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Abstract: Silver nanoparticle (NP) inks have been widely used in the ink-jet printing field because of
their excellent properties during low-temperature sintering. However, the organic dispersant used
to prevent the aggregation and sedimentation of NPs can hinder the sintering process and result
in the high resistivity of sintered films. In this study, silver thin films derived from silver NP ink
with polyvinylpyrrolidone (PVP) dispersant were sintered in different atmospheres of pure nitrogen,
air, and pure oxygen. The effect of the oxygen content in the sintering atmosphere on the thermal
properties of the ink, the electrical resistivity and microstructure of the sintered films, and the amount
of organic residue were studied by using differential scanning calorimetry, the four-point probe
method, scanning electron microscopy, Fourier transform infrared spectroscopy, etc. The mechanism
of optimizing the film resistivity by influencing the decomposition of the PVP dispersant and the
microstructure evolution of the silver thin films through the sintering atmosphere was discussed.
The results demonstrated that an oxygen-containing atmosphere could be effective for silver NPs
in two ways. First, the oxygen content could enhance the diffusion ability of silver atoms, thus
accelerating the stage transition of microstructural evolution at low temperatures. Second, the oxygen
content could enable the PVP to decompose at a temperature much lower than in conditions of pure
nitrogen, thus helping to finalize the densification of a silver film with a low resistivity of 2.47 µΩ·cm,
which is approximately 1.5-fold that of bulk silver. Our findings could serve as a foundation for the
subsequent establishment of ink-jet printing equipment and the optimization of the sintering process
for printing silver patterns on flexible substrates.

Keywords: silver thin film; nanoparticle (NP) ink; sintering; oxygen; polyvinylpyrrolidone (PVP);
dispersant decomposition; electrical resistivity

1. Introduction

The direct printing of conductive ink has emerged as an important alternative to
traditional lithography, which is a complex multistep method for producing conductive
thin films or patterns that generates a lot of waste [1]. Many examples of the use of metallic
inks in printed electronics have been reported, such as printed circuit boards [2–4], light-
emitting diodes (LEDs) [5,6], flexible displays [7,8], radio frequency identification (RFID)
tags [9,10], solar cells [11,12], and transparent electrodes [13,14].

Regarding printing techniques, metal can be printed by using inks containing metallic
nanoparticles (NPs) or low-viscosity inks with organometallic precursors; then, sintering
is carried out to form the conductive thin films or patterns. NP-based inks are more
commonly used because they can achieve a low electrical resistivity, i.e., a high conductivity,
due to their higher solid content [15]. Such a technique is efficient in terms of material
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utilization, scalable and simple in the terms of processing, and adaptable to various types
of substrates [16–18].

Many metals have available NP inks, such as silver [1,19], gold [20,21], and cop-
per [22–24]. Silver-based inks are currently preferred due to their excellent electrical con-
ductivity and stability in air, and silver is relatively inexpensive compared to gold [16,25].
Additives such as polyvinylpyrrolidone (PVP) [26–28], polyacrylic acid (PAA) [8,29,30],
2-amino-2-methyl-1-propanol (AMP) [31], and tetradecane [32] are generally added to im-
prove the ink’s uniformity during preparation, avoiding aggregation and thus improving
the reliability of the printing process.

The sintering of printed metal NPs is necessary to obtain a high conductivity. The
NP coalescence of a metal usually occurs at temperatures far below its bulk-form melting
temperature, because there is a strong correlation between the size and the melting point
of NPs, which can be derived by surface energy and thermodynamic theory [33]. During
sintering, a higher conductivity can be achieved by improving the contact between NPs,
which increases the removal of the organic additives [34], and so a higher sintering temper-
ature is generally required [35]. However, for flexible substrates, the sintering temperatures
cannot be too high, as this would damage the substrates, resulting in poor electrical con-
ductivity due to the residual organic additives, particularly the dispersant with its high
decomposition temperature.

Different methods have been proposed to solve the above problem, e.g., modifying the
surface of silver NPs [36], using chemical reagents to remove the dispersant on the surface
of silver NPs [37,38], thinning the dispersant layer on the NP surface [17], and using a
dispersant with a low decomposition temperature [39,40]. These methods generally focus
on the optimization of the organic dispersant, but no previous publication has reported a
systematic study on the effect of an oxygen-containing atmosphere on sintered silver thin
films. In this study, the effects of different sintering atmospheres on the microstructure
and electrical properties of silver thin films were studied by using a silver NP ink with
a PVP dispersant. It was found that the oxygen content in the sintering atmosphere
could effectively promote the grain size enlargement and the decomposition of the PVP
dispersant, resulting in a favorable electrical conductivity, which could provide a new basis
for fabricating high-performance conductive thin films and developing practical equipment
for ink-jet printing on flexible substrates.

2. Experimental Details

The ink used in this study was composed of silver NPs that were uniformly dispersed
with the aid of a PVP dispersant in a solution containing isopropanol and diethylene
glycol methyl ether. The viscosity of the ink measured by a viscometer (LAWSON, DHJ-5S,
Ningbo, China) was 10 cp at 25 ◦C, and the surface tension of the ink measured by the
automatic surface tension meter (Zibo Boshan Haifen Instrument Factory, HZ-800, Zibo,
China) was 29 mN/m at 25 ◦C.

The thermodynamic properties of the ink during the thermal sintering process were
characterized by using a differential scanning calorimeter (DSC, Mettler-Toledo, DSC3,
Zurich, Switzerland), in which the ink was heated from room temperature to 600 ◦C at a
ramp rate of 10 ◦C·min−1, and the mass change of the sample, i.e., the thermogravimetric
(TG) data, and the DSC data were recorded.

A flow chart of the sample preparation and sintering process is shown in Figure 1. The
ink was spin-coated on a square glass sheet with a side length of 10 mm by a homogenizer
(Zhangqiu Crown, 12A, Zhangqiu, China) and then dried in an oven at 75 ◦C for 10 min.
The coated samples were heat-treated in a tube furnace (HF-Kejing, OFT-1200X, Hefei,
China) under atmospheres of various oxygen contents and temperatures for 30 min. The
oxygen content of the sintering atmosphere was controlled by the mass flow controller
(Sevenstar, D07, Beijing, China), which uses two channels of oxygen (99.999% pure) and
nitrogen (99.999% pure); the oxygen contents used in this study were 0%, 21% (denoted as
air hereafter), and 100%. The heat treatment temperature ranged from 150 ◦C to 450 ◦C.
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were observed. Fourier transform infrared (FTIR) spectroscopy (Nicolet, iS50, Waltham, 
MA, USA) was used to detect the residual organic matter in the samples after sintering.  

3. Results 
3.1. Thermal Analysis of Silver NP Ink 

The thermal analysis results for the ink are illustrated in Figure 2a. It could be 
observed that the sample mass decreased as the temperature gradually increased from 
room temperature, and a mass reduction of 69.17% at 184 °C was recorded under both 
atmospheres of pure oxygen and pure nitrogen. The mass loss measured in the TG 
analysis at this stage was caused by the volatilization of the solvents isopropanol and 
diethylene glycol methyl ether in the ink, which corresponded to the two endothermic 
peaks in the DSC results located at about 70 °C and 160 °C, respectively. 

The sample mass under both atmospheres changed slowly above 200 °C. The TG data 
indicated that the total mass of the samples in pure oxygen decreased by 0.954% from 200 
°C to 600 °C, while that in pure nitrogen only decreased by 0.485%. The DSC curves under 
the two atmospheres were different above 200 °C. There was an obvious exothermic peak 
between 280 °C and 330 °C in pure oxygen, which was caused by the separation and 
combustion of the organic dispersant coated on the silver NPs, based on the report by Yan 
et al. [41]. In order to verify that the exothermic peak originated from the oxidative 
decomposition of PVP, a thermal analysis of PVP K30 (MW = 40,000), which is often used 
as an auxiliary for reducing silver nanowire and as a stabilizer for silver NPs in inks [42], 
was carried out and is shown in Figure 2b. It could be seen that the PVP in oxygen 
experienced an exothermic phenomenon from 200 °C, with several exothermic valleys 
around 300–500 °C, and the mass loss at this stage was significant. The endothermic 
phenomenon in this temperature range is related to the breaking and decomposition of 

Figure 1. Flow chart of sample preparation and sintering. (a,b) Preparation of silver thin films to be
sintered using a homogenizer; (c) thin films sintered in a tube furnace; (d) sintering equipments.

The electrical resistivity of the sintered samples was measured by a four-point probe
meter (HELPASS, HPS2526, Changzhou, China). The microscopic morphology of the films
was characterized using a scanning electron microscope (SEM, Carl Zeiss, ZEISS SUPRA 55,
Oberkochen, Germany), and both the surface and cross-section of the films were observed.
Fourier transform infrared (FTIR) spectroscopy (Nicolet, iS50, Waltham, MA, USA) was
used to detect the residual organic matter in the samples after sintering.

3. Results
3.1. Thermal Analysis of Silver NP Ink

The thermal analysis results for the ink are illustrated in Figure 2a. It could be
observed that the sample mass decreased as the temperature gradually increased from
room temperature, and a mass reduction of 69.17% at 184 ◦C was recorded under both
atmospheres of pure oxygen and pure nitrogen. The mass loss measured in the TG analysis
at this stage was caused by the volatilization of the solvents isopropanol and diethylene
glycol methyl ether in the ink, which corresponded to the two endothermic peaks in the
DSC results located at about 70 ◦C and 160 ◦C, respectively.

The sample mass under both atmospheres changed slowly above 200 ◦C. The TG
data indicated that the total mass of the samples in pure oxygen decreased by 0.954%
from 200 ◦C to 600 ◦C, while that in pure nitrogen only decreased by 0.485%. The DSC
curves under the two atmospheres were different above 200 ◦C. There was an obvious
exothermic peak between 280 ◦C and 330 ◦C in pure oxygen, which was caused by the
separation and combustion of the organic dispersant coated on the silver NPs, based on the
report by Yan et al. [41]. In order to verify that the exothermic peak originated from the
oxidative decomposition of PVP, a thermal analysis of PVP K30 (MW = 40,000), which is
often used as an auxiliary for reducing silver nanowire and as a stabilizer for silver NPs
in inks [42], was carried out and is shown in Figure 2b. It could be seen that the PVP in
oxygen experienced an exothermic phenomenon from 200 ◦C, with several exothermic
valleys around 300–500 ◦C, and the mass loss at this stage was significant. The endothermic
phenomenon in this temperature range is related to the breaking and decomposition of
PVP [43,44]. The mass loss in nitrogen was concentrated around 450 ◦C, and the DSC
indicated that there was an endothermic phenomenon at this temperature. Therefore,
it could be inferred that PVP endothermically decomposed above 400 ◦C in an oxygen-
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deficient environment, while the presence of oxygen caused the decomposition of PVP at
temperatures around 300 ◦C.
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Figure 2. (a) TG−DSC curves of silver NP ink in the atmospheres of pure oxygen and pure nitrogen;
(b) TG−DSC curves of silver PVP K30 in the atmospheres of pure oxygen and pure nitrogen.

As shown in Figure 2a, the mass loss of the ink in the endothermic peak stage around
300 ◦C was 0.60%, which constituted the majority of the mass loss above 200 ◦C. However,
the DSC curve in pure nitrogen did not show similar changes. It was found that the
endothermic and exothermic conditions and mass loss of the ink and PVP were consistent,
and it could be determined that the mass loss above 200 ◦C in the silver nanoparticle ink
was mainly due to the oxidative decomposition of the organic dispersant PVP. It is worth
mentioning that there is a certain difference in the endothermic peak positions between the
ink and PVP, which may be due to the difference in the molecular weight of PVP and the
change in properties caused by the extremely thin PVP wrapped around the NPs.

The DSC and TG data implied that the solvents in the ink could volatilize completely
through sintering at 200 ◦C, but the removal of the dispersant PVP was much more difficult.
Even in the pure oxygen atmosphere, PVP could only be removed above 330 ◦C.

3.2. Enhancement of Film Conductivity

The resistivity of the films sintered under different atmospheres and temperatures is
plotted in Figure 3. A significant reduction in resistivity could be observed as the sintering
temperature increased from 150 ◦C to 350 ◦C under all the atmospheres. The lowest
resistivity was 2.47 µΩ·cm, which was approximately 1.5-fold that of bulk silver. The
resistivity curves in air and pure oxygen were quite similar, and there was a slight rise in
resistivity at the sintering temperature of 450 ◦C. Under the atmospheres of pure nitrogen,
the resistance continued to decrease at the sintering temperature of 450 ◦C. Generally, the
resistivity of the films sintered under an atmosphere containing oxygen was much lower
than those without oxygen. Therefore, it can be summarized that oxygen promoted the high
electrical performance of the sintered films. Moreover, the small difference between the
curves of pure oxygen and air might be due to the fact that the amount of oxygen supplied
in both atmospheres was much higher than the reaction demand for the decomposition
of PVP.
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Figure 3. The resistivity curves under various sintering atmospheres and temperatures.

3.3. Microstructure of Sintered Films

The original morphology of the silver NPs can be observed in Figure 4, where the SEM
image of a sample after drying at 75 ◦C depicts silver NPs in the ink with a particle size
of approximately 30–70 nm. Figure 5 shows the surface SEM images of the films sintered
in oxygen, air, and nitrogen atmospheres. Compared with the original morphology of the
silver NPs in the ink, the grain size of all the annealed films increased significantly, and the
originally discrete NPs aggregated into larger grains.

As can be observed in Figure 5, when the samples were sintered in pure oxygen, the
morphology at 150 ◦C was composed of large grains above 100 nm in size inlaid with
particles of the original size, as shown in Figure 5a. The morphology of the film sintered
at 250 ◦C, shown in Figure 5d, demonstrated the coarsening of grains, whose size could
reach more than 200 nm. Most of the grains were tightly connected to form an island-like
microstructure, enabling the reduction in resistivity shown in Figure 3. The microstructure
became denser with larger grains at 350 ◦C, as shown in Figure 5g, which corresponded to
the lowest resistivity. When the sintering temperature rose to 450 ◦C, although the grain
size was further enlarged, pores appeared on the surface, which might have caused the
increase in resistivity. The morphological evolution of the samples sintered in air was
quite similar to that in pure oxygen, and the main difference was that the grain sizes of the
samples in air were smaller than those in pure oxygen, as shown in Figure 5b,e,h,k.
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Figure 5. SEM images of the surface morphologies of silver films sintered under different atmospheres
and temperatures. The columns from left to right correspond to oxygen, air, and nitrogen atmospheres,
respectively. The rows from top to bottom correspond to 150, 250, 350, and 450 ◦C, respectively. (a–c)
150 ◦C; (d–f) 250 ◦C; (g–i) 350 ◦C; (j–l) 450 ◦C.

Comparing them with the morphologies of the samples sintered in the oxygen and
air atmospheres, it could be noticed that the films sintered in nitrogen were quite different.
As shown in Figure 5c,f,i,l, the grain coarsening and coalescence in nitrogen were much
slower than those in the oxygen-containing atmospheres. Therefore, it could be supposed
that the presence of oxygen promoted the aggregation process of NPs and thus enabled
better film quality at lower temperatures.

Figure 6 presents the cross-sectional SEM images of the sintered films. In pure oxy-
gen, a cave-like microstructure was observed inside the film sintered at 150 ◦C, and the
fine-graininess of the silver NPs was clear. The growth of larger grains was obvious at
temperatures above 250 ◦C, and the interconnected structures could be observed, which
are beneficial for reducing the film’s resistivity.
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Figure 6. (a–d) SEM images of the cross-sections of silver films sintered in pure oxygen at 150, 250,
350, and 450 ◦C, respectively; (e–h) SEM images of the cross-sections of silver films sintered in pure
nitrogen at 150, 250, 350, and 450 ◦C, respectively.

Compared with those sintered in oxygen, the cross-sectional microstructures of the
films sintered in pure nitrogen were much poorer. Especially at high temperatures, the
films sintered in oxygen showed a compact microstructure, while those sintered in nitrogen
displayed poor grain growth and many internal pores, to which the high resistivity of the
films sintered in nitrogen shown in Figure 3 could be attributed.

The average grain size was calculated by statistically analyzing the grain sizes in
the SEM image, and it is illustrated in Figure 7a. The analysis was carried out using
the SEM image analysis software Nano Measurer 1.2; the error bars represent standard
deviation, and at least 100 dispersed grains were measured to ensure the accuracy. The
grain size increased along with the sintering temperature for each atmosphere, consistent
with the findings in Figures 5 and 6. According to the report by Volkman et al. [45], a
higher temperature could promote the coalescence process among NPs, resulting in the
formation of larger grains during sintering. Jang et al. [46] found that the silver NP patterns
sintered in air had larger grain sizes than those in nitrogen at the same temperature, and
the larger grain sizes could contribute to a lower resistivity. The other factor promoting the
coalescence of silver grains was the oxygen content in the sintering atmosphere. In pure
nitrogen, the average grain size sintered at 350 ◦C was lower than 200 nm, while those in
air and pure oxygen could be above 500 nm and 700 nm, respectively.
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The relationship between the mean grain size and the resistivity of the sintered films
is illustrated in Figure 7b. The resistivity of the films sintered in all atmospheres gradually
decreased along with the increase in grain size. When the grain size was below 200 nm, the
resistivity curves basically overlapped, implying that the microstructural evolution under
different atmospheres generally advanced along a similar route, although the progress in
pure nitrogen required a higher temperature relative to those in oxygen and air. It could be
speculated that the grain size was the dominant factor for the electrical resistivity when the
organic dispersant was not decomposed.

When the grain size was further enlarged, the resistivity data under various atmo-
spheres became scattered, indicating that the influence of factors other than grain size
became significant. These factors might include the interface resistivity caused by residual
organics and the newly formed pores in the film structure at high temperatures.

3.4. Organic Residue during Sintering

To reveal the changes in the organic residues in silver NP films sintered under different
atmospheres and temperatures, FITR experiments were carried out. Figure 8 illustrates the
FTIR spectrum of PVP and silver NP ink after sintering in air or nitrogen at a temperature
of 75–350 ◦C. The peaks at 2953 cm−1 (C–H stretch) and 1638 cm−1 (C=O stretch) could
be observed in the non-treated samples, which indicated the characteristic bands of PVP.
In all the films sintered at temperatures below 250 ◦C, there was a peak at 1068 cm−1

(C–N stretch).
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Significant differences according to the atmosphere occurred when the temperature
was raised to 350 ◦C. For the film sintered in air, the peaks of both the C–N stretch and
the C–H stretch almost disappeared at 350 ◦C, indicating that PVP was decomposed. For
the film sintered in nitrogen, these peaks remained. By using the normalized calculation
relative to the sample dried at 75 ◦C, the absorbance values at the C–H and C–N stretch
of the sample after sintering at 350 ◦C in air were only 2% and 8%, respectively. For the
samples sintered in nitrogen, these values were 82% and 60%, respectively.

4. Discussion

Combining the observations in this study and the reports in the literature [47,48], the
structural evolution of the grain morphology of silver NPs during sintering can be divided
into four stages: the initial stage, the Ostwald ripening stage, the particle coalescence stage,
and the densification stage, as depicted in Figure 9. In the initial stage, the silver NPs have
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a uniform grain size of tens of nm, and the organic dispersant PVP is capsulated around the
NPs. When the temperature is raised, some grains can be enlarged due to the mechanism
of Ostwald ripening, while their adjacent grains become smaller because of mass transfer
and dissolution [49]. The driving force of Ostwald ripening is the system’s tendency to
reduce its surface free energy, which is very high for a system composed of NPs [33]. The
temperature is further raised to introduce the third stage of particle coalescence, which
occurs when two or more silver NPs collide and merge to form a large particle [50]. The
small grains can be completely absorbed into the large ones. The neighboring larger grains
can form a “neck” and finally completely fuse together through the diffusion of silver atoms,
resulting in a loose network structure for the entire film. Because the surface free energy
of the silver grains is significantly decreased, the driving force of the Ostwald ripening
is weaker, and the coalescence of the grains becomes the main mechanism of grain size
enlargement at this stage. Continued heating can promote the further coarsening of the
grains and the densification of the film surface, thus forming a compact network structure
critical for reducing the electrical resistivity. However, it should be noted that overheating
may occur if the temperature is too high, which produces pores that compromise the film’s
conductivity, as illustrated by Figures 3 and 5.
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Figure 9. Schematic diagram of the sintering process of silver NPs in four stages: (a) initial stage;
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A significant point that should be noted in this study is the differences caused by the
various sintering atmospheres. As shown in Figures 5–7, the differences in grain size and
the microscopic morphology of the films sintered in pure nitrogen and oxygen-containing
atmospheres indicated that oxygen content was beneficial for the formation of large grains
at lower temperatures. The largest contrast could be observed in Figure 10. At 150 ◦C, the
films sintered in nitrogen and oxygen were similar, and they were both in the second stage
of Ostwald ripening, with the presences of coarse grains and smaller NPs. At 250 ◦C, the
films sintered in oxygen were obviously in the third stage of particle coalescence, with wide
necks, and all the smaller particles were consumed; however, the film sintered in nitrogen
was still generally in the second stage, because many smaller NPs remained, although
narrow necks had begun to appear.
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Therefore, the oxygen content in the sintering atmosphere could substantially enhance
the grain enlargement, enabling the transition from the Ostwald ripening stage to particle
coalescence at a lower temperature. In addition, it should be noted that such a stage transi-
tion in oxygen was accomplished at a temperature below 250 ◦C, when the decomposition
of PVP had not yet begun according to the thermal analysis results shown in Figure 2.
As reported by Yan et al. [51], the organic dispersant in silver NP ink had an important
influence on the sintering process, because it was found through FTIR that the carboxyl
oxygen atoms of PVP interacted with silver NPs on the surface. When the temperature
was low, the particles were encapsulated by PVP, and the sintering mechanism at this time
depended on surface diffusion; when the temperature was raised to decompose the disper-
sant, the sintering process turned to volumetric diffusion. However, the fact that the stage
transition in oxygen was accomplished below 250 ◦C when the PVP was not decomposed
implies that there was a difference in the mechanism of grain size enlargement within the
scope of this study. In their study of silver thin film deposition [52], Presland et al. found
that oxygen could increase the surface diffusion coefficient of silver atoms by hundreds
of folds. They studied the formation of hillocks in the deposition of silver thin films and
found that the diffusion flux of silver atoms during film growth was affected by oxygen
partial pressure [53]. Jeong et al. confirmed that the mixing of oxygen helped to reduce the
free energy of silver NPs during the coalescence stage, so that the evolution mechanism
of the NPs changed, and the incomplete coalescence of silver NPs occurred earlier in the
experimental group with excess oxygen, which promoted the rapid development of the
silver film and significantly reduced the number and size of the pores in the silver film [54].
These phenomena are consistent with the evolution of silver NPs sintered below the de-
composition temperature of PVP in this study. Silver in an oxygen-containing atmosphere
has a stronger surface diffusion ability, and the surface diffusion and coalescence between
particles are enhanced, so the films sintered in an atmosphere with a higher oxygen content
have larger particles. Therefore, the effect of the oxygen content on improving the diffusion
of silver atoms during sintering was significant even with the presence of the original PVP
dispersant in the film.

Moreover, the effect of the oxygen content on lowering the PVP decomposition temper-
ature could contribute to the final sintering stage of film densification shown in Figure 10.
As indicated by Figure 5, the temperature at which film densification could be finalized
was approximately 350 ◦C for the oxygen-containing atmosphere and 450 ◦C for the pure



Nanomaterials 2022, 12, 1908 11 of 14

nitrogen atmosphere. The temperatures of the initiation of PVP decomposition were about
280 ◦C in oxygen and 400 ◦C in nitrogen, respectively, as shown in Figure 2. As suggested
in the related literature [33–55], the encapsulation of silver NPs by organic dispersants
significantly affects the sintered morphology and consequently the properties of sintered
silver thin films. Thus, it could be supposed that the breaching of the PVP dispersant
capsulation of the silver NPs through enabling its decomposition is a prerequisite condition
for the stage transition from particle coalescence to film densification, because the presence
of PVP would limit the volumetric diffusion of silver NPs.

Besides the abovementioned effects of oxygen content, which could benefit our un-
derstanding of the sintering mechanisms of silver NPs, the findings in this study could
also be instructive for engineering applications and equipment development for the ink-jet
printing of silver thin films. First, as illustrated in Figure 3, the curves of electrical resistivity
of the films sintered in air and pure oxygen were similar, and the micromorphological
evolution of the films was also similar, as shown in Figure 5, indicating that the oxygen
content in air was sufficient to ensure adequate grain growth from original silver NPs and
PVP decomposition during sintering. The feasibility of using air as a sintering atmosphere
instead of employing an oxygen-rich gas supply could help to simplify ink-jet printing
equipment and lower its cost. Second, the optimal electrical conductivity could be achieved
at approximately 350 ◦C in an oxygen-containing atmosphere, while such a temperature
could damage the typical flexible substrates such as PET. Therefore, the application of
heat for the practical sintering of as-printed silver circuits on a flexible substrate should
be as brief as possible and concentrated on the silver NPs to avoid heat transfer from the
silver film to the substrate. Based on the information discussed above, we developed an
ink-jet printing system with a heating strategy that considers the absorbent properties of
silver NPs and substrates and used it to fabricate high-performance samples, which will be
reported in a forthcoming paper.

5. Conclusions

In this study, an investigation of the effect of the atmospheric oxygen content during
the sintering of silver thin films derived from NP ink was carried out. The thermal proper-
ties of the silver NP ink and PVP dispersant were analyzed; the electrical conductivity of
silver thin films sintered under different atmospheres and temperatures was compared;
and the microstructure of the silver films and organic residue was analyzed. Combined
with a discussion of the mechanisms of grain size and resistivity evolution, the following
conclusions could be drawn:

(1) The thermal analysis of the NP ink and PVP showed that the decomposition
temperature of PVP was above 400 ◦C in pure nitrogen, and the presence of oxygen in the
sintering atmosphere lowered the onset temperature of PVP decomposition to 280 ◦C.

(2) The oxygen content significantly reduced the resistivity of the sintered thin films,
and the optimal resistivity achieved in the film sintered at 350 ◦C in oxygen was 2.47
µΩ·cm, which is only 1.5-fold that of bulk silver. In addition, the resistivity–temperature
curves of the films sintered in air and pure oxygen were quite similar.

(3) Compared with their counterparts in nitrogen, the silver NPs coalesced and coars-
ened much more rapidly when sintered in an oxygen-containing atmosphere, demonstrat-
ing that the oxygen content contributed to the enlargement of the silver grain size.

(4) The thin films sintered in an oxygen-containing atmosphere had less organic
residue, which enhanced the silver diffusion to form a dense microstructure, thereby
increasing the film’s conductivity.
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