasible as this

function is based on the execution of both optimization

routines and adaptive numerical integration of differential

equations. If used, AD would therefore not be applied to

the population likelihood, but to the right hand sides of the

model differential equations, and to the other model objects

requiring differentiation. The parameter estimation would

thus still proceed according to the steps laid out in Algo-

rithm 1, but with symbolic differentiation replaced with

AD. Following such an approach, the precision and accu-

racy of the gradients are not expected to differ, but it would

have to be investigated how AD performs in terms of

computational times. With a so called reverse mode AD it

may actually be possible to improve run times even further

compared to the current results.

Even if tools for differentiation can be provided for a

stand-alone implementation, estimation methods which in-

volve the direct differentiation of model state variables, etc.,

may experience limitations when considering other types of

mathematical formalisms, such as models based on

stochastic differential equations or hidden Markov models,

since the required derivatives may be challenging to obtain.

The method of computing gradients based on finite differ-

ences, on the other hand, do not care about the details of how

a model is evaluated and has no limitations in this sense.

Finally, it should also be mentioned that although the

approach for gradient computations presented here may

improve the performance of FOCE and FOCEI, the

fundamental limitations of the Laplacian approximation as

such still remains. Being only an approximation to the

population likelihood, this class of methods do not guar-

antee the desirable statistical properties of a true maximum

likelihood estimate. In this respect the new generation of

estimation methods which are based on Monte Carlo ex-

pectation maximization methods, such as stochastic ap-

proximation expectation maximization and importance

sampling, are superior to the classical ones since the pa-

rameter estimates and their confidence intervals, etc., are

not biased by likelihood approximations. However, FOCE

and FOCEI will likely be important complementary

methods for a long time still, and improving their effi-

ciency is therefore nonetheless relevant.

Possible extensions

The approach of computing gradients using sensitivity

equations presented here could bemodified for other variants

of the population likelihood based on the Laplacian ap-

proximation. For instance, with some alterations it could be

applied to the first order (FO) approximation of the popula-

tion likelihood. Since the FO method does not rely on con-

ditioning with respect to the optimal random effect

parameters, the use of an approach based on sensitivity

equations would be less complicated but at the same time

also less rewarding. Gradients based on the approach of

sensitivity equations could with some adjustments also be

derived for the Laplacemethod. This would however require

third order sensitivity equations butmay beworthwhile since

the potential gains should be at least as substantial as for

FOCE and FOCEI. Because the theory presented in this ar-

ticle is derived for the FOCEI approximation, it accounts for

the dependence of residual errors on the random effect pa-

rameters. This means that the gradient expressions stated

here are suitable for prediction error-type NLME models,

including models based on stochastic differential equations

(see for instance [6, 14, 18]), since these typically display an

interaction between residuals and random effects. The first

step towards this end has in fact already been taken through

the successful application of sensitivity equations for com-

puting gradients in stochastic differential equationmodels on

the single-subject level [16]. Furthermore, gradient com-

putations based on sensitivity equationsmay be useful for the

problem of optimal experimental design [1, 17].

Conclusions

The presented approach of computing gradients for both

the individual- and population-level log-likelihoods of the

FOCE and FOCEI approximations leads to more robust

gradients and decreased computational times. We therefore
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suggest that future implementations of these conditional

estimation methods should include the approach based on

sensitivity equations for computing the gradients. We ea-

gerly await the further development of the proposed ap-

proach from the prototyped version used in the present

study to its implementation in publicly or commercially

available software packages.

Methods

The NLME parameter estimation algorithm investigated in

this study was implemented in Mathematica 9. An execu-

table version of the code, and the data sets used within this

study, may be received from the authors upon request.

Comparison of performance

The performance of a computer program for parameter

estimation in NLME models depends on several factors,

such as the particular NLME model, the experimental data,

how the estimation problem is formulated and possibly

approximated, the choice and settings of the optimization

method (including sub-methods such as line-searches, etc.),

starting values of parameters, the differential equation

solver used, the design of convergence criteria, etc. This

paper is investigating the advantages of providing gradients

by means of sensitivity equations for the FOCE or FOCEI

approximation of the population likelihood. However, this

paper is not claiming to address all the other factors that

will impact on the parameter estimation. Comparing mea-

sures such as absolute run-times of our implementation

with commercial software like NONMEM may therefore

be misleading with respect to the advantages of gradient

calculations. To avoid this the comparison is designed to

look only at the improvements made by abandoning the

finite difference approximation in our own implementation.

Comparison of precision and accuracy

The comparison of precision and accuracy was performed

in the following way. At the optimal values of h (found

from the comparison of computational times), the elements

of the gradient of the approximate log-likelihood function

were approximated with finite differences, using a relative

step size, according either to a forward difference

log LF
�
hmð1þ 10�hÞ

�
� log LFðhmÞ

hm10�h
; ð49Þ

or a central difference,

log LF
�
hmð1þ 10�hÞ

�
� log LF

�
hmð1� 10�hÞ

�

2hm10�h
: ð50Þ

For these function evaluations, the inner problemwas solved

to a precision of 4 digits (using the gradients from the ap-

proach of sensitivity equations). Furthermore, for forward

differences the value of log LF was recalculated for every h

using randomized starting values for the inner problems.

Thiswas done to avoid correlations between differenceswith

different step size that may otherwise have resulted from a

single realization of the numerical error of log LF .

The approach of determining gradients using sensitivity

equations does not involve any approximations, and is

therefor expected to be correct on average. Its precision

was assessed by computing the gradient 500 times using

randomized starting values for the inner problems. For

these gradient evaluations, the inner problem was solved to

a precision of 4 digits.

Comparison of computational times

The comparison of computational times was done in the

following way. Both the inner and outer problem were

solved using gradients based on sensitivity equations, as

outlined in the theory section. The inner problem was

solved to a precision of 4 digits, and the outer to a precision

of 3 digits. The comparison to finite differences was done

by simultaneously clocking the time of computing gradi-

ents by a finite difference approximation but proceeding

with the optimizations according to values of the gradient

from the sensitivity approach. The reason for doing this is

that the number of iterations, and the properties of every

iteration (such as stiffness of the model equation with that

certain set of parameters), for solving both the inner and

outer problem might be affected by the choice of method

for computing the gradients. Even small numerical differ-

ences in the results of the two methods may cause the paths

taken in the parameter space to diverge substantially over

the course of the optimizations, potentially making the

comparison unfair. In this way we isolate the comparison to

the actual computational times for the different methods of

obtaining the gradients. Since the methods based on sen-

sitivity equations were shown to have a higher precision in

the evaluation of gradients, there may be additional gains

in computational times to be made from traversing the

parameter space based on more exact gradients. However,

quantifying this type of contribution may require averaging

over a large number of models and parameter starting

values and was not considered. Thus, our implementation

of the comparison focuses on the direct improvements in

computational times and will therefore be a conservative

measure of the gains in speed.

To make a fair implementation of timing the finite dif-

ferences approach the following starting values of the

random effect parameters for the inner problem were used.
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When evaluating the approximate population log-likeli-

hood at the unperturbed parameter values of the outer

problem, the starting values for the parameters of the inner

problem were set to the optimum from the previous outer

evaluation, i.e., according to approach A in Fig. 1. For

evaluating the approximate population log-likelihood at the

perturbed parameter values of the outer problem, the

starting values for the parameters of the inner problem

were set to the optimum obtained for the unperturbed outer

problem parameters. The relative size of each perturbation

of the parameters in h was 10�2.

Compared to the finite difference approaches, using

sensitivity equations had an overhead of evaluating the

quite substantial mathematical expressions for the gradi-

ents once the differential equations are integrated, some-

thing which was carefully included in the comparison of

computational times.

Optimization algorithm

Both the inner and outer optimization problems were

solved using the BFGS method [20].

Derivation of sensitivity equations

Given an NLME differential equation model, the corre-

sponding sensitivity equations were derived by symbolic

differentiation in Mathematica.
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Appendix 1: Matrix calculus

The default representation of a vector is a column vector,

y ¼

y1
y2

..

.

ym

0

BBB@

1

CCCA
: ð51Þ

The derivatives of vectors and matrices by scalars are de-

fined as element-wise derivatives, according to

dy

dx
¼

dy1

dx
dy2

dx

..

.

dym

dx

0

BBBBBBB@

1

CCCCCCCA

; ð52Þ

and

dA

dx
¼

da11

dx

da12

dx
� � � da1n

dx
da21

dx

da22

dx
� � � da2n

dx

..

. ..
. . .

. ..
.

dam1

dx

dam2

dx
� � � damn

dx

0

BBBBBBB@

1

CCCCCCCA

; ð53Þ

respectively. The derivative of scalar by vector is given by

dy

dx
¼ dy

dx1

dy

dx2
� � � dy

dxm

� �
; ð54Þ

the derivative of vector by vector is given by

dy

dx
¼

dy1

dx1

dy1

dx2
� � � dy1

dxn
dy2

dx1

dy2

dx2
� � � dy2

dxn

..

. ..
. . .

. ..
.

dym

dx1

dym

dx2
� � � dym

dxn

0

BBBBBBBB@

1

CCCCCCCCA

; ð55Þ

and the derivative of row-vector by vector is given by

dyT

dx
¼

dy1

dx1

dy2

dx1
� � � dym

dx1
dy1

dx2

dy2

dx2
� � � dym

dx2

..

. ..
. . .

. ..
.

dy1

dxm

dy2

dxm
� � � dym

dxn

0

BBBBBBBB@

1

CCCCCCCCA

: ð56Þ

The derivative of a quadratic form is obtained in the fol-

lowing way. Let y ¼ bTAb, where A is a square matrix and

b a suitable vector. If A is symmetric then

dy

dx
¼ dbT

dx
Abþ bT

dA

dx
bþ bTA

db

dx

¼ bTAT db

dx
þ bT

dA

dx
bþ bTA

db

dx

¼ 2bTA
db

dx
þ bT

dA

dx
b:

ð57Þ

The derivative of an inverse matrix is found by noting that
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dA�1

dx
¼

d A�1AA�1
� �

dx
¼ dA�1

dx
AA�1 þ A�1 dA

dx
A�1

þ AA�1 dA
�1

dx
; ð58Þ

and thus that

dA�1

dx
¼ �A�1 dA

dx
A�1: ð59Þ

The derivative of the logarithm of the determinant of a

covariance matrix is given by the following expression. If

A is a real-valued, symmetric, positive-definite matrix, then

d

dx
log jAj ¼ tr A�1 dA

dx

	 

: ð60Þ

This can be seen by first writing A as A ¼ QKQ�1, where

K is a diagonal matrix. Now, the left-hand side of Eq. 60

becomes

d

dx
log jAj ¼ d

dx
log jQj � jKj � jQ�1j
� �

¼ d

dx
log jKj

¼ d

dx

X

i

logKii ¼
X

i

1

Kii

dKii

dx
¼ tr K�1 dK

dx

	 

;

ð61Þ

which is equal to the right-hand side of Eq. 60 since

tr A�1 dA

dx

	 

¼ tr QK�1Q�1 dQ

dx
KQ�1

	 


þ tr QK�1 dK
dx

Q�1

	 

� tr

dQ

dx
Q�1

	 


¼ tr
dQ

dx
Q�1

	 

þ tr K�1 dK

dx

	 


� tr
dQ

dx
Q�1

	 

¼ tr K�1 dK

dx

	 

:

ð62Þ

Appendix 2: Hessian approximation

For an appropriate model, it holds that

E½�ij� ¼ 0; ð63Þ

and

E �ij�
T
ij

h i
¼ Rij; ð64Þ

where the expected values are taken with respect to data,

which here are considered to be random variables whose

values have not yet been realized. Based on these equa-

tions, the Hessian in Eq. 13 can be simplified to various

degrees by approximating its different terms with their

expected values. A minimal simplification for eliminating

the second order derivative terms is achieved by noting that

E 2�TijR
�1
ij

d2�ij
dgikdgil

	 

¼ E 2�Tij

h i
R�1

ij

d2�ij
dgikdgil

¼ 0; ð65Þ

and

E ��TijR
�1
ij

d2Rij

dgikdgil
R�1

ij �ij þ tr R�1
ij

d2Rij

dgikdgil

	 
	 


¼ E �tr �TijR
�1
ij

d2Rij

dgikdgil
R�1

ij �ij

	 
	 

þ tr R�1

ij

d2Rij

dgikdgil

	 


¼ E �tr R�1
ij

d2Rij

dgikdgil
R�1

ij �ij�
T
ij

	 
	 

þ tr R�1

ij

d2Rij

dgikdgil

	 


¼ �tr R�1
ij

d2Rij

dgikdgil

	 

þ tr R�1

ij

d2Rij

dgikdgil

	 

¼ 0;

ð66Þ

where we are making use of the fact that the trace of a

scalar is just the scalar, the order of the expectation and

trace operators can be shifted, and the cyclic property of

the trace operator. This simplification is used in the present

study.

Further simplifications of Eq. 13 may be performed by

noting that the expectation of additional terms vanishes,

E �2�TijR
�1
ij

dRij

dgil
R�1

ij

d�ij
dgik

	 

¼ 0; ð67Þ

E �2�TijR
�1
ij

dRij

dgik
R�1

ij

d�ij
dgil

	 

¼ 0; ð68Þ

and by taking the expected value and collecting terms,

E 2�TijR
�1
ij

dRij

dgik
R�1

ij

dRij

dgil
R�1

ij �ij � tr R�1
ij

dRij

dgil
R�1

ij

dRij

dgik

	 
	 


¼ tr R�1
ij

dRij

dgil
R�1

ij

dRij

dgik

	 

:

ð69Þ

Taken together, all simplifications yield the following

Hessian

~Hikl ¼ �
Xni

j¼1

 
d�Tij
dgil

R�1
ij

d�ij
dgik

þ 1

2
tr R�1

ij

dRij

dgil
R�1

ij

dRij

dgik

	 
!

� X�1
kl ;

ð70Þ

which is the variant used in NONMEM [2].

Appendix 3: Benchmark models and data

The equations for the two-compartment pharmacokinetic

model are
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V1

d c1ðtÞ
dt

¼ uðtÞ þ Cld ðc2ðtÞ � c1ðtÞÞ �
Vmax c1ðtÞ
Km c1ðtÞ

V2

d c2ðtÞ
dt

¼ Cld ðc1ðtÞ � c2ðtÞÞ

c1ð0Þ ¼ c2ð0Þ ¼ 0; ð71Þ

where uðtÞ is an input function, which was used to model a

constant infusion with the rate 0.67 per minute during the

first 30 minutes followed by another 30 minutes of wash-

out. For models M1 and M2, the scalar-valued observation

model was defined by yt ¼ c1ðtÞ þ et, where et 2 Nð0;RtÞ
and

Rt ¼ r2a1
� �

: ð72Þ

For models M3 and M4, the vector-valued observation

model was defined by yt ¼ ðc1ðtÞ; c2ðtÞÞ þ et, where

Rt ¼ ðra1 þ rp1c1ðtÞÞ2
r2a2

� �
: ð73Þ

In models M1 and M2, the three parameters Vmax, Km, and

V1, were defined to be log-normally distributed on the

population level. This was accomplished by multiplying

them with expðg1Þ, expðg2Þ, and expðg3Þ, respectively,

where g ¼ ðg1; g2; g3Þ is normally distributed with zero

mean. In the first variant of this model, M1, the covariance

matrix for the random effect parameters is defined by the

diagonal matrix

X ¼
x2

11

x2
22

x2
33

0

@

1

A; ð74Þ

and in the second variant, M2, the full matrix is estimated

using the parameterization

X ¼
x2

11 þ x2
12 þ x2

13 x12x22 þ x13x23 x13x33

x12x22 þ x13x23 x2
22 þ x2

23 x23x33

x13x33 x23x33 x2
33

0

@

1

A

ð75Þ

to ensure positive definiteness. In models M3 and M4, an

additional random effect parameter was in the same way

introduced for the parameter Cld. A similarly defined full

matrix for 4 random effect parameters was used for models

M3 and M4.

The parameter values used for simulating data are

shown in Table 2, together with information of which pa-

rameters are being estimated in the four model variants,

and what the starting values of the estimation were. One

data set consisting of 10 simulated individuals was used for

models M1 and M2. Here, the values of c1 were collected

at the time points t ¼ 10; 15; 20; . . .; 60. For models M3

and M4, another data set consisting of 20 simulated

Table 2 Parameter values used for simulating data (D), starting values for estimation (S), and parameter estimates (E) for the different models

Parameter D S, M1 S, M2 S, M3/M4 E, M1 E, M2 E, M3 E, M4

Vmax 0.5 0.2 0.2 0.2 0.424 0.419 0.473 0.473

Km 4 3 3 3 3.91 2.53 4.37 4.37

Cld 0.01 – 0.01 0.01 – 0.00976 0.00813 0.00813

V1 0.3 0.1 0.1 0.1 0.288 0.285 0.321 0.321

V2 0.1 – 0.1 0.1 – 0.0956 0.0959 0.0959

ra1
ffiffiffiffiffiffiffi
0:5

p
� 0:707 –

ffiffiffiffiffiffiffi
0:1

p
� 0:316

ffiffiffiffiffiffiffi
0:1

p
� 0:316 – 0.414 0.644 0.644

rp1 0� -� -� ffiffiffiffiffiffiffi
0:1

p
� 0:316 -� -� 0.00165 0.00163

ra2
ffiffiffiffiffiffiffi
0:5

p � � 0:707 -� -� ffiffiffiffiffiffiffi
0:1

p
� 0:316 -� -� 0.730 0.730

x11
ffiffiffiffiffiffiffi
0:5

p
� 0:707 1 1 1 0.616 0.553 0.559 0.560

x12 0 – 0 0 – -0.0518 -0.123 -0.123

x13 0 – 0 0 – 0.439 -0.138 -0.138

x�
14 0� -� -� 0 -� -� 0.0273 0.0275

x22
ffiffiffiffiffiffiffi
0:5

p
� 0:707 1 1 1 0.772 0.575 0.533 0.533

x23 0 – 0 0 – �0.485 0.0174 0.0174

x�
24 0� -� -� 0 -� -� -0.0230 -0.0230

x33
ffiffiffiffiffiffiffi
0:5

p
� 0:707 1 1 1 0.994 1.39 0.776 0.776

x�
34 0� -� -� 0 -� -� -0.409 -0.409

x�
44

ffiffiffiffiffiffiffi
0:5

p � � 0:707 -� -� 1 -� -� 0.870 0.870

Parameters which were not estimated are indicated with a dash. The * indicate that a parameter is only used in models M3 and M4
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individuals was used, where the values of c1 and c2 were

collected at the time points t ¼ 10; 15; 20; . . .; 60.
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