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The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator

of gene expression, and in particular of mRNAmetabolism. They were originally identified

in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae.

Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines

global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to

ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal

proteins. In this work we searched for mutations in budding yeast that were resistant

to histidine starvation using the same selection that originally led to the isolation of the

NOT genes. We thereby isolated mutations in ribosome-related genes. This common

phenotype of ribosome mutants and not mutants is in good agreement with the positive

role of the Not proteins for translation. In this regard, it is interesting that frequent

mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in

adult T-cell acute lymphoblastic leukemia (T-ALL). This suggests that in metazoans

a common function implicating ribosome subunits and CNOT3 plays a role in the

development of cancer. In this perspective we suggest that the Ccr4-Not complex,

according to translation levels and fidelity, could itself be involved in the regulation of

amino acid biosynthesis levels. We discuss how this could explain why mutations have

been identified in many cancers.
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INTRODUCTION

Cells use highly coordinated cascades of regulatory mechanisms to precisely define the production
of specific gene products, which in turn determine development and differentiation, allow the
cell to respond to the stressful environment or to adapt to new food sources. Sophisticated
programs of gene expression integrate activities from multiple factors acting at different steps
along the gene expression pathway. Each and every step of this pathway can be modulated,
and many factors or protein complexes act at single steps, and in less frequent cases act at a
couple of different steps. However, only one factor has been connected to most steps of the
gene expression pathway, and this is the Ccr4-Not complex, which has recently been reviewed
quite extensively (Collart and Timmers, 2004; Collart and Panasenko, 2012; Doidge et al., 2012;
Miller and Reese, 2012; Collart, 2013; Collart et al., 2013; Panepinto et al., 2013; Reese, 2013;
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Wahle and Winkler, 2013; Winkler and Balacco, 2013; Chapat
and Corbo, 2014; Inada and Makino, 2014; Panasenko, 2014;
Shirai et al., 2014; Temme et al., 2014; Villanyi and Collart, 2015;
Collart, 2016).

Ccr4-Not was first discovered in budding yeast (Denis, 1984;
Collart and Struhl, 1993, 1994; Bai et al., 1999; Chen et al., 2001)
where it is composed of 9 subunits, the Not1-Not5 proteins,
Ccr4, and 3 Ccr4-associated factors, Caf1, Caf40, and Caf130.
All of these subunits have orthologs in metazoans with the
exception of Caf130. Metazoans have 2 orthologs for Caf1 called
CNOT7 and CNOT8, 2 orthologs for Ccr4 called CNOT6 and
CNOT6L and carry CNOT3 as a functional homolog of both
Not5 and Not3, the products of a gene duplication event in
budding yeast. Subunits with no yeast ortholog such as CNOT10
and CNOT11 are present in the metazoan Ccr4-Not complex
(Albert et al., 2000). The metazoan ortholog of yeast Not4 is not
a stable subunit of the metazoan Ccr4-Not complex but it does
functionally complement the deletion of yeast Not4 (Albert et al.,
2000; Bhaskar et al., 2015).

MULTIPLE ACTIVITIES OF THE CCR4-NOT
COMPLEX

Two different enzymatic activities are associated with the Ccr4-
Not complex: deadenylation and ubiquitination. Ccr4 and Caf1
mediate deadenylation (Tucker et al., 2001, 2002), the first and
rate-limiting step for mRNA degradation in eukaryotes, while
Not4, a RING E3 ligase, mediates ubiquitination (Albert et al.,
2002). It poly-ubiquitinates and destabilizes some substrates
(Cooper et al., 2012; Gronholm et al., 2012; Gulshan et al.,
2012) and mono-ubiquitinates others without any consequence
for their stability (Panasenko et al., 2006; Panasenko and Collart,
2012). Other non-enzymatic activities of the Ccr4-Not complex
have been reported. For instance Not2, Not3 and Not5 are
thought to promote decapping by interaction with the Pat1
protein (Maillet and Collart, 2002; Chen et al., 2014;Mathys et al.,
2014; Rouya et al., 2014; Nishimura et al., 2015; Ozgur et al.,
2015; Alhusaini and Coller, 2016). In contrast to these negative
functions in expression of the genome, the Ccr4-Not complex
also plays positive roles. For instance yeast Not5 promotes
co-translational assembly of RNA Polymerase II (RNAPII)
and SAGA, a function that correlates with the association of
Not1 to relevant mRNAs (Villanyi et al., 2014; Kassem et al.,
2017). Moreover, the Ccr4-Not complex can bind transcription
elongation complexes and promote elongation of a backtracked
RNAPII (Kruk et al., 2011). Recently an essential positive role of
Not5 for production of the translation machine was uncovered.
It is mediated by binding of Not1 to ribosomal mRNAs during
their production in the nucleus (imprinting) (Gupta et al.,
2016). Indeed, ribosomal protein mRNAs are enriched within
the pool of mRNAs that can be immunopecipitated with Not1.
The binding of Not1 to this category of mRNAs requires Not5
and negatively correlates with the level of these mRNAs in total
extracts, but positively with their level in polysome fractions, with
production of new ribosomal proteins and with global cellular
translation levels. The fact that Not5 is needed in the nucleus to

promote this Not1 binding to ribosomal mRNAs, and that Not1
binds to intronic sequences, indicated that Not1 was binding to
newly produced mRNAs, hence the term “imprinting” (Gupta
et al., 2016).

In vivo the deadenylase is functional when tethered to target
mRNAs with the Not1 scaffold (reviewed in Collart, 2016). In
contrast ubiquitination by Not4 does not always require its
association with Not1 (reviewed in Collart, 2013). Tethering
of the Not1 scaffold to mRNAs can also repress translation
in a manner that is independent of any enzymatic activity of
the complex. This is thought to occur via the interaction of
the complex with proteins such as the eIF4E-binding proteins or
the DDX6 RNA helicase (called Dhh1 in budding yeast).

It is intriguing that tethering of the Ccr4-Not machinery
to mRNAs can promote translation and co-translational events
(Villanyi et al., 2014; Gupta et al., 2016; Kassem et al., 2017)
or promote mRNA silencing and degradation (Finoux and
Seraphin, 2006). These opposite outcomes might be determined
by the cellular compartment, in which Not1 initially binds
mRNAs. Indeed it could be that the global architecture of the
Ccr4-Not complex in the nucleus and the cytoplasm is different.
Tethering of Not5 out of the yeast nucleus does not lead to co-
depletion of nuclear Not1, supporting the idea that different Not1
complexes exist (Gupta et al., 2016). However, this issue still
needs to be clarified and the role of the Not subunits in particular,
associated with both repression and activation of gene expression,
needs to be better defined.

RIBOSOME MUTANTS AND NOT

MUTANTS ARE SIMILARLY RESISTANT TO
HISTIDINE STARVATION

To consolidate our understanding of the functions mediated by
the Not proteins we repeated the genetic selection in budding
yeast that led to their isolation (Collart and Struhl, 1993). The
idea was that we should isolate new mutations in the NOT
genes, and potentially also additional mutations defining the
cellular function affected by the Not proteins. We screened for
new mutants that could grow on medium lacking histidine and
containing 5mM 3-aminotriazole (AT), a competitive inhibitor
of the His3 enzyme (Collart and Struhl, 1993). His3 is necessary
for yeast cells to produce histidine, and transcription of the HIS3
gene, like other amino acid biosynthetic genes, is under the
control of the Gcn4 transcriptional activator. In wild type cells
the translation of Gcn4 is regulated by the presence of upstream
open reading frames (ORFs) and its production increases in
response to starvation. For the selection, we used a starting
strain (MATa ura3-52 trp1-∆1 leu2-PET56 gal2 gcn4-∆1; Hope
and Struhl, 1986) with a deletion of the endogenous GCN4,
carrying a plasmid expressing a mutant Gcn4 (YCp88-Sc4363)
with a truncated activation domain (Hope and Struhl, 1986) and
expressed from the constitutive DED1 promoter lacking uORFs
(Collart and Struhl, 1993).

From the new recessive mutants isolated that were resistant
to 5 mM AT in the growth medium, 9 strains carried mutations
in NOT1, 2 in NOT2, 14 in NOT3, and 2 in NOT4. The
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mutations isolated in NOT5 have been described (Oberholzer
and Collart, 1998). Fifteen other recessive mutants had slow
growth or temperature sensitive phenotypes that co-segregated
with AT-resistance. Surprisingly they defined 15 different
complementation groups. We isolated clones complementing
the mutations for 6 of these and sequenced the clone ends
to identify the genomic fragments. Each clone carried either
a ribosomal protein gene or a gene important for ribosome
biogenesis. To determine whether these mutants were defective
in ribosome biogenesis, we analyzed the polysome profiles of
the 6 mutants by fractionation of total cellular extracts on a
sucrose gradient. All 6 had defective polysome profiles, even
at the permissive temperature (data not shown). In particular
shoulders indicative of the presence of half-mers were visible in
all mutant profiles (see below). This indicated that ribosomes
were altered, and consistently, mutations were identified for each
mutant in the ribosome-related gene. Sub-clones carrying these
genes, but not sub-clones lacking these genes, complemented the
mutant phenotypes (Table 1).

To confirm that the identified mutations were responsible
for AT-resistance we focused on RPL10, integrated a URA3
marker gene at the RPL10 locus and confirmed by crosses
and tetrad dissection that it co-segregated with the mutant
phenotype. We also recovered the mutant gene on a plasmid
and confirmed that it could not complement the temperature
sensitive growth phenotype. Hence, mutations in genes that
impair ribosome biogenesis and decrease global translation, like
mutations in the NOT genes, lead to resistance to histidine
starvation.

SPECIFIC NOT1 BINDING RESPONDS TO
DECREASED PROTEIN SYNTHESIS

HIS3 mRNA is increased in not mutants (Collart and Struhl,
1993, 1994; Oberholzer and Collart, 1998) and we observed a
similar increase in the rpl10mutant (data not shown). This most
likely contributes to AT-resistance, possibly together with an
increase in free amino acids due to reduced translation. These
findings indicate that defective or reduced protein synthesis,
as observed in not mutants or in ribosome-related mutants, is
connected, possibly by the means of a cellular signal, to a relative
increase in the transcript levels of an amino acid biosynthesis
gene, namely HIS3. This raises the question of what the nature
of the signal is. This signal cannot be the well-established eIF2α
phosphorylation and translational up-regulation of Gcn4, known

to respond to amino acid starvation, since the strain used in our
selection expresses a Gcn4 derivative without uORFs.

We considered the possibility that the Not proteins themselves
were part of the signaling pathway, since amino acid biosynthesis
gene products are amongst the most up-regulated newly
produced proteins in not5∆ (Gupta et al., 2016). Moreover, Not1
is significantly less associated with HIS3 mRNA in not5∆, and
HIS3 mRNA levels increase in total extracts and in polysomes
(Gupta et al., 2016). To test this idea, we chose to compare 2
isogenic strains that had as only difference that they expressed
a randomly chosen ribosomal protein gene at different levels.
We prepared 2 rpl13b∆ stains containing plasmids expressing
Rpl13b at different levels. One plasmid carried the endogenous
RPL13B gene (promoter, intron, and terminator: PIT), and
one plasmid contained the RPL13B promoter, open reading
frame (ORF), and the heterologous CYC1 terminator (POC).
It also lacked an intron (constructs depicted on Figure 1A).
Cells expressing PIT had higher levels of polysomes compared
to POC, but the polysomes had shoulders indicative of the
presence of ribosome half-mers and ribosome biogenesis defects
(Figure 1B). Indeed, in a normal polysome profile the identified
peaks indicate one extra ribosome per mRNA (dimer, trimer,
tetramer...). Half-mers instead indicate an unequal number of
40S and 60S ribosomal subunits on the mRNA. Expression of
RPL13B from PIT was lower than from POC (Figure 1C, left
panel). This different expression of Rpl13b induced differences
in relative expression of other cellular mRNAs such as other
ribosomal mRNAs (e.g., RPS22A) or HIS3 (Figure 1C, middle
and right panels). This correlated with changes in relative binding
of Not1 to those mRNAs in the 2 strains (Figure 1D) and in
relative presence of those mRNAs in monosomes and polysomes
(Figure 1E). NIP1mRNA, whose association with Not1 does not
change with different expression of ribosomal mRNAs (Gupta
et al., 2016), was used for normalization.

Hence changes in ribosome production lead to modification
of Not1 binding to HIS3 and ribosomal mRNAs, and to changes
in relative translation of those mRNAs.

RESISTANCE TO STARVATION RESULTING
FROM RIBOSOME OR NOT PROTEIN
MUTATIONS COULD EXPLAIN THEIR
FREQUENT OCCURRENCE IN CANCER

This study reveals that mutations in yeast ribosomal genes or
ribosome biogenesis genes, like mutations in the NOT genes

TABLE 1 | List of strains and mutations isolated in the selection for AT-resistance.

Strain Gene Protein function Mutation Codon mutation

You95 RPL33A Ribosomal A553T 10 Nonsense

You69 FHL1 Transcription factor for ribosomal protein genes G19931 665 Frameshift Stop at 674

You90 RIX1 35S processing C295T 99 Nonsense

You101 TSR4 20S processing C684A 228 Nonsense

You61 RPL28 Ribosomal G681T 57 G to V

You114 RPL10 Ribosomal G481T 161 G to V
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FIGURE 1 | (A) RPL13B constructs. Similarly to the majority of yeast RP genes with introns, in the case of RPL13B the entire ORF is encoded in the 2nd exon except

for a methionine which is encoded in the 1st exon. Construct “PIT” contains all the endogenous elements of the RPL13B gene. The intron is removed and the

terminator is changed to a CYC1 terminator in “POC.” (B) Extracts from cells expressing PIT or POC were separated on a sucrose gradient to follow the polysome

profiles. The arrow points to a shoulder on the disome peak. (C,D) Levels of the indicated mRNAs were measured in total extracts (C) or in Not1 immunoprecipitates

(D). (E) Levels of the indicated mRNAs were measured in the monosome (m) and polysome (p) fractions as previously described (Gupta et al., 2016). The specific

mRNAs measured are RPL13B, RPS22A, and HIS3 as indicated, and normalization was to the NIP1 mRNA levels.

that affect global translation (Gupta et al., 2016), lead to
increased resistance to histidine starvation. In metazoan cells,
altering Not function or disrupting the translation machine, can
also have similar phenotypes. Indeed, mutations in CNOT3,
the ortholog of Not5, or in the RPL5 and RPL10 ribosomal
proteins, are associated with adult T-cell acute lymphoblastic
leukemia (T-ALL) (De Keersmaecker et al., 2013). T-ALL is an
aggressive malignancy caused by the accumulation of genomic
lesions leading to altered gene dosage. RPL5 and RPL10 occupy
neighboring positions in the 60S subunit of the ribosomes,
next to the central protuberance, which is in close vicinity
to both the P, A, and E sites of the ribosomes. Around 8%
of pediatric T-ALL patients harbor an Arg98Ser mutation in
RPL10, which was shown to reduce translation fidelity (Sulima
et al., 2014). RPL22 on the other hand forms the narrowest
constriction of the ribosomal exit tunnel (Nakatogawa and Ito,
2002). Mutations in RPL22 are believed to alter protein synthesis
efficacy. CNOT3 in T-ALL patients frequently carries missense
mutations in Arg57 that affects splicing and reduces CNOT3
levels (De Keersmaecker et al., 2013). According to our work in
yeast this should lead to reduced global translation and also to
defects in co-translational complex assembly and consequently

to elevated protein aggregation (Panasenko and Collart, 2012;
Villanyi et al., 2014; Gupta et al., 2016; Kassem et al., 2017). Thus
it appears that alteration of the process of translation in cancer
cells can ensure their survival.

Numerous reports have described the presence of frequent
mutations in ribosome subunits in tumor cells and different
mechanisms have been considered to explain how RP
mutations contribute to tumorigenesis or tumor maintenance
(reviewed in Ruggero, 2013; Wang et al., 2015; Goudarzi
and Lindstrom, 2016). Three main pathways have generally
been considered: global suppression of protein synthesis,
specific suppression of protein synthesis or finally extra-
ribosomal functions. Our current observations suggest that
relative up-regulation of amino acid biosynthesis genes
resulting from global alteration of the translation process
might contribute to sustain growth of the tumor cells. Since
Not5 in particular appears to be involved in the regulatory
loop linking translation to amino acid biosynthesis, the
ortholog CNOT3 may have a tumor suppressor function.
This is certainly compatible with the fact that mutations in
CNOT3 have been identified in many tumors (Collart et al.,
2013).
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It is important to note that an impact of CNOT3 on amino
acid biosynthesis is unlikely to be the only mechanism, by which
a mutation of CNOT3 in tumor cells might contribute to tumor
survival. This protein has very broad cellular functions and it
has for instance been described as a modifier of gene expression
that leads to incomplete penetrance of PRFP31 mutations in
retinitis pigmentosa (Venturini et al., 2012). We have reported
that in yeast Not1 and Not5 are important for gene expression
homeostasis, buffering between transcription, translation and
mRNA decay to maintain steady state protein levels (Villanyi
and Collart, 2015). The deletion of Not5 leads to very slow
growth of yeast cells, and the deletion of both alleles of CNOT3
is embryonic lethal in mice. Moreover, CNOT3+/− mice have
many disturbed physiological functions (Morita et al., 2011;
Shirai et al., 2014) indicating a very essential function of this
protein (reviewed in Collart et al., 2013). It could be that the
lower dose of CNOT3 in T-ALL cells does not disturb the
major gene expression buffering function of CNOT3, but does
have an impact on protein folding and complex assembly. The
same could be true for the frequent RPL5, RPL10, and RPL22
mutations: affecting translation fidelity or efficacy has obvious
dosage compensatory effects, as improperly assembled or folded
proteins are likely to be non-functional, and prone to degradation
or aggregation. In this context it is interesting to note that it has
been reported that null mutants of specific Ccr4-Not subunits
reduce the viability of aneuploid yeast cells (Tange et al., 2012).
There may be a very fine balance between the impairment of
Ccr4-Not function that can ensure survival of tumor cells with
genomic lesions, or instead more severe ccr4-not mutations that
will be toxic.

CONCLUSION

The Ccr4-Not complex acts at all stages of the gene expression
pathway, and has both positive and negative effects on

gene expression. Clarifying which contribution of Ccr4-Not
regulation is important or lost in specific biological contexts
is a real challenge. Work in vivo cannot easily distinguish
direct from indirect effects, whereas studies in vitro define
what the complex can do, but not how and when this is
relevant in vivo. Here we point out that perturbation of
translation is positively affecting amino acid biosynthesis that
can facilitate cancer cell survival. We suggest that Not5 might
not only regulate production of the translation machinery
but also participate in the cross-talk between translation and
amino acid production. Finally, we put forward the idea that
impaired translation might contribute to dosage compensation
via production of non-functional proteins. As the story of Ccr4-
Not unfolds, it is clear that its understanding requires an open
mind.
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