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ABSTRACT: We propose a numerical strategy based on dynamic
load balancing (DLB) aimed at enhancing the computational
efficiency of multiscale CFD simulation of reactive flows at catalyst
surfaces. Our approach employs DLB combined with a hybrid
parallelization technique, integrating both MPI and OpenMP
protocols. This results in an optimized distribution of the
computational load associated with the chemistry solution across
processors, thereby minimizing computational overheads. Through
assessments conducted on fixed and fluidized bed reactor
simulations, we demonstrated a remarkable improvement of the
parallel efficiency from 19 to 87% and from 19 to 91% for the fixed
and fluidized bed, respectively. Owing to this improved parallel
efficiency, we observe a significant computational speed-up of 1.9
and 2.1 in the fixed and fluidized bed reactor simulations,
respectively, compared to simulations without DLB. All in all, the proposed approach is able to improve the computational
efficiency of multiscale CFD simulations paving the way for a more efficient exploitation of high-performance computing resources
and expanding the current boundaries of feasible simulations.
KEYWORDS: reactor modeling, dynamic load balancing, fixed beds, fluidized beds, CFD, multiscale simulations

1. INTRODUCTION
The chemical and catalytic reactors are intrinsically multiscale
systems whose observed functionality depends on the interplay
among the phenomena spanning from the atomic to reactor
scales. Our ability to fundamentally understand, analyze, and
design the existing and innovative reactors strongly depends on
the development of detailed multiscale models.1 This is
achieved by using a first-principles approach at each scale,
i.e., solving the characteristic governing equations.

Computational fluid dynamics (CFD), able to properly
account for the transport phenomena at the reactor and
catalyst scales, is coupled with the accurate description of the
chemical kinetics granted by microkinetic models or kinetic
Monte Carlo (kMC) simulations.2 However, the CFD of
reactive flows is challenging. On the one side, the modeling of
geometries of industrially relevant systems requires complex
meshes characterized by a large number of cells (i.e., up to tens
of millions). On the other side, detailed homogeneous and
heterogeneous mechanisms involve many gas and adsorbed
species to comprehensively describe the reactive environment.
A large span of time and length scales is involved leading to
stiff numerical problems, and the chemical source terms are
strongly nonlinear with respect to temperature and possibly to

local coverages. Specific numerical methods are needed to
tackle this level of complexity, i.e., operator-splitting,3 which
usually requires 70−90% of the overall computational cost.4

Different strategies have been proposed in the literature to
reduce the computational effort related to multiscale reactor
simulations. On one side, on-the-fly approaches based on
tabulation (e.g., in situ adaptive tabulation4−7) or clustering
(e.g., cell agglomeration8−11) have been successfully employed.
Both approaches aim at reducing the number of detailed
chemical calculations, but they still require the full solution of
chemistry in a non-negligible number of computational cells.
Moreover, their accuracy relies on many tunable parameters
whose definition is empirical or requires several trial-and-error
analyses.11 On the other side, machine learning is driving
attention to off-the-fly tabulation of chemical source terms
based on polynomial approximation,12,13 ensemble meth-
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ods,14,15 or artificial neural networks.16−18 Such approaches
revealed to be very effective in reducing the computational
costs and enabled the inclusion of extremely expensive kMC
simulations into CFD analysis.14 These approaches have been
employed to speed-up the computations of the reactive source
terms in the context of heterogeneous chemistry, whereas their
use for the approximation of the entire chemical substep in the
operator-splitting approach is mainly confined to homoge-
neous chemistry simulations.18−22

In parallel, some efforts have been made to increase the
computational efficiency of the simulations, resulting in a
reduction of the computational cost. Such approaches are
directed toward the adaptation of the current multiscale
models to fully exploit the increasing computational power of
the new generation of high-performance computing (HPC)
which target exascale performances. This requires addressing
several challenges related to pre- and postprocessing, rapid I/
O, and efficient numerical methods. Indeed, CFD of reactive
flows is already taking advantage of HPC systems since the
computational domains, needed to describe the complex three-
dimensional systems, are represented by millions of computa-
tional cells, which can be only managed through parallel
computing. This is usually carried out by geometrically
dividing the computational mesh into subdomains assigned
to different workers (i.e., CPUs in the message-passing
interface�MPI�approach). This approach is highly effective
for the solution of transport equations in nonreactive
conditions. However, two issues arise and require additional
care when parallel computing is employed in reactive
simulations.23,24 First, the distribution of the reactive computa-
tional cells in the computational domain can be strongly
inhomogeneous due to the geometry of the system. For
instance, when a packed bed reactor is simulated, the
heterogeneous chemistry is located on the catalytic particles
that are not uniformly filling the domain. Therefore, in parallel
calculations, the subdomains can hold a significantly different
number of computational cells and, consequently, a signifi-
cantly different computational burden. Second, the cost of
chemical calculation is highly related to the local thermochem-
ical state (e.g., partial pressure, temperature, and coverages),
which can also be affected on the time-dependent distribution
of the phases inside the computational domain in the case of
reacting multiphase (e.g., gas−liquid or gas−solid) flows. As a
result, the computational load is highly variable across the
subdomains, often resulting in imbalanced conditions. In this
case, the observed computational cost is related to the most
overloaded worker independently of the performances of the
others since, at the end of each time step or iteration, all the
workers have to be synchronized to enable data exchange.
Consequently, most of the workers remain idle, resulting in
highly inefficient calculations.

To overcome this issue, several approaches have been
proposed. The first strategy involves the run-time and
continuous redecomposition of the domain, aiming at
achieving a geometrical subdivision characterized by a similar
load during the entire simulation.25,26 The method has been
revealed particularly effective when adaptive mesh refinement
is employed since a run-time decomposition of the domain is
needed due to the continuous modification of mesh density,
topology, and size.25,26 However, it is penalized by the
significant cost related to the geometrical operations on the
mesh, which can reduce the effectiveness when the mesh is not
changing during the simulation. Alternatively, dynamic load

balancing (DLB) approaches have been proposed to properly
distribute the computational load without redecomposing the
computational domain.23,24 Accordingly, the load is balanced
by evenly assigning proper chunks of calculation, deemed to
require a similar computational cost, to each of the workers.
This is obtained by exchanging the initial conditions of the
chemistry calculations between the workers without any
modification in the decomposed domains. These methods
have shown significant success in the context of detailed
simulations of combustion, while any application has been
reported in the context of heterogeneous chemistry calcu-
lations. In this context, since catalytic reactors are usually
characterized by immutable computational grids, the applica-
tion of procedures related to the run-time and continuous
redecomposition of the domain could increase the simulation
cost due to the additional overheads related to the frequent
geometrical reconstructions and decompositions.24

This work aims to develop a DLB approach suitable for
detailed CFD simulations of reactive flows at catalyst surfaces.
In particular, a numerical strategy that effectively and evenly
distributes the heterogeneous chemistry computational load
between the processors is specifically conceived for the
simulation of fixed and fluidized bed reactors.3,27 The approach
is rooted in a hybrid strategy, which combines the DLB based
on geometrical decomposition, where the pieces of information
are exchanged by MPI, with shared memory parallelization
(based on OpenMP). Accordingly, the computational domain
is geometrically divided into portions, which exchange
information to balance the computational load, by using the
MPI protocol. On top of this, a second layer of parallelization,
based on OpenMP, is considered. As such, the evolution and
modification of the thermochemical composition of each
portion of the domain (i.e., solution of the ODEs of the
chemical substep) is further parallelized on multiple process-
ors, as already successfully proposed in the context of
Eulerian−Lagrangian CFD simulations.28,29

The assessment of the DLB has been initially carried out in a
string reactor operated with the CO methanation over the Ni
catalyst. First, the simulation has been parallelly executed to
highlight the effects of the maldistribution of the computa-
tional load on the parallelization efficiency and, consequently,
on the computational cost. Then, the DLB based on the MPI
protocol has been introduced in the multiscale CFD
framework, providing an enhancement of the parallel
computing performance and improving the parallelization
efficiency from 17 to 84% by using 128 CPUs. The DLB has
then been combined with the hybrid parallelization providing a
further enhancement of the parallelization efficiency up to 87%
with 128 CPUs, leading to a 1.9-fold reduction of the
computational cost. Finally, the developed strategy has been
applied in the multiscale Euler−Euler simulation of an
industrial fluidized bed reactor for the oxidative coupling of
methane process. Also in this case, the DLB has been able to
evenly distribute the computational load between the
processors, leading to a 2.1-fold reduction of the computa-
tional effort, working with 128 CPUs when combined with
hybrid parallelization.

All in all, this work proposes an effective strategy to improve
the parallelization efficiency of multiscale CFD frameworks
with a concomitant reduction of computational cost. This
paves the way for fundamentally investigating and designing
catalytic reactors and processes of industrially relevant scales
by fully exploiting the potential of HPC facilities.
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2. NUMERICAL METHODS AND SIMULATION SETUP
This section describes the numerical methods and computational
domains adopted in this work. Initially, the load balancing algorithm
is described. Then, the introduction of the balancing procedure in
CFD frameworks for the multiscale simulations of reactive flows at
catalyst surfaces is discussed. Finally, the computational domains used
for the analysis of the parallel computing performance and the
adopted boundary conditions are presented.

2.1. Dynamic Load Balancing
The DLB is a numerical strategy whose purpose is the balancing of
the computational load during parallel calculations.23,24 This is carried
out without geometrically modifying the portion of the computational
domain assigned at each processor but by reallocating the computa-
tionally expensive operations among the processors pursuing the
target of even computational load.

According to this numerical strategy, the balancing procedure is
based on the time spent to carry out the expensive calculations during
the previous time step, which is deemed to be an estimator of the
computational cost in the current step. Based on these pieces of
information, the average processor computational load (L̅), i.e., the
load of each processor which will produce a well-balanced condition,
is evaluated as reported in eq 1:

=
= =
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i
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n

NCC

n i
1 1

,

i

(1)

where NP is the number of processors, NCCi is the number of
expensive calculations present in the ith processor, and ln, i is the
computational load of the nth expensive calculation in the previous
time step.

The processors are hence divided into two groups: overloaded,
whose computational load is higher than that of L̅, and underloaded,
whose computational load is lower than L̅. Then, the processors of the
two groups are paired, starting from the most overloaded and the
most underloaded, and the extent of load that each pair has to
exchange (ΔLsend) is evaluated as follows:

=L L L L Lmin( , )send u o (2)

where Lu and Lo are the computational load of the underloaded and
overloaded processors, respectively.

ΔLsend is related to a number of expensive calculations that, when
exchanged by the processor pair, will produce a well-balanced state.
This number of expensive calculations is set as the minimum one
whose overall cost is equal to ΔLsend. In doing so, the data exchange is
kept at a minimum, aiming at minimizing the computational
overheads related to the balancing. Finally, after all the expensive
calculations are computed, the solutions are exchanged back to the
original processor, which updates the computational domain.

The algorithmic implementation of the DLB is reported in Section
S.1.1 of the Supporting Information.

2.2. Multiscale CFD Framework: Operator-Splitting-Based
Strategies and Dynamic Load Balancing
Multiscale CFD frameworks employ domain decomposition and
parallel calculations to solve the governing equation in complex
geometries. In a parallel simulation, the computational grid is divided
into many subdomains that are assigned to different processors, which
usually communicate by means of the MPI protocol. During each
time step, each processor is dedicated to solving the governing
equations within its portion of the computational domain while
simultaneously exchanging essential information with neighboring
processors. In the case of reactive flows, the solution of the governing
equation is obtained by using the operator-splitting approach.
Accordingly, the transport and reaction contributions in species and
energy balance equations are separated into fractional time steps.3,27

In particular, the reaction operator does not involve any discretization
in space, since the chemical process depends on the thermochemical
state in each grid point. Consequently, the chemical substep
corresponds to a group of decoupled ODE systems describing the
temporal evolution of the local variables, i.e., species compositions,
site densities, and temperature. The solution of the chemical substep
is computationally expensive due to the stiffness and nonlinearity of
the source terms.3,4 In addition, similar to combustion simula-
tions,23,24 it is the primary source of the load imbalance in parallel
calculation due to the dependency of the cost of the ODE solution on
the local thermochemical state.23,24 Thus, DLB is employed for
increasing the computational efficiency of calculations related to this
substep.

Figure 1. Dynamic load-balancing−hybrid parallelization algorithm. The computational cells are colored according to the domain responsible for
their solution. Additional parallelization through OpenMP is highlighted by different threads.
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To this aim, we developed a numerical library implementing the
load balancing algorithm that can be used in whatever operator-
splitting framework with the purpose of improving the efficiency of
the ODE system solution. The library implements the DLB algorithm
proposed by Tekgül et al.24 adapted to treat reactive flow at catalyst
surfaces (i.e., fixed and fluidized bed in single and multiphase
conditions).

The flowchart of the algorithm is depicted in Figure 1. During each
time step, the local thermochemical state in each cell (i.e., initial
values of the ODEs) is collected (e.g., mass fraction, temperature, and
pressure) along with the corresponding computational cost spent in
the previous step. The pieces of information are sent to the DLB
library, which employs the cost of the ODEs as an indicator of the
computational load of the processors. Then, the DLB assigns an
ensemble of the corresponding ODE systems to each processor,
taking advantage of the MPI protocol for data exchange, as described
in Section 2.1. Therefore, at the beginning of the integrations, each
processor holds a certain number of ODEs which can be different
from the number of computational cells, as shown in Figure 1.

In a pure MPI approach, the ODEs are solved sequentially in each
of the processors. We identify this approach as pure MPI in the
following sections. However, the fully decoupled and independent
nature of ODEs results in a problem that can be easily further
parallelized (called an embarrassingly parallel problem in the
literature). In each processor, the solution of the ODEs is further
subdivided among an ensemble of threads according to a shared
memory parallelization approach based on the OpenMP protocol (see
Figure 1), a parallel programming method where multiple processors
(or cores) have access to a common memory enabling efficient
multithreading. In doing so, it is possible to consider the optimal
number of processors required by the transport operators, managed
by MPI, and to add an additional performance boost by further
subdividing the expensive ODE solution on multiple threads. This
approach has been identified as hybrid parallelization in the following
sections.

In this work, the hybrid parallelization and dynamic load balancing
method have been implemented in the catalyticFoam framework.3

The algorithms detailing the combination between the chemical
substep and the DLB for both the MPI and the hybrid parallelization
strategies are, respectively, reported in Sections S.1.2 and S.1.3 of the
Supporting Information.

The simulations have been carried out on AMD EPYC 7H12-128
CPUs-256 Gb RAM by using OpenMPI 4.1.1 and OpenMP 3.1.
2.3. Computational Domains and Kinetic Mechanisms

2.3.1. String Reactor. The DLB performances in heterogeneous
catalytic systems has been assessed by considering the CO
methanation over a nickel-based catalyst, carried out in a string
reactor, often used for kinetic measurements and already investigated
by reactive CFD.30,31 The system reactivity is accounted for by using
the microkinetic mechanism proposed by Delgado et al.,32 while the
computational domain is a cylindrical reactor (length of 0.042 m and
diameter of 0.0044 m), where 10 spherical pellets with a diameter of
0.0025 m are packed. The computational domain is depicted in Figure
2. The domain has been built by using the snappyHexMesh tool of

OpenFoam33 by starting from an orthogonal mesh with a cell size
equal to 250 μm and by selecting a refinement level of one for the
reactor wall and of three for the catalytic pellets, and no layer has been
added since a laminar flow regime is experienced in the system. In
doing so, the computational grid consists of about 700,000 cells, with
the minimum size equal to 31 μm.

As boundary conditions, atmospheric pressure has been fixed at the
outlet of the reactor, while zero-gradient has been assumed for the

inlet, the lateral wall, and the pellet surface. The superficial velocity
has been imposed equal to 0.4 m/s at the inlet, and a no-slip
condition has been set at the tube wall and at the surface of the
pellets, while a zero-gradient condition has been used at the outlet,
assuming a fully developed profile. The species mass fraction and
temperature have been imposed as fixed values at the inlet (CO 0.2 v/
v, H2 0.6 v/v, Ar 0.2 v/v, and 673.15 K), while a zero-gradient
condition is imposed at the outlet and the reactor wall. Finally,
reactive boundary conditions are used at the catalytic pellet surface for
both the species mass fraction and temperature.3,27

2.3.2. Industrial Fluidized Bed Reactor. The oxidative coupling
of methane over the La2O3/CaO catalyst has been selected to test the
dynamic load balancing in multiscale Eulerian−Eulerian simulations
of fluidized systems. The OCM reactivity has been described by using
two microkinetic models for both the homogeneous and the
heterogeneous chemistries, as reported in our previous work.34 The
simulations have been carried out in a computational domain, as
shown in Figure 3. It is composed of a 2 m diameter cylindrical

section (5 m height), followed by an enlargement of the cross section
(0.5 m height) up to a second cylindrical section (4 m diameter and 2
m height) to reduce the particle entrainment, resulting in a reactor
height of 7.5 m. The computational domain has been discretized by
hexahedral cells having a size equal to 500 times the average particle
diameter (dp = 150 μm), leading to a computational grid composed of
about 96,000 cells.

At the beginning of the simulation, the bed is packed with a solid
fraction equal to 0.62, due to the high reactor-to-particle ratio and an
initial height of 1 m. The packed bed was fluidized by using an inert
flow of nitrogen injected from the bottom of the reactor. Once steady
fluidization is reached, the reactive feed is injected into the reactor.

The systems have been simulated in isothermal conditions. As
boundary conditions, atmospheric pressure has been fixed at the top
of the reactor, while a zero-gradient condition has been assumed for
the lateral walls and the bottom. The superficial velocity has been
imposed at the bottom of the reactor equal to 45 times the minimum
fluidization velocity, and a no-slip boundary condition has been set at
the lateral walls. For the solid phase velocity, the boundary condition
proposed by Johnson and Jackson35 has been imposed at the bottom
of the reactor and at the lateral walls. A temperature of 1023.15 K is
used. The gas-phase composition has been imposed at the bottom of
the reactor according to the operating conditions of the inlet feed
stream (CH4 0.1 v/v, O2 0.04 v/v, and N2 0.86 v/v). The Neumann
condition was imposed on the remaining boundaries for the species
and temperature. Moreover, a specific surface area of the catalyst has
been set equal to 1.4487 × 105 mcat

2/mcat
3.

3. RESULTS AND DISCUSSION
This section discusses the computational performances of
multiscale CFD simulations with and without load balancing.
First, the intensity of the load balancing problems is quantified
and highlighted. Then, the improvement granted by the DLB
as well as the hybrid parallelization strategy is discussed for the

Figure 2. String reactor computational domain consisting of spherical
catalytic pellets randomly inserted in a tubular reactor.

Figure 3. Industrial fluidized bed reactor computational domain.
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fixed bed test case. Finally, the DLB has been combined with
the Euler−Euler modeling approach to show the benefits that
can be provided for the parallelization of fluidized systems.
3.1. Assessment of Load Maldistribution in Multiscale CFD
Simulations
To quantify the potential load balancing issues related to the
different distributions of the cells and operating conditions in
each portion of the domain, the string reactor has been
geometrically divided into eight subdomains by using two
different decomposition methods. On the one hand, the Scotch
method has been used. It subdivides the domain into
subdomains characterized by a similar number of cells, while
attempting to minimize the communications between the
processors. The resulting domain is depicted in Figure 4. On

the other hand, a simple decomposition of the cylindrical cross
section (with four processors in the x direction and four
processors in the y direction) has been also employed, as
shown in Figure 4.

The simulations are run following the temporal evolution of
the startup of the string reactor, where the reactants are fed
into an inert environment from time zero.

Figure 5 reports the trends of the computational cost of the
chemistry substep in each of the subdomains for the two
decomposition methods. This is a direct measure of the
computational burden, and it strongly depends on the
processor location and the decomposition methods.

It is worth noting that the observed computational cost of
the chemistry substep corresponds to the maximum value
among the processors. This occurs because all of the CPUs
have to wait for the slowest processor before moving to the
next steps independently of the time they spend solving the
chemistry. In both methods, the computational cost as a
function of the simulation time shows a characteristic trend.
Initially, the computational cost is negligible. The duration of
this phase is processor-dependent, and it is proportional to the
geometrical distance of the subdomain from the inlet. In other
words, it corresponds to the time that the reactants require to
reach the reactive faces contained in the subdomain. As an
example, in the case of the Scotch decomposition method
(Figure 5a), processor 4, which contains the inlet patch, shows
the shortest initial section, while processor 0, which contains
the outlet patch, is reached after about 0.0075 s of simulation.
Once the reactants enter the subdomain, the computational
time initially increases, due to the gradual onset of the
heterogeneous chemistry, followed by a final plateau
corresponding to steady-state conditions. Both the slope and
the final plateau assume different values in each CPU as a
function of the number of reactive cells and the local operating
conditions that influence the stiffness of the reactivity in the
subdomain. In the Scotch simulation, processor 5 shows the
highest computational cost which is related to the presence of
intense reactivity due to high temperature and little reactant
conversion in that portion of the domain, as shown in Section
S.2 of the Supporting Information. Conversely, processor 0
shows the smallest computational time since the reactants have
lower concentrations in this subdomain, which is located at the
end of the bed. This produces a strong imbalance of the
computational time among the processors during the entire
simulation that can even result in processors 50 times more

Figure 4. Domain decomposition of the string reactor case to eight
processors by using the Scotch method (top) and a simple
decomposition of the cylindrical cross section (four processors in x
direction and four processors in y direction) (bottom).

Figure 5. Computational time spent to solve the chemistry for each processor as a function of time by adopting the Scotch (a) and the simple (b)
decomposition approach. The colors correspond to the domains shown in Figure 4.

ACS Engineering Au pubs.acs.org/engineeringau Article

https://doi.org/10.1021/acsengineeringau.3c00066
ACS Eng. Au 2024, 4, 312−324

316

https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.3c00066/suppl_file/eg3c00066_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsengineeringau.3c00066/suppl_file/eg3c00066_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00066?fig=fig5&ref=pdf
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00066?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


loaded than other ones (e.g., CPU 4 and CPU 0 at 0.005 s in
Figure 5a).

The simple decomposition shows qualitatively similar
profiles. However, they are all characterized by a very short
section with a negligible computational cost. This is related to
more efficient decomposition, which ensures that the reactive
front enters in contact with the reactive faces of each processor
at about the same time. Nevertheless, the trends of
computational cost are coupled in two distinct groups. This
is ascribed to the different numbers of reacting cells that are
present in the two groups. The ones characterized by the lower
computational times correspond to the topmost and bottom-
most domains, which have smaller dimensions with respect to
the other ones due to the tube curvature. This results, once
again, in a computational burden among the processors that
can differ up to 35% (e.g., CPU 7 and CPU 0 at 0.03 s in
Figure 5b), resulting in an imbalanced situation.

Therefore, independent of the decomposition method, the
computational load in complex domains can be strongly
imbalanced. This has a relevant effect on the overall
computational time, but it can also have detrimental
consequences on the parallelization efficiency. Consequently,
a strong scalability analysis36 has been carried out to
investigate the performance of a parallel simulation. The
analysis is carried out by considering the Scotch decomposition
method since it is the strategy mainly adopted in CFD
simulations to subdivide general and complex domains.37 This
is due to the fact that the generated subdomains are
characterized by similar cell amounts, and the number of
processor−processor interfaces are minimized, leading to the
highest parallelization efficiency of the transport-governing
equations. Consequently, it usually represents the optimal
strategy since it hinders and minimizes the overhead related to
the fluid dynamics solution. The scalability has been carried
out by an increasing number of subdomains from 2 to 128 and
by considering the average computational cost over 1000 time
steps and neglecting the simulation startup, which is
characterized by additional overheads (e.g., mesh loading)
that can hinder the analysis. To guarantee a fair comparison,
the simulations were carried out in the same computational
node. The effect of the number of CPUs has been quantified
by using the speed-up factor SUi, evaluated according to eq 3:

=SUi
i

1

(3)

where i represents the number of CPUs used to run the
simulations, and τ1 and τi are the averaged computational
times.

Three different speed-up factors have been considered and
compared to the ideal scaling performances (black line in
Figure 6a). The overall speed-up (green line in Figure 6a) has
been calculated by using the time spent to solve the entire time
step, which accounts for both the solution of the chemical
substep, the species and energy transport, and the Navier−
Stokes equations. The chemistry speed-up (red line in Figure
6a) has been computed by considering the computational time
of the sole chemical substep, while the fluid dynamic speed-up
(blue line in Figure 6a) considers the solution of the species
and energy transport and the Navier−Stokes equations.

Figure 6a shows the speed-up as a function of the number of
CPUs. By increasing the number of CPUs, the speed-up
monotonically increases as expected. However, the paralleliza-
tion efficiency decreases as well as shown by the growing
deviations between the ideal and actual speed-ups. This
deviation can be related to two distinct phenomena: the
increment of the communication cost between the processors
and the growing imbalance of the computational load. The
decrease in the parallelization efficiency on the transport side is
mainly related to the increment of the communication between
the processors that gradually increases with the number of
CPUs due to the higher number of exchanged information at
the boundaries of these subdomains.38 This magnifies the MPI
communication overheads, leading to the reduction of
computational efficiency.

Differently from the transport equations, the chemistry
calculations are in principle an embarrassingly parallelizable
problem since, in the operator-splitting approach, they are
represented by batch reactors that depend on the local cell
conditions and do not require any communication between the
processors. Hence, it would be expected that the parallelization
efficiency of the chemical calculations should be close to a
quasi-ideal speed-up. A severe reduction of the chemistry
parallel performances is, however, observed in the simulations.
This is due to the strong imbalance of the processor workload

Figure 6. Strong scalability analysis performed on the string reactor computational domain: (a) trends of the speed-up as a function of the number
of processors used to geometrically decompose the domain; (b) execution time and the overall chemistry computational cost as a function of the
number of processors. The dashed line shows an ideal chemistry computational cost equal to 14.2 CPUh.
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related to both the inhomogeneous operating conditions in the
reactor (i.e., different local partial pressures and temperatures)
and the different numbers of reacting cell in each subdomain.
Intuitively, the imbalance grows with the number of CPUs
since smaller computational domains are more prone to show
very different average working conditions and number of
reacting elements. In this case, the most overloaded processor
controls the computational time of the reaction step. Thus, it
strongly affects the overall computational time needed to run
the simulation.

Figure 6b shows the execution time that, as expected,
decreases with the number of processors consequently to the
simulation speed-up. Moreover, the overall computational cost
ti, related to the solution of the chemistry as a function of the
number of subdomains, is reported. The overall chemistry
computational cost, expressed in CPUh, has been calculated by
multiplying the average chemistry computational time (τi) for
the number of CPUs (i) and the number of time steps (n), as
reported in eq 4.

= · ·t i ni i (4)

This quantity corresponds to a sort of energy consumed by
the simulation for the solution of the chemical substep. Ideally,
the overall computational cost should be independent of the
number of CPUs since more processors should proportionally
require less clock time to carry out the calculations and equal
to the value for a serial simulation (i.e., 14.2 CPUh, dashed line
in Figure 6b). However, the computational cost increases more
than linearly with the CPUs, leading to a overall computational
cost 10 times higher than the ideal value by using 128 CPUs,
further showing the poor parallelization efficiency. In fact,
despite the spreading of the ODE integration between the
processors reducing the execution time, the load imbalance
hinders the parallel computing performance with a consequent
increment of the simulation computational burden.
3.2. Assessment of Dynamic Load Balancing in
Heterogeneous Catalytic Systems

3.2.1. Pure MPI Approach. To tackle the load imbalance
problem, the catalyticFoam framework27 has been combined
with the dynamic load balancing (DLB),23,24 as described in
Section 2.1.

The assessment of the performance of the DLB approach is
initially carried out by simulating the entire string reactor
decomposed in eight subdomains with both the Scotch
method (Figure 4) and the simple decomposition (Figure
4). The profiles of the computational cost in each processor as
a function of the simulation time are reported in Figure 7.

The computational cost gradually increases with the
simulation time until a plateau is obtained. It is worth noting
that negligible differences are observed between the processors,
independent of the decomposition method. This is related to
the effect of the DLB that efficiently splits the computational
burden by redistributing the solution of the chemistry substep
among the processors. For example, after 0.002 s of
simulations, around 57,000 (36% of the total) and 6,250
(4% of the total) reactive cells are exchanged between the
processors with the Scotch and simple decomposition
methods, respectively. The lower number of cells exchanged
in the case of the simple decomposition is due to a minor
imbalance of this setup, as shown in Section 3.1. It is worth
emphasizing that by redistributing the chemical workload, the
number of computational cells solved by each processor
changes over time. By considering the Scotch domain
decomposition, an average cell-to-CPU ratio of around
87,000 is obtained at the beginning of the simulation where
the pure geometrical decomposition of the mesh associates the
cells to the processors. By redistributing the chemical
workload, the DLB alters the cell-to-CPU to around 75,000−
92,000 at 0.002 s, 81,000−95,000 at 0.014 s, and 81,000−
94,000 at 0.034 s, guaranteeing, however, even chemical
workload. Consequently, this results in higher computational
efficiency, reducing the costs of the simulations.

Figure 8 shows the speed-up, evaluated as the ratio between
the time spent to solve the time step without and with the
DLB, obtained in the chemistry calculation by the adoption of
the DLB. Despite the simple geometry, a speed-up of around
1.3 has been obtained for the simple domain decomposition,
while the Scotch method shows a maximum at around 0.001 s
equal to 4.

The efficient redistribution of the computational burden not
only speeds up the simulations but is also able to improve the
scalability of the multiscale CFD simulations. To prove this, a
strong scalability analysis36 has been performed in analogy with

Figure 7. Computational time spent to solve the chemistry with the dynamic load balancing procedure for each processor as a function of time by
adopting the Scotch (a) and the simple (b) decomposition approach.
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Section 3.1. It is worth noticing that when the chemistry is
solved with the DLB procedure, the chemical substep consists
of additional operations on top of the chemistry calculations
related to the DLB algorithm. An additional speed-up that
accounts for the computational time spent by integrating the
chemical ODE systems was introduced to quantify the effects
of the DLB operations on the parallel computing performance.
Figure 9a shows the scalability results that reveal that, by
increasing the number of CPUs, the speed-up monotonically
increases as expected. The fluid dynamic speed-up shows
similar performances to the one obtained without the DLB (cf.
Figure 6a). The load-balancing procedure affects the
distribution of the chemical calculations among the processors,
but it does not modify the domain geometrical decomposition,
which controls the parallel efficiency for the solution of the
transport equations. The chemistry speed-up is however
characterized by higher values (see Figure 6a for reference),
proving that a higher parallelization efficiency is obtained
thanks to the DLB. For example, by using 128 CPUs, a 107-
fold speed-up is obtained by using the DLB, in contrast to the
21-fold calculated without the DLB. The superior perform-

ances are due to the more homogeneous workload shared by
the processors that compensates for the additional computa-
tional effort related to the exchange of information required by
the DLB. Indeed, in this case, the chemistry parallelization
efficiency is no longer only dependent on the distribution of
the computational load but also on the communication cost of
the MPI protocol between the processors that have to
exchange information during the DLB. The intensity of these
overheads can be observed by the deviations between the
trends of the speed-up of the ODE integration and the
chemistry in Figure 9a. The two trends are superimposed as a
result of negligible communication overheads. The effect of the
load balancing is also highlighted by the trend of the overall
chemistry computational cost, evaluated according to eq 4, and
reported in Figure 9b. The overall computational cost is
slightly dependent on the number of CPUs. The cost is close
to the ideal value when the number of domains is less than 32.
However, a further increment of the number of subdomains
gradually increases the overall computational cost, reducing the
efficiency of the calculations. On one side, this additional cost
is related to memory overheads occurring due to the
simultaneous solution of several ODEs which increase along
with the number of subdomains39 and mainly depend on the
architecture of the computational node rather than on the
numerical framework.24

On the other hand, the additional overheads can be related
to an inefficient balancing on a small amount of computational
load that is more likely to occur when the number of
processors is large. Indeed, the balancing is achieved by
redistributing the computational load among the subdomains
based on the computational cost of the previous time step, that
is, the only available information. This is usually a good
estimator of the cost in the following time step in each cell.
However, the transport and reactive phenomena might alter
the local thermochemical conditions, leading to positive or
negative variation between the previous and actual computa-
tional cost of each cell to such an extent that makes the
estimation imprecise. We have observed that this effect is
mitigated and tends to cancel out when high cell-to-subdomain
ratios are employed (i.e., when several ODE integrations are

Figure 8. Chemistry speed-up as a function of time provided by the
dynamic load balancing procedure in the string reactor.

Figure 9. Strong scalability analysis performed on the string reactor computational domain with the dynamic load balancing procedure: (a) trends
of the speed-up as a function of the number of processors used to geometrically decompose the domain; (b) overall chemistry computational cost
as a function of the number or processors. The dashed line shows the ideal chemistry computational cost equal to 14.2 CPUh.
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carried out in each subdomain) because overall the positive
and negative variations become negligible. Consequently, this
effect appears to be more evident by increasing the number of
processors, i.e., the cell-to-subdomain ratio decreases due to a
higher sensitivity to the local variation of the computational
cost. In this simulation, the fraction of the computational time
associated with the computational cost variation is smaller than
the 5% of the time of the chemical step, resulting in a negligible
effect on the overall performances when less than 32 CPUs are
considered (i.e., about 1 and 2.5% for 2 and 32 subdomains,
respectively). On the other side, these overheads rise to 12% of
chemistry time when 128 CPUs are employed, affecting the
overall efficiency. Consequently, despite the DLB, the
parallelization efficiency of the chemistry decreases at a high
number of CPUs. Hence, further enhancement of the
parallelization performance of multiscale CFD simulations
can be achieved by reducing these overheads.

3.2.2. Hybrid Approach. The additional overheads
observed when the cell-to-subdomain ratio is small (e.g., for
the number of CPUs higher than 32 in the string reactor)
reduce the parallelization efficiency of the framework,
hindering the overall speed-up provided by the DLB and
increasing the execution time of the simulations. Hence, this
work proposes a second strategy to further improve the
performances by guaranteeing a high cell-to-subdomain ratio
when a large number of CPUs is employed to solve the
chemistry as well. The strategy aims at reducing the
subdomains generated by the geometrical decomposition
methods with a consequent increment in the number of
ODEs to be integrated into each subdomain, without limiting
the number of CPUs used to solve the integrations. This can
be achieved using a hybrid parallelization approach that
combines the MPI with a shared memory OpenMP. The idea
is to decompose the mesh in a number of subdomains that
minimize the parallelization overheads. On top of this, the
ODE integration of each subdomain is solved by the combined
action of different CPUs, called threads, through the OpenMP
parallelization. In doing so, the ODE integrations are carried
out by a certain number of CPUs which determine the
simulation speed-up, but each subdomain contains a large

chunk of the ODE integrations, minimizing the effects of the
computational cost variations. Initially, the optimal number of
threads per subdomain was identified by carrying out a
scalability analysis. It has been observed that the best
performances, i.e., shared memory parallelization above 80%,
are achieved by considering from two to eight threads per
subdomain independently from the number of subdomains.
Additional details are reported in Section S.3 of the Supporting
Information.

Then, a strong scalability analysis36 of the combined hybrid
parallelization and DLB has been carried out by considering a
number of threads per subdomain ranging from two to eight.
The trends of the chemistry speed-up are reported in Figure
10a together with the one obtained with the pure MPI
parallelization (Section 3.2.1). The speeding-up factors grow
along with the number of CPUs used to solve the system. On
the one hand, the solution of each subdomain with two or four
threads leads to speed-up values superimposed with the pure
MPI when less than 64 CPUs are used. Then, superior
performances are obtained for a larger number of CPUs by
adopting the hybrid parallelization with two or four threads per
subdomain. On the other hand, speed-up values lower than
pure MPI are always obtained by solving each subdomain with
eight threads. This is because the shared memory paralleliza-
tion with eight threads has an efficiency of about equal to 85%
(Section S.3 of the Supporting Information). In this case, the
overheads related to the hybrid parallelization are higher with
respect to the time related to the variations of the
computational cost, leading to lower speed-up factors.
Conversely, the excellent parallelization efficiency (i.e., close
to 100%) achieved by solving the subdomain with two or four
threads does not provide additional overheads. Thus, the
hybrid parallelization does not hinder the parallelization
performance, while the overheads of the DLB are negligible
(i.e., until 32 CPUs), but it improves the performance when
these costs limit the speed-up (i.e., 64 and 128 CPUs). In this
way, a chemistry speed-up equal to 111 has been obtained by
simulating the system with the hybrid parallelization (i.e., 64
processors with two threads per subdomain) in contrast with

Figure 10. Strong scalability analysis performed on the string reactor computational domain with the dynamic load balancing procedure and the
hybrid parallelization: (a) trends of the speed-up as a function of the number of CPUs used to solve the domain; (b) overall chemistry
computational cost as a function of the number of CPUs, considering a shared memory parallelization with two threads per subdomain. The dashed
line shows the ideal chemistry computational cost equal to 14.2 CPUh.
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the 107-fold speed-up obtained by only geometrically dividing
the computational domain into 128 portions.

The improvement of the parallel computing performance
can be also observed by analyzing the computational cost
needed to solve the time steps using the hybrid parallelization
with two threads per subdomain, as reported in Figure 10b.
The computational time is only slightly dependent on the
number of CPUs and is in accordance with the ideal value by
using less than 32 CPUs. Then, a gradual growth is observed
by further increasing the CPUs. The increment is, however,
smaller with respect to the one found by only geometrically
dividing the computational domain. In particular, the hybrid
parallelization with 128 CPUs provides a computational time
equal to 16 CPUh in contrast to the 17 CPUh spent with
geometrical domain decomposition. Thus, the computational
overheads decrease from 2.8 to 1.8 CPUh by adopting the
hybrid parallelization.

Finally, the effects of the proposed approach on the parallel
computing performance were shown by solving the entire
transient behavior of the string reactor with 128 CPUs. For this
purpose, three different simulations have been considered. The
first two simulations used a pure MPI parallelization by
geometrically decomposing the domain by means of the Scotch
method and solved the chemical step with and without the
DLB procedure. Conversely, the combination of the DLB and
the hybrid parallelization (i.e., 64 processors with two threads
per subdomain) was used in the third case. Figure 11 reports

the overall simulation execution time, accounting for the
solution of both the fluid dynamics and the chemical
phenomena. A 1.9-fold reduction of the execution time is
achieved by using the DLB with both the geometrical and
hybrid parallelization, showing the improvement provided by
balancing the computational load of multiscale CFD
simulations. In particular, the minimization of effects of the
computational cost variations provided by the combination of
hybrid parallelization and the DLB procedure, which leads to
the higher chemistry parallelization efficiency reported in
Figure 11, is directly proportional to the number of CPUs
adopted to carry out the multiscale simulation. Consequently,
it allows for improving the parallelization efficiency of
computational demanding simulation performed with thou-
sands of CPUs on HPC.

3.3. Application to an Industrial-Scale Fluidized Bed
Reactor

The previous analysis shows the results of combining
multiscale CFD simulations with the DLB procedure in the
context of fixed bed reactors. To further exemplify the
effectiveness of the approach, we extended the analysis to an
industrial fluidized bed reactor. The simulations are carried out
by considering a Euler−Euler (EE) framework, developed in
our previous work,34 which implements the multiphase
operator-splitting methodology to solve the governing
equations. Accordingly, the operators in the governing
equations are separated and solved in fractional substeps. In
particular, the chemical step of MOS considers both
heterogeneous and homogeneous reactivities along with the
interphase mass transport.

The reactive simulation is initialized by fluidizing the bed
with an inert gas stream until pseudo-steady-state conditions
are achieved. Then, the reactants are fed to the reactor, and the
evolution of the reacting environment is considered. The
computational domain, shown in Figure 3, has been
decomposed by means of the Scotch method, and the time
spent by each CPU to solve the reaction step has been
collected.

The system was initially simulated by means of a pure MPI
parallelization, dividing the system into 128 subdomains, with
and without the DLB procedure, and the computational time
trends of the most overloaded and underloaded processors are
shown in Figure 12. When the simulation is carried out
without the DLB (Figure 12a), the computational cost of the
most overloaded processor immediately increases, while the
most underloaded one shows negligible computational cost in
the first 5 s of simulation, until the reactive front reaches the
farthest subdomain from the inlet. Even after the initial
transient, the computational load is also different during the
pseudosteady state (i.e., after 20 s). This is due to the very
different thermochemical states in the two processors. The
most overloaded represents a computational domain at the
bottom of the reactor which is reached by the reactants since
the very beginning and is characterized by the highest solid
fraction. Conversely, a computational domain on the upper
part of the reactor, which is characterized by a low catalyst
content, corresponds to the underloaded one. As a
consequence, a severe imbalance is obtained penalizing the
efficiency of the calculation. Figure 12b shows the same trends
when DLB is employed. The DLB redistributes the computa-
tional burden among the processors, leading to even
computational costs. This is achieved by exchanging around
13,400 computational cells (14% of the total) when strong
imbalanced conditions are observed (i.e., after 1 s), while
around 4,200 computational cells (4.4% of the total) are
exchanged after 20 s.

Finally, three different parallelization settings have been
considered. The first two settings employed a pure MPI
parallelization and solved the chemical step with and without
the DLB procedure, while the third one consisted of the
combination of the DLB and the hybrid parallelization by
considering two threads per subdomain. These settings have
been tested by considering two different numbers of CPUs
(i.e., 64 and 128), and the execution times of the entire
transient of the industrial fluidized bed (i.e., 25 s) are reported
in Figure 13.

When 64 CPUs are used, the pure MPI-DLB provides a
computational speed-up of around 1.4 times by distributing the

Figure 11. Execution time spent to solve the entire transient of the
string reactor and chemistry parallelization efficiency.
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computational burden of the stiff ODE integrations between
the processors, while the benefit rises to 1.6 when the
combination between the DLB and the hybrid parallelization is
adopted. The improvements are even more pronounced when
the simulation is carried out by means of 128 CPUs. Indeed, a
2.1-fold reduction of the execution time is obtained by
combining the hybrid parallelization with the DLB with respect
to the 1.5-fold obtained in the case of the pure MPI-DLB. This
is related to the capability of the hybrid approach to mitigate
the additional overheads that can occur during the balancing
procedure, which reduces the efficiency in the pure MPI-DLB
approach, which is expected to provide further benefits in
larger and more complex simulations.

The DLB is thus able to improve the parallel computing
performances also in the simulations of fluidized systems, and
its combination with the hybrid parallelization is able to
achieve even more computational cost benefits, extending the
current boundary of multiscale simulations.

4. CONCLUSIONS
In this work, the catalyticFoam multiscale CFD framework has
been combined with both a dynamic load-balancing procedure
and hybrid (MPI and OpenMP) parallelization to improve

their parallel computing performance. The intensity of the load
imbalance obtained by geometrically decomposing the domain
is initially quantified. In particular, the load imbalance is
strongly dependent on the strategy selected to geometrically
decompose the domain (e.g., simple and Scotch) and can also
lead to a 10-fold increment of the overall chemistry
computational cost compared with the balanced simulation.

The DLB improves the distribution of the computational
load strongly, leading to a similar computational cost in all the
processors independently of the decomposition method. This
also enhances the computing performance of the multiscale
CFD simulations by improving the parallel efficiency from 17
to 84%, providing an overall simulation speed-up of 1.9 times
in the case of a string reactor for the CO methanation.

However, the analysis of the overall computational costs
highlights the presence of nonreducible overheads when the
number of CPUs is large. These overheads are ascribed to
inefficient balancing due to the variation of the expected
computational cost, the key parameter for the balancing
algorithm. Thus, a hybrid parallelization approach has been
proposed to reduce these overheads, where a shared memory
parallelization approach has been added on top of the
conventional MPI protocol for the solution of the chemical
substep. By combining the hybrid parallelization and the DLB,
a further enhancement of the parallelization performance is
obtained, which results in similar speed-ups but higher
parallelization efficiencies, which are above 86% in the case
of the string reactor.

The hybrid−DLB has also been employed in a multiscale
Euler−Euler simulation of a fluidized bed reactor. It was
revealed to provide higher computational performance, leading
to a 2.1-fold reduction of the execution time with a
concomitant increment of the parallelization efficiency up to
91%.

The hybrid−DLB approach is revealed to be an effective
strategy to improve the parallelization efficiency of multiscale
CFD simulations fostering the exploitation of the HPC
facilities. However, several developments are still required to
take full advantage of the new generation of supercomputers
(i.e., exascale) for the CFD simulations of catalytic reactors. To
effectively manage massively parallel high-performance sys-
tems, current numerical methods must undergo significant

Figure 12. Computational time spent by the processors to solve the chemistry as a function of time by adopting the Scotch decomposition
approach without (a) and with (b) the dynamic load-balancing procedure.

Figure 13. - Execution time spent to solve the entire transient of the
industrial fluidized bed reactor by using 64 and 128 CPUs.
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enhancement, which requires joint efforts with mathematicians
and computer scientists. Key aspects include advanced
numerical methodologies, efficient preprocessing (e.g., domain
decomposition), postprocessing (e.g., data reconstruction),
and rapid I/O as well as optimizing communication across
processors and ensuring efficiency at large scales. On the other
hand, the CFD community should also explore the opportunity
to take advantage of graphical processing units (GPUs) that
have allowed breakthrough improvements in machine learning
and atomistic calculations. GPUs are expected to provide
significant benefits in the solution of both the linear system
and the ODE integration. However, careful management of
data transfers and offloading between CPUs and GPUs is
essential to achieving high performances.

As a whole, this work proposes an effective strategy to
improve the parallelization efficiency of multiscale reactive
CFD frameworks, leading to a more efficient exploitation of
the HPC facilities.
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