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Drug-promoted cancers are increasingly recognized as a serious clinical problem in
patients receiving BRAF inhibitory treatment. Here we report on a patient with BRAF
mutant hairy cell leukemia and monoclonal B-cell lymphocytosis (MBL), who responded
durably to BRAF/MEK inhibitors (BRAFi/MEKi) but experienced transformation of a RAS
mutant MBL to chronic lymphocytic leukemia (CLL) with accelerated nodal progression.
Hypothesizing that BRAFi triggered excessive MEK-ERK signaling in the MBL/CLL
clone via the CRAF/RAS complex as previously described for BRAFi-induced cancers,
BRAFi was discontinued inducing a rapid remission of the CLL on MEKi alone. Liquid
biopsy monitoring showed a continuous increase of the MBL/CLL clone from the start
of BRAFi/MEKi treatment followed by a rapid decline upon BRAFi withdrawal. Next-
generation sequencing of a cohort of patients with MBL and monoclonal gammopathy of
unclear significance (MGUS) revealed that almost one third of these cases harbored RAS
mutations. In view of the population frequency of lymphatic pre-malignant conditions
and the prevalence of RAS mutations in such cases, vigilant surveillance remains critical
in patients treated with BRAF inhibitors.

Keywords: chronic lymphocytic leukemia, monoclonal B cell lymphocytosis, BRAF inhibition, hairy cell leukemia,
RAS mutation

INTRODUCTION

Activating BRAF mutations (most prominently BRAF V600E), providing oncogenic signaling
through the mitogen-activated protein kinase (MAPK) pathway, are the key molecular driver in a
variety of solid tumors including roughly 50% of malignant melanomas, 15% of thyroid cancers,
8% of colorectal cancers, 3% of lung cancers, and 2% of pancreatic cancers. In hematological
malignancies, BRAF mutations occur in approximately 7% of multiple myeloma and almost
100% of classical hairy cell leukemias (HCL) (1). Small molecule BRAF inhibitors (BRAFi) are
increasingly used for therapeutic targeting with and without concomitant MEK inhibitors (MEKi)
yielding convincing clinical results.
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Despite the fact that BRAF is a key effector downstream of
RAS and upstream of MEK, ATP-competitive BRAFi are not
effective in RAS mutant tumor models (2). In fact, such inhibitors
have opposing effects on MAPK signaling depending on the
BRAF mutational status. In BRAF V600E mutant tumors, BRAFi
effectively block MAPK signaling and inhibit tumor growth.
However, in tumor and normal cells expressing wild-type BRAF,
these inhibitors have been found to promote BRAF dimerization,
activation and binding to RAS-GTP, ultimately resulting in
stimulation of MEK-ERK signaling and proliferative effects (3, 4).
This paradoxical activation is thought to explain why this class
of drugs may induce or promote RAS mutant neoplasias which
emerges as a more and more serious clinical problem the more
patients are offered this targeted treatment approach (5–12).

Here we report on a patient treated with BRAFi/MEKi
for BRAF V600E mutant HCL. This treatment resulted in
the development of chronic lymphocytic leukemia (CLL)
from a preexisting KRAS G12D mutant monoclonal B-cell
lymphocytosis (MBL). By next-generation sequencing of blood in
an independent cohort of individuals with MBL and monoclonal
gammopathy of undetermined significance (MGUS) we found
that almost one third of these cases harbored clonal or subclonal
activating RAS mutations. We conclude that patients with such
RAS mutant precursor lesions have to be critically selected for
and carefully monitored during tumor treatment with BRAFi.

METHODS

Clinical Data
Informed consent was obtained from the reported patient with
HCL and MBL/CLL as well as from eleven MBL and eleven
MGUS control patients for the use of their diagnostic material
as approved by the institutional review board (Ethikkommission
der Ärztekammer Hamburg, Germany, project number PV4767).

Isolation of Genomic DNA
Genomic DNA was isolated from peripheral blood mononuclear
cells (PBMNCs) using GenElute Mammalian Genomic DNA
Miniprep kit (Sigma-Aldrich, St. Louis, United States) according
to the supplier’s instructions.

Targeted Next-Generation Sequencing of
Mutational Landscapes
Using a custom gene panel (QIAseq Targeted DNA Panel)
gene regions of interest were amplified starting from 100 ng
of PBMNC or bone marrow mononuclear cells (BMMNCs)
genomic DNA, respectively. The panel covered the following
genes: BRAF, HRAS, KRAS, and NRAS. Library preparation was
performed according to the supplier’s instructions. Briefly, DNA
was fragmented by a fragmentation enzyme mix and Illumina
adapters containing 12-base unique molecular identifiers (UMIs)
were ligated onto each DNA molecule. During target enrichment
PCR, gene and hotspot specific primers amplify the regions
of interest followed by a 21-cycle universal PCR, where all
fragments of interest are amplified once more for final library

construction. The final library was quantified by Qubit (Thermo
Fisher Scientific Inc.) and fragment size was analyzed using
an Agilent 2100 Bioanalyzer (Agilent technologies). Multiplex
sequencing was performed with a 300-cycle dual indexed (8
nucleotides) paired-end run on a NextSeq sequencer (Illumina)
at an estimated depth of 26 500 reads. Variant calling was
performed using smCounter2 (13). The incorporated UMIs allow
for elimination of biases that can be introduced during PCR
amplification and therefore offer a highly accurate variant calling
at a variant frequency level of ≥1%. For details of multiplex
PCR and sequencing approach for the identification of RAS
mutations in the MGUS patient cohort please refer to original
publication (14).

Next-Generation Sequencing (NGS) of
Immunoglobulin Heavy Chain (IGH)
Immune Repertoires and Data Analysis
For sensitive clonal monitoring, the IGH gene locus containing
the rearranged VH, DH and JH segments was amplified
by multiplex PCR from genomic DNA using previously
published protocols (15). Amplicon extension with Illumina
adapter sequences and unique indices was achieved through a
second PCR reaction. Primers were purchased from Metabion
(Martinsried, Germany) and PCRs were performed using
Phusion HS II (Thermo Fisher Scientific Inc.) according to
the supplier’s instructions. Finally, amplicons with the expected
size were purified after agarose gel electrophoresis using the
NucleoSpin R© Gel and PCR Clean-up kit (Macherey-Nagel).
After amplicon quantification and quality control with a Qubit
(Thermo Fisher Scientific Inc.) and an Agilent 2100 Bioanalyzer
(Agilent technologies), respectively, sequencing was performed
on an Illumina MiSeq platform (600–cycle single indexed, paired-
end run). Analysis of the IGH locus was computed using the
MiXCR analysis tool (16). Only productive sequences with a read
count ≥2 were included in the analysis.

Multicolor Flow Cytometry
Within 2 h of peripheral blood collection, erythrocyte lysis
using a standard lysis buffer (ammonium chloride 8.29 g/l,
EDTA 0.372 g/l, potassium hydrogen carbonate 1 g/l) was
performed followed by flow cytometry using an 5-color flow
cytometry panel established for routine clinical analysis of B
cell disorders (all directly labeled antibodies purchased from
Beckman Coulter). Measurements were performed on a FC500
cytometer (Beckman Coulter, Krefeld, Germany). B and CLL cell
counts were calculated from absolute blood counts.

Data Availability
Sequencing data generated for this study can be found in the
European Nucleotide Archive (ENA). ID: PRJEB36480.

RESULTS

We report on an instructive case of a patient with HCL and
concomitant MBL, who received dual BRAFi/MEKi after his
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FIGURE 1 | Patient with BRAF V600E-mutant hairy cell leukemia (HCL) and concomitant RAS-mutant B cell lymphocytosis (MBL) experiencing progression to
chronic lymphocytic leukemia (CLL). (A) Computed tomography scans of cervical lymph nodes of patient with HCL and concomitant MBL/CLL. On the left, nodal
progression on dual BRAFi/MEKi. On the right, nodal remission 3 months after BRAFi withdrawal. (B) Absolute MBL/CLL and HCL cell counts over time during
combined BRAFi/MEKi and after BRAFi withdrawal. Cell counts were deduced from flow cytometry, IGH next-generation sequencing and KRAS G12D liquid biopsy
analyses of peripheral blood. Clone CARSDFWGDAFDIW (green line) represents the MBL/CLL clone and clone CAKDPPLNHFWGGYPFSFDNW (red line) represents
HCL clone. IGH, Immune globulin heavy locus. Arrows indicate cervical lymphnode.
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TABLE 1 | RAS mutations in individuals with MBL and MGUS.

ID number RAS mutation

MBL 001 –

MBL 002 –

MBL 003 HRAS G13S

MBL 004 –

MBL 005 KRAS A146T

MBL 006 –

MBL 007 –

MBL 008 –

MBL 009 –

MBL 010 –

MBL 011 –

MGUS 002* –

MGUS 003* –

MGUS 005* –

MGUS 006* –

MGUS 007* NRAS G13R, G13C, Q61K

MGUS 008* –

MGUS 009* NRAS G12C

MGUS 010* NRAS G13V

MGUS 011* –

MGUS 012* NRAS G12C, Q61K

MGUS 013* –

*From own previously published dataset (14).

fifth HCL relapse. This patient responded quickly and achieved
a durable HCL remission with excellent tolerability of both
agents. Yet, 24 months after treatment initiation, he experienced
transformation of MBL to overt CLL with accelerated nodal
progression (Figure 1A). At this time, the HCL was in ongoing
partial remission.

To address the molecular driver underlying the suspected
BRAFi-induced accelerated progression, we performed next-
generation sequencing using a gene panel including activating
RAS mutations. We found that the initial MBL clone as
well as the emerging CLL carried an activating KRAS G12D
mutation, but no BRAF mutation, thus explaining the observed
CLL progression. The RAS mutation was confirmed by Sanger
sequencing from CLL tumor material (resected lymph node).
Since enhanced MAPK signaling was expected to be attenuated
upon withdrawal of the BRAFi, treatment was continued with
the MEKi only, inducing a nodal CLL decline with maintained
HCL control (Figure 1A). Despite the predominantly nodal CLL
progression, multicolor flow cytometry and NGS-based blood
monitoring of lymphoma clones over time (IGH and KRAS)
provided a liquid biopsy window into disease dynamics showing
a continuous increase of the MBL/CLL clone from the start of
the dual BRAFi/MEKi treatment followed by rapid decline of
the CLL clone upon withdrawal of the BRAFi (Figure 1B). MBL
represents a common precursor lesion of CLL with relatively
high population prevalence with some studies suggesting that
up to 10% of individuals >40 years may harbor clonal B
cell populations (17). Since activating RAS mutations may be
present in lymphatic diseases and precursor states, we wished

to explore RAS mutational frequencies in a small cohort of
eleven MBL patients from our institution. To this end, we
used an NGS targeted sequencing approach with an established
sensitivity of ≥1%, since even subclonal RAS mutations in an
MBL background are expected to be selected on therapeutic
pressure with BRAFi and may give rise to transformation. This
analysis showed that two of eleven (18%) MBL cases harbored
activating RAS mutations (HRAS G13S and KRAS A146T). While
the HRAS mutation was subclonal in MBL003 (present in 2.37%
of MBL cells), the KRAS mutation in MBL005 was present in
all MBL cells like in our index patient. Since a similar risk for
transformation may exist in individuals with RAS mutant MGUS,
a precursor lesion for multiple myeloma, we re-analyzed an NGS
dataset from a cohort of eleven individuals with MGUS, that was
previously published by our group, for the prevalence of RAS
mutations (14). In this cohort, four out of eleven (36%) MGUS
cases harbored activating NRAS mutations (NRAS G12C, G13
C/R/V, and Q61K). In two of these patients, more than one NRAS
mutation was found in different subclones (Table 1).

DISCUSSION

Using a targeted drug that works on a specific molecular cancer
lesion may appear a simple therapeutic concept. Yet, this concept
must be considered oversimplified since systemic inhibition
of oncogenic signaling not only operates on the tumor cell’s
mutational landscape, but also on other (e.g., pre-malignant)
tissue’s occult mutational landscapes. We currently face a
growing body of evidence showing that BRAF inhibition
(with and without concurrent MEK inhibition) may trigger
the development of cancer from pre-neoplastic lesions (e.g.,
melanoma and non-melanoma skin cancer, pancreatic cancer)
or drive progression of existing but unrecognized cancers (e.g.,
colon cancer) (5–12).

We show that not only pre-cancerous skin lesions, but also
hematological pre-cancerous lesions may progress upon BRAF
inhibition. A mechanistic scheme illustrating this concept is
shown in Figure 2.

In this case, we observed a steady increase of the MBL/CLL
clone over time on BRAFi/MEKi treatment followed – after
2 years – by more important nodal progression. The rather
slow dynamics over 2 years may be attributed by the
concomitant MEKi, which, however, was not able to fully block
paradoxical stimulation.

While in CLL, the overall frequency of RAS mutations appears
to be below 10% (in low-resolution studies), in multiple myeloma
and its precursor MGUS, deregulation of MAPK signaling via
activating RAS mutations is a more common finding present on
a clonal or subclonal level in 36–49% of patients depending on
the resolution of the detection technology (14, 18). Our own
previous data on a hospital cohort of non-hematooncological
patients show that the overall frequencies of MBL and MGUS
in individuals between 50 and over 80 years of age range from
0.9 up to 5% for MBL and 5.1 up to 11.8% for MGUS (19).
Considering the RAS mutational frequencies of these precursor
lesions (according to our data almost one third of cases with RAS
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FIGURE 2 | Schematic overview of differential activity of BRAFi/MEKi in BRAF V600E HCL versus RAS mutant pre-malignant lymphoid cells. (A) At steady state,
mutant BRAF signals RTK/RAS independently and thereby drives tumor growth of HCL. (B) Upon BRAF and MEK inhibition, the activity of the MAPK pathway is
strongly compromised in the HCL context, however, leading to paradoxical activation of the MAPK pathway in the BRAF wildtype, RAS mutant lymphoid clone. RTK,
receptor tyrosine kinase.

mutations), this may result in significant numbers of patients at
risk for the development of treatment-requiring hematological
cancers on BRAF inhibition.

One of the limitations of our work consists in the fact that
our data imply, but not directly proof that the RAS mutation
is involved in paradoxical pathway activation in this case. The
failure to directly show this is due to a lack of sufficient biological
material from this case taken on BRAFi treatment. Nonetheless,
the mechanistic concept of paradoxical BRAFi induced cancer
progression in RAS mutant cells is well established and should
therefore also apply to this case (3, 4, 20). Another limitation of
our work is related to the fact that we don’t show any clinical
case experiencing the development of myeloma from MGUS.
Nevertheless, we chose to include RAS mutational analyzes for
MGUS as well since this pre-malignant condition also concerns
the B lineage and may result in similar problems. Clearly, these
results at this point do not prove an increased risk for myeloma

development in patients with RAS mutant MGUS on BRAFi, but
in our view they should sound a note of caution.

Taken together, our study highlights several important points.
First, caution must be exercised when using BRAFis in patients
or populations that might harbor RAS mutant cells in skin,
bowel, or other sites. Vigilant surveillance will remain critical
in clinical protocols using these agents and even screening
for such mutations (e.g., in circulating blood DNA) should be
considered. Second, drug safety is likely to vary depending on
the targeted molecule within a given signaling pathway, and
although paradoxical activation of the MAPK pathway occurs
with BRAF inhibition, the addition of a MEKi to a BRAFi might
not be sufficient to overcome the paradoxical and unwanted
ERK phosphorylation. Third, to prevent paradoxical stimulation
in patients vitally requiring BRAFi treatment while harboring
a pre-cancerous lesion with activating RAS mutation, a new
generation of BRAFi termed “paradox breakers,” such as PLX8394
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(Plexxikon R©), is under development and will hopefully allow safe
application of BRAFi in these vulnerable patients (21, 22).

Careful clinical monitoring and translational studies will be
required to foster our understanding of safe application of BRAF
inhibitors in routine clinical practice.
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