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Abstract
Pluripotent stem cells have the property of long-term self-renewal and the
potential to give rise to descendants of the three germ layers and hence all
mature cells in the human body. Therefore, they hold the promise of offering
insight not only into human development but also for human disease modeling
and regenerative medicine. However, the generation of mature differentiated
cells that closely resemble their   counterparts remains challenging.in vivo
Recent advances in single-cell transcriptomics and computational modeling of
gene regulatory networks are revealing a better understanding of lineage
commitment and are driving modern genome editing approaches. Additional
modification of the chemical microenvironment, as well as the use of
bioengineering tools to recreate the cellular, extracellular matrix, and physical
characteristics of the niche wherein progenitors and mature cells reside, is now
being used to further improve the maturation and functionality of stem cell
progeny.
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Introduction
Stem cells have the remarkable property of long-term self-renewal, 
and at the same time they can give rise to progressively more lin-
eage-committed cells. Pluripotent stem cells (PSCs) are multipo-
tent as they can generate all mature cells of the body. Although 
murine PSCs were already isolated in the 1980s1, it was not until 
1998 that human PSCs (hPSCs) were first isolated from human 
blastocysts, termed embryonic stem cells (ESCs)2. This accom-
plishment, and, even more so, the creation of so-called ‘induced 
pluripotent stem cells’, or iPSCs, from mouse3 and then human4 
fibroblasts in 2006–2007, opened up the possibility of generating 
any cell type for regenerative medicine. In addition, the availabil-
ity of human ESCs (hESCs) and iPSCs (collectively termed PSCs) 
now provides us with tools to better understand human develop-
ment as well as create models to study human diseases. Fully 
exploiting that potential, however, remains challenging. Although 
new stem cell differentiation protocols are published on a weekly 
basis, many hurdles remain regarding how to create mature 
stem cell progeny. In this review, we will discuss the current 
state of the art of stem cell culture and lineage differentiation from 
stem cells. Current limitations in creating mature PSC progeny are 
steering investigators to explore novel avenues in stem cell research. 
We discuss the roads that are being taken and need to be taken 
to improve the functionality of PSC-derived human tissue cells 
and ultimately exploit the full potential of hPSCs.

Pluripotency matters
The derivation and culture of hESCs and human iPSCs (hiPSCs) 
use conditions that differ from those used to isolate their murine 
counterparts. This results in the capture of cells at different stages 
of embryonic development. Murine PSCs can be isolated by 
using several culture methods from mouse embryos. These include 
culture on mouse embryonic fibroblasts or using mTeSR and 
LIF, resulting in a population of cells containing chiefly ESCs 
but also extra-embryonic endoderm progenitors5. More recently, 
it has been demonstrated that murine ESCs can be isolated and 
maintained in a ‘naïve’ ground state (termed 2i/LIF conditions) 
that resembles pre-implantation pluripotency wherein fate alloca-
tion in specific cell populations has not yet occurred. Unlike their 
murine counterparts, human PSCs in standard culture conditions 
resemble post-implantation, ‘primed’ epiblast stem cells, wherein 
initial fate allocation has occurred6. When post-implantation 
murine or rat embryos are used, a similar epiblast-like cell type 
can be isolated as well7. Such primed human and mouse ESCs have 
already undergone X-chromosome inactivation. Moreover, the 
generation of hiPSCs does not lead to reactivation of the X-chro-
mosome. This X-chromosome inactivation state, however, is 
unstable, as long-term culture of female ‘primed’ hESCs or hiP-
SCs has been shown to cause ‘X-chromosome erosion’; that is, the 
inactivation of the silenced X-chromosome is progressively lost. 
X-chromosome erosion is associated with decreased differentia-
tion potential, and this is inherited by the differentiated progeny8–11.
In addition, excessive X-chromosome skewing is frequently
seen12–15, yielding skewed progeny that could manifest or lose dis-
ease phenotypes. For example, in the case of Duchenne muscular
dystrophy, female carriers of a dystrophin gene mutation rarely
manifest with muscular dystrophy because the random nature of
X-chromosome inactivation leads to a mixture of cells expressing

either the wild-type or the disease gene. In this case, in vitro X-
chromosome skewing could misrepresent the in vivo situation16. 
Together with the fact that primed cells are not lineage-neutral, 
this may be a major contributing factor to the variability observed 
within and between different cell lines17.

During the last 3 years, a number of protocols have been described 
in which primed hPSCs can be reset to a naïve state or which 
allow reprogramming of somatic cells to naïve hPSCs (reviewed 
in 18). However, such human naïve PSCs are more resistant to dif-
ferentiation, and a step wherein naïve PSCs are committed to an 
intermediate primed state is required, at least in some studies19–21. 
For instance, transitioning through a more naïve state proved to 
be especially beneficial in the case of germ line cell differentia-
tion. The initial fate allocation of regular primed hPSCs signifi-
cantly dampens germ line competence, but converting hESCs to a 
more naïve state, using a protocol developed by Gafni et al.22, 
drastically improved the efficiency of generating primordial germ 
cells23. However, recent reports sound a cautionary note by report-
ing that naïve hPSCs are genetically unstable11,24. Hence, they 
are not good candidates to start lineage differentiation for either 
disease modeling or regenerative medicine. However, recent 
insights into the hierarchy of pluripotency during development 
have led to the identification of an additional cell population, to 
which the term ‘formative PSCs’ was assigned, that appears to 
be located in between naïve and primed PSCs25 (Figure 1). Such 
putative formative PSCs26 are, like naïve PSCs, lineage-neutral; 
however, unlike naïve PSCs, they are hypothesized to be able to 

Figure 1. Pluripotent stem cell (PSC) hierarchy. Hypothesized 
hierarchy of human PSCs and their properties.
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differentiate efficiently into all different cell lineages. Furthermore, 
they also appear to be genetically more stable than naïve hPSCs 
and, because they have higher levels of methyltransferase activi-
ties than primed PSCs27, also may not be subject to X-chromosome 
erosion. Therefore, developing methods that allow capturing and 
maintaining hPSCs in this formative state will likely be of great 
importance to enable robust and controlled lineage differentiation.

Lineage differentiation: current state of the art and 
shortcomings
To induce lineage differentiation from PSCs, investigators have 
used insights gained from development. Initially, this comprised 
the generation of embryoid bodies, wherein differentiation occurs 
spontaneously as a result of signals emanating from the differ-
ent cell populations that spontaneously develop25. To control 
the differentiation process better, subsequent studies have used 
step-wise addition of growth factors and cytokines, or inhibitors 
thereof, known to play a role during certain steps of differentia-
tion, combined in the majority in cases with monolayer culture 
systems. This has enabled the generation of a number of cell types, 
including cells with features of neural subpopulations (for example, 
glutamatergic cortical neurons28, cholinergic neurons29, dopamin-
ergic neurons30, oligodendrocytes31, and astrocytes32), cardiac 
muscle33–36, or hepatocytes37–39, among many others. However, these 
cells resemble fetal tissue more than adult tissue in the majority 
of cases. Reasons for this are numerous and will be discussed 
below.

First, although we have some insight into the progressive matura-
tion of cells in a tissue, this knowledge is based on quantitative 
reverse transcription polymerase chain reaction or genome-wide 
transcriptome studies throughout development, assessing gene 
expression in bulk populations of cells. However, as was already 
suggested by immunofluorescence staining for a limited number of 
marker proteins, not all cells in a tissue are equal. This is likely 
also true for developing cell populations, although such studies 
in human embryos are, for obvious reasons, not readily feasible. 
Nevertheless, thanks to the advent of single-cell RNAseq, single-
cell variability in mature and developing tissues (the latter chiefly 
in mouse) can now be further elucidated (reviewed in 40,41). 
For instance, it is now clear that neurons and astrocytes are brain 
region-specific, and transcriptional signatures for these are becom-
ing available (reviewed in 42). Therefore, as has been done for 
neuronal differentiation protocols, different approaches will likely 
be needed to generate regionally specific astrocytes.

Second, although the mature phenotype of certain cells, such as 
hepatocytes, has been well established and can be used to define 
the maturation state of these cells, this is not the case for all cell 
types43. Using astrocytes as an example, the definition of a ‘mature’ 
astrocyte remains unclear (reviewed in 44). Although in general 
the presence of glial fibrillary acidic protein or S100β or both 
has been used to define astrocytes, this is insufficient, as there 
are other neural precursors, such as radial glia, that could, on the 

basis of these markers alone, be classified as astrocytes45. There-
fore, markers or assays that reveal the functional properties of 
these cells, including propagation of calcium waves, glutamate 
handling, and inflammatory responses, should be used to define 
astrocytes46–48.

Third, standard culture conditions constitute a major roadblock 
in lineage differentiation, as they do not provide all of the neces-
sary environmental cues. During embryogenesis, cells from dif-
ferent germ layers co-develop in response not only to graded 
and continuously changing concentrations of chemical factors 
generated by neighboring cells and cells at some distance49 but 
also to cell–cell- and cell–extracellular matrix (ECM)-mediated 
signals. Although growth factor addition, in what we would call 
a ‘purist’ approach to a single-cell-type-at-a-time differentiation, 
tries to recreate the in vivo chemical signals, it is very crude and 
fails to recreate the subtle progressively changing levels of growth 
factors and morphogens present in vivo. Obviously, by attempt-
ing to make pure populations of differentiated cells, we preclude 
the influence on cell commitment and maturation of neighbor-
ing cells derived from the same or even a distinct germlayer. In 
addition, differentiation performed in 2D culture is generally in 
culture plastic wells coated with an ECM such as collagen, lam-
inin, or matrigel. This does not start to recreate the complex and 
changing ECM or the physical characteristics of developing ‘soft’ 
organs. In addition, numerous other environmental cues affect 
cell differentiation—such as electrophysiological activity that 
regulates cardiac muscle or neural cell maturation50; mechanical 
stimulation inducing cardiac differentiation51; flow/shear force 
that affects endothelial differentiation52; or nutrient composition 
of the blood that affects zonation of cells in the liver53—all of 
which are only now starting to be evaluated to enhance lineage 
maturation.

Finally, the duration of many differentiation protocols does not 
reflect human gestation. It may not be surprising that differen-
tiated progeny resembles fetal tissue more than adult tissue. For 
instance, during development, neurogenesis switches to gliogenesis 
late during gestation54, which underlies the fact that very lengthy 
cultures are required to derive astrocytes from PSCs.

Another example is that PSC-derived hepatocytes usually har-
vested after 3–5 weeks continue to express the fetal hepatocyte 
gene, alpha-fetoprotein55, and do not express markers associated 
with mature hepatic function, such as the detoxifying enzymes of 
the cytochrome P450 family (CYPs)56. Although the fetal pheno-
type of PSC-derived hepatocytes allows disease modeling of, for 
instance, hepatotropic viruses such as dengue, hepatitis B, and 
hepatitis C57–60, their fetal metabolic signature limits their useful-
ness in drug toxicity studies43. In contrast, in the field of regen-
erative medicine, the immaturity and plasticity of progenitor cells 
can be advantageous as, for example, dopaminergic neuronal pro-
genitors still hold the ability to migrate and integrate when trans-
planted in Parkinson’s disease61. Several clinical trials, conducted 
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between 1990 and 2003, have tested the feasibility and clinical 
benefit of transplanting fetal mesencephalic grafts in the basal 
ganglia of patients with Parkinson’s disease61,62. Though not all 
equally successful, these trials served as a proof of principle and 
paved the way for trials using hPSC-derived progeny63. Neverthe-
less, the use of incomplete differentiated progeny from PSCs may 
hold the risk of causing unwanted excessive proliferation64 or even 
teratoma formation65.

Lineage differentiation: ways forward
Genome editing
As stated above, the incomplete lineage differentiation from PSCs 
for many cell types is caused by our incomplete understand-
ing of developmental processes. However, the newly available  
high-throughput single-cell transcriptomics and computational 
modeling of gene regulatory networks now allow in-depth char-
acterization of cellular identity and lineage commitment, not  
only in adult tissues but also throughout development (the latter 
at least in mouse development)66–68. These studies start to identify 
previously underestimated heterogeneity in cell populations, in 
the adult as well as during development69,70, and in the meantime  
provide key targets and knowledge of transcriptional dynamics68.

Such single-cell RNAseq data combined with novel genome 
engineering approaches, especially the Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR) technology (reviewed 
in 71), allow investigators to ‘engineer’ PSC progeny toward spe-
cific lineages. CRISPR technology significantly enhances the fre-
quency of homologous recombination in hPSCs. This is all the 
more important to create reporter cell lines, enabling the enrich-
ment of precursors or mature cells from mixed populations.  
However, even more important for lineage differentiation  
approaches is the ability to exploit the CRISPR system to acti-
vate or interfere with gene expression, using CRIPSR-activation 
(CRISPRa) and CRIPSR-interfering (CRISPRi) approaches. For 
CRISPRa, a dead Cas (dCas), unable to cause double-strand breaks, 
is linked to a transactivator sequence, such as multiple herpes sim-
plex virus protein VP16 repeats (VP64)72, or VP64 fused with p65, 
a subunit of the ubiquitous NF-κB transcription factor complex 
(p65) and the Epstein-Barr virus R transactivator (Rta) (so-called 
VPR)73, among others. The VPR transactivator, for instance, allows 
the activation of endogenous gene transcription by a median of 
150-fold. Alternatively, the dCas can be fused with a gene repres-
sor such as the Krüppel-associated box (KRAB) domain of Kox174 
or four copies of the mSin3 domain (termed SID4X)71 to inhibit 
gene transcription by up to 15-fold. The CRISPR–dCas-activator/
repressor can be integrated into a safe harbor locus75 and be driven 
by different inducible promoters to enable the expression of either 
the transactivator or the repressor. In addition, the use of diverse 
dCas9 orthologues from different bacteria and their respective sin-
gle-guide RNA76 further enhances the possibilities for sequential 
or combinatorial induction (or both) of transcription factors (TFs) 
that are insufficiently expressed in PSC progeny while inhibiting 

TFs that are incorrectly expressed in differentiated progeny. The 
latter could be either pluripotency TFs but also TFs for lineages 
other than the desired lineage that are incorrectly activated during 
the in vitro differentiation process43,72,77–81.

Chemical engineering of the culture medium
A number of studies have started to test libraries of small molecules 
to identify factors that enhance differentiation. A good example is 
pancreatic-beta cell differentiation from PSCs, wherein more than 
20 different molecules have been used to create insulin-responsive 
cells82. Similar examples can be found in the literature for other 
cell types, including hepatic, neuronal, or cardiac progeny36,83,84. 
However, an often-overlooked characteristic of the culture medium 
is the nutrient microenvironment. It is, however, well known that 
medium composition can greatly affect cellular behavior in vitro. 
Several studies demonstrated that nutrient metabolism is one of 
the major regulators of stem cell fate. For instance, central carbon 
metabolism plays an important role in PSC maintenance, prolif-
eration, differentiation, and lineage specialization (reviewed in 85). 
Indeed, PSCs have a glycolytic phenotype86, and failure to induce 
glycolysis prevents iPSC generation87. By contrast, many differen-
tiated progeny—especially, neural cells88, cardiomyocytes89, and 
hepatocytes90—are dependent on oxidative phosphorylation for 
energy production. As the latter is fueled by fatty acids or amino 
acids or both, it will be paramount to analyze the nutrient require-
ments of precursor populations generated from PSCs and ulti-
mately develop culture media that support these nutrient needs91 
to allow generation of mature lineage-specific cells and simultane-
ously avoid alternate cell faiths. An example of the latter approach 
is the eradication of hESCs/iPSCs from cultures by the transient 
depletion of methionine92.

Recreation of the stem cell, precursor, and mature cell 
niche
As discussed above, the ‘purist’ approach to lineage differentiation 
from PSCs has been to develop differentiation protocols based on 
monolayer systems coated with a generic ECM layer supplemented 
with growth factors, morphogens, and cytokines. However, culture 
in 2D of numerous mature primary cells—such as hepatocytes93 or 
glia46, to name a few—is incompatible with maintaining a mature, 
differentiated phenotype in vitro. Therefore, it is not surprising 
that such culture conditions are not suitable for the generation of 
mature PSC-derived progeny. Hence, researchers are investigat-
ing approaches such as co-culture of one or more cell types in 3D 
culture systems or PSC-derived organoid cultures to better mimic 
the environment, also named ‘niche’, wherein cell fating and dif-
ferentiation occur during development and wherein mature cells 
reside within an organ.

Although organoids from undifferentiated PSCs allow evaluation 
of the initial steps of cell fating and the spontaneously develop-
ing interactions between neighboring cells and their niches, as 
is thought to occur in vivo, it remains difficult to control these 
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steps, and the creation of mature functional cells from stem cell 
organoids is not easily achieved. A very good example is the 
self-organizing brain organoid, initially described by Lancas-
ter and Knoblich, that allows the generation of a variety of brain 
regional identities, including hindbrain, midbrain, forebrain, and 
even retinal tissue94. However, even if this allows the creation of 
some of the complexity of the brain, inherent to spontaneous devel-
opment is that the organoids are highly variable within a single 
experiment and between experiments, and cells do not achieve a 
terminally differentiated state.

As an alternative, organoids can be generated from different PSC-
derived lineage precursors embedded or not in functionalized 
hydrogels, in combination with chemical signals (growth factors) 
to recreate the physicochemical properties of the organ wherein 
the maturing cells reside. This enables greater control of the cell 
types present in the 3D culture compared with the spontaneous, 
less controlled differentiation occurring in undifferentiated PSC 
organoid cultures95,96. Until recently, 3D organoid cultures were 
exclusively performed in matrigel, a poorly defined and largely 
proteinaceous mixture whose properties cannot be readily modu-
lated and therefore do not allow the evaluation of cell–ECM inter-
actions or do not allow one to understand the role of mechani-
cal forces in cell fate decisions. While many cell types are not 
intrinsically mechanically active, they encounter and respond to a 
range of mechanical forces such as shear stress, matrix topogra-
phy, and rigidity. While we intuitively accept that differentiation 
induces changes in cell shape, controlling cell shape also affects 
differentiation97,98. Mechano-sensation affects cell morphology, 
cytoskeletal structure, adhesion, and function, emphasizing the 
importance of cell–ECM interactions99,100. The advent of highly 
tunable hydrogels based on poly(ethylene glycol) (PEG)101 or 
natural gellan gum (GG)102 has significantly increased the flex-
ibility of probing the role of the microenvironment in specifying 
stem cell fate. A number of teams have developed ECM component 
libraries wherein matrix stiffness, matrix degradability, and solu-
ble and ECM peptide factors can be combinatorially and system-
atically tested in high-throughput approaches. This has resulted in 
the definition of improved PSC culture and differentiation 
conditions103,104.

The above-mentioned hydrogel technology not only can be used 
to embed spontaneous assembly of different cell types but also can 
be combined with bioprinting, allowing the creation of stem cell 
niches. Bioprinting, such as bioextrusion105, inkjet bioprinting106, 
and microvalve-based bioprinting107,108, has already been used to 
create 3D tissue and organs from stem cells. However, the spatial 
resolution of these approaches is in the 50-μm range, not allow-
ing the precise recreation of cell niches. However, this may be 
feasible when using laser-guided printing109,110, wherein laser 
settings and droplet size allow very high-precision printing to 
the single-cell level. This theoretically should allow one to pre-
cisely recreate the cellular niches and to probe the effect of the 

microenvironment (cell–ECM and cell–cell contact) on cellular 
differentiation.

As cells also respond differentially to the organization and 
ultrastructure of the ECM, topographical cues embedded in ECM 
can further guide tissue development. For instance, hPSC-derived 
cardiomyocytes grown on microgrooves, that topographically 
resemble aligned collagen fibers in the developing heart, 
aligned to the substrate, which resulted in improved sarcom-
ere length111,112. Therefore, synthetic nanopatterned substrates 
with well-defined properties are also assessed for their effect on 
differentiation113,114.

Mechanical and electrical engineering
The controlled addition of growth factors and small molecules in 
conjunction with tailored hydrogels can mimic the physicochemi-
cal properties of the immediate in vivo environment. However, 
developing cells are also subjected to electromechanical forces 
exerted by the organ in which they develop (reviewed in 115). 
Therefore, a number of studies have started to test the additional 
effect of electrical or mechanical stimulation (or both) on cardiac 
and neural differentiation, as electrical activity is a fundamental 
property of these cell types50,51,116. For instance, stimulation para-
digms have been well described for both rat and mouse primary 
cultures117,118, suggesting that integrating electrical stimulation to 
enhance the maturation of hPSC-derived neurons is feasible. How-
ever, such an approach has not yet been widely applied to human 
culture systems. Continuous electrical stimulation also improved 
cardiac differentiation, significantly enhanced connexin expres-
sion and sarcomeric structure, and instructed cardiomyocytes to 
adapt their beating rate51, a sign of electrophysiological maturity119. 
As electrical activity is coupled to contraction in cardiomyo-
cytes, the role of cyclic stress in cardiac muscle maturation is also 
being tested. Although applying mechanical stimulation improved 
the transcriptional and functional profile of hPSC-derived car-
diomyocytes120, less is known about the influence of mechanical 
stimulation on the maturation of other cell types.

Engineering perfusion
The final and perhaps most arduous addition to the 3D-derived 
models is to integrate the vascular network, to allow the deliv-
ery of nutrients and oxygen to the microtissue and to allow re- 
circulation of endogenous factors and hence aid in specifying 
cells within a tissue (for example, zonation in a liver sinusoid). 
Vascular networks have, for instance, already been printed, inte-
grated into skin tissue or on a cardiac patch109,121, or incorporated 
in self-assembling 3D tissues96. When implanted in rodents, the 
murine blood vessels of the implant connected with the vascular  
network, integrating blood vessels into the vascular system of 
the host96. In addition, microfluidic systems have been generated  
allowing the continuous manipulation of, for instance, pre-defined 
oxygen gradients, the delivery/removal of specific factors or func-
tional components to/from the microtissue, and the alteration  
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of mechanical forces exerted on the tissue122. For example,  
Giobbe et al. differentiated hPSCs directly on a chip under per-
fusion to hepatocytes and cardiomyocytes, which presented with 
significantly increased functionality as compared with unperfused  
control cells123. Even though perfusion is of such importance 
for the differentiation of PSCs and their derivatives, a major  
challenge remains to connect very small (micrometer-diameter) 
capillaries109,121 to microfluidic channels that are commonly 5  
to 10 times wider than capillaries.

Conclusions
The generation of mature PSC-derived progeny, resembling their 
in vivo counterpart, is desperately needed in the field of disease 
modeling and regenerative medicine. The availability of high-
throughput single-cell transcriptomics, computational modeling 
of gene regulatory networks, and new genome editing tools now 
allows in-depth characterization of cellular identity and line-
age commitment. These advances highlight a previously under-
estimated heterogeneity in cell populations but in the meantime 
provide key targets and knowledge of cellular state and function. 
This increased understanding has been one of the driving forces 
behind the continuous generation of new differentiation protocols. 
In addition, progress made in the field of (bio)engineering now 

allows the creation of hydrogels with mechanical stiffness simi-
lar to that of a given organ. It also allows one to decorate the gels 
with ECM components as well as chemical guides, aside from 
electromechanical stimuli, to drive differentiation in a 3D configu-
ration. In addition, bioprinting techniques have evolved such that 
specific ECM topologies that instruct differentiation can be recre-
ated, specific cell-to-cell interactions can be incorporated at the 
(near) single-cell level, and capillary networks can be co-embedded 
between different cells to enable continuous nutrient support 
and removal of breakdown products. All of these tools are start-
ing to recreate different aspects of the niches wherein progenitors 
and mature cells reside, although much is still to be learned about 
these niches before we will be able to fully recreate them 
(Figure 2).

As we are starting to move away from standard ‘petri dish’ cul-
ture systems to high-complexity systems, not only will it be impor-
tant to ensure reproducibility but also the main challenge will be 
to adapt these advanced culture systems to medium- and high-
throughput formats in a cost-effective way. Thus, even if great 
strides have been made toward lineage differentiation of stem 
cells, many challenges are still ahead before it will be possible to 
generate fully mature and functional cell types.

Figure 2. Schematic overview for the advances in lineage differentiation. Induced pluripotent stem cells (PSCs), for studies of human 
disease or to create differentiated cells for regenerative medicine, can be generated from any somatic cell, from which the desired cell can 
be differentiated. However, current differentiation systems generate immature progeny. Recent advances in genome editing (CRISPRa/i), 
chemical screens, and bioengineering—extracellular matrix (ECM) functionalized hydrogels, bioprinting, and microfluidics—are being used 
to allow the derivation of more mature and functional PSC progeny, which resemble their in vivo counterparts better, and can be used for 
personalized and regenerative medicines. CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats.
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