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Brain evolution has interested neuroanatomists for over a century. These interests often

fall on how free the brain is to evolve independently of the body, how free brain

regions are to evolve independently of each other, and how different environmental and

ecological factors affect the brain over evolutionary time. But despite major advances

in phylogenetic methods, comparative neuroanatomists have tended to limit their

macroevolutionary toolbox to regression-based analyses and ignored the scope of

evolutionary process-basedmodels at their disposal. This Review summarizes the history

of comparative neuroanatomy and highlights the pitfalls of the methodologies traditionally

used. It provides an overview of evolutionary process-based modeling approaches for

investigating univariate and multivariate data, as well as more sophisticated methods

that incorporate hypotheses about biotic and abiotic pressures that may drive brain

evolution. The benefits of evolutionary process-based models, and shortcomings of

regression-based ones, are illustrated with widely used neuroanatomical data. Ultimately,

the intent of this Review is to be a guide for subsuming macroevolutionary methods not

typically used in comparative neuroanatomy, in order to improve our understanding of

how the brain evolves.
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INTRODUCTION

How the brain evolves is a question that has interested evolutionary biologists for over a century,
likely because it is the same organ that is needed to ask the question. The long history of work
investigating its answer has basically fallen into two camps: the ecological and social factors that
underpin evolutionary changes in brain architecture (why the brain evolves); and themetabolic and
functional constraints shaping those changes (how the brain evolves). Beginning in the nineteenth
century, naturalists such as Dubois, Lapicque, and Snell recognized a consistent relationship
between brain and body size, which was later formalized into the concept of allometry by Huxley
and Teissier (1936). The concept that evolutionary changes in brain size are linked to changes
in body size—and its extension, that there are coordinated evolutionary changes among different
brain regions—has framed our understanding of how brains evolve (Jerison, 1975). Consequently,
variation in brain size is generally interpreted in terms of how it deviates from allometric
expectations. In the broadest terms, deviations are interpreted functionally, such that species with
brains larger than expected for their body mass are interpreted as being more intelligent (Roth
and Dicke, 2005); and, likewise, species with a brain region (e.g., the neocortex or striatum)
larger than expected for their brain size are interpreted as having undergone adaptive selection
for the functionality prescribed to that region. Our understanding of why the brain evolves,
on the other hand, in an adaptive sense, assumes that changes in behavior are subsidized by
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changes in the neural substrates regulating that behavior. For
example, the superior colliculus, a major visual region, is nearly
40 times smaller than predicted by allometry in the blind
mole rat (Cooper et al., 1993), whereas the inferior colliculus,
an auditory region, is several times larger than predicted by
allometry in echolocating bats (Striedter, 2005). Of course, the
identification and quantification of deviations from expectations
depend on properly estimating the scaling exponent of the
relationship, which can be tricky (Jerison, 1975; Harvey and
Pagel, 1988; Grabowski et al., 2016), and can be additionally
difficult to disentangle from evidence of convergene (Aristide
et al., 2016; Mahler et al., 2017), which will affect evolutionary
interpretations. These two camps have together amassed support
for many hypotheses to explain interspecific variation in brain
architecture. Among them are effects of diet and sociality on
brain size (see Powell et al., 2017), differential enlargement of
the prefrontal cortex in great apes (Smaers et al., 2017), and
clade-specific trends in neuron number and density (Herculano-
Houzel et al., 2014). However, the existence of support for so
many (often incompatible) hypotheses underscores a problem
(Dunbar and Shultz, 2017). This problem may be due in part to
how we define traits and behaviors as they relate to the brain. But
it is also certainly due to methodological shortcomings, and that
is the focus of this review.

Support in comparative neuroanatomy is almost exclusively
defined as correlational support, and analyses are largely
restricted to regressions on continuous character states. While
not wrong in themselves, these approaches are limited and
rarely adequately assessed. The scope of ill-fitting evolutionary
analyses in the field extend from run-of-the-mill mistakes in
checking model assumptions (which are not uncommon in
comparative biology generally) to misconceptions bordering
on hostility to "unfortunate phylogenetic inferences" (Mota
and Herculano-Houzel, 2016). Additionally, other types of
phylogenetic approaches are almost never considered. While the
compendium of existing work on brain evolution is not at all
invalidated by this, it is valuable to understand what phylogenetic
comparative methods (PCMs) can (and cannot) do, in order
to ferret out exactly what this work says (and does not say)
about how the brain evolves. Specifically, it is important to
draw a distinction between methodological approaches that infer
correlations between traits and those that infer the evolutionary
processes driving traits to (co-)evolve.

We know that the brain is a highly integrated functional
system that develops under evolutionarily conserved
developmental constraints (Strausfeld and Hirth, 2013; Lewitus
and Huttner, 2015). We also know that, as a consequence of
this, the brain is not simply the sum of its individually evolving
parts, but that it is comprised of modules that are shared across
species (Goswami, 2007). Multivariate evolutionary models,
which are becoming increasingly advanced and accessible (e.g.,
Bartoszek et al., 2012; Clavel et al., 2015), are key to investigating
how these modules—whether they are genetic, cell-biological,
or morphological—evolve differently across species. Ultimately,
our goal should be aimed toward developing and applying
increasingly sophisticated models that can account for the
evolution of such an imposing, complex structure. Adopting

an arsenal of process-based models strengthens our ability to
investigate how the brain evolves by allowing us to consider
explicit hypotheses of interspecific competition, environmental
influences, trait covariation and causality, directional selection,
and information on rates and modes of evolutionary change.
In this paper, I review macroevolutionary theories for trait
diversification and the advantages and disadvantages of both
regression- and process-based PCMs. I provide examples of
how regression-based analyses can lead to misleading or even
spurious inferences of trait evolution. I analyse published
neuroanatomical data using process-based modeling to illustrate
the utility of this approach. Finally, I provide a blueprint for
conducting macroevolutionary analyses on neuroanatomical
data and outline how this might be used to incorporate data
at different neurobiological scales. In full, it is important
that this field takes advantage of the totality of available
macroevolutionary methods.

PHYLOGENETIC COMPARATIVE
METHODS: A MODEL-BASED APPROACH

At its core, the evolutionary history of a trait is described by
mode and rate of change. Does the cortex evolve faster than the
cerebellum? Is there a slowdown in V1 evolution in primates?
The mode and rate are defined by how (dis)similar trait values
are among species over a given amount of time assuming a
model of evolutionary change. As differentmodels make different
assumptions about data, infer different rates of change, and
ultimately give different hypotheses about how traits evolved,
model choice is absolutely critical.

The Univariate Case
The standardmodel for trait evolution is Brownianmotion (BM),
which describes trait variance as a linear function of time. Under
this model, the mean value of a trait can increase or decrease
independently of its current state, as long as the net change is
zero (Cavalli-Sforza and Edwards, 1967; Felsenstein, 1985). This
is represented as dYt = σdBt for a trait Y at time t with rate
parameter σ . However, because species share an evolutionary
history does not necessarily mean that trait variance accrues
linearly with time (Figure 1). In fact, it is highly unlikely that
all traits evolve according to a BM process; and changes in trait
variance through time may not only be due to time-varying rates,
but instead to shifts in evolutionary mode (Hunt, 2012; Slater,
2013). A modified version of the BM model is the Ornstein-
Uhlenbeck (OU) model (Hansen, 1997; Butler and King, 2004),
which includes an additional parameter to measure the tendency
toward an optimal trait value, θ . This is represented as dYt =

−α(Yt − θ)dt + σdBt , where α is the magnitude of stabilizing
selection acting on the trait. Tendency toward an optimum can
represent many things, including directional selection, response
to an extrinsic factor, or developmental or functional constraint
from an intrinsic factor. Likewise, the BM model can be relaxed
to account for accelerating (AC) or decelerating (DC) rates of
trait evolution through time (Blomberg et al., 2003). This is often
used to test for signs of an early burst (EB) in the evolution

Frontiers in Neuroanatomy | www.frontiersin.org 2 July 2018 | Volume 12 | Article 54

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Lewitus Modeling Macroevolution of the Brain

of a trait, indicative of an adaptive radiation (Harmon et al.,
2010). Given trait data on a phylogeny, we can calculate the
likelihood of support for different models. We can then select

the model with the most support (i.e., the best fit model) to infer

the mode and rate of change of that trait across the phylogeny.
In doing so, we can better understand the evolutionary process
underlying the distribution of a trait across a clade, as well
as compare processes and rates between clades. The dataset
of Stephan et al. (1981), which is comprised of volumetric
measurements for different brain regions for mammalian species,
has been foundational for comparative neuroanatomy. But in the
hundreds of analyses of this dataset, the measured brain volumes
have always been assumed to evolve according to a BM process
(Finlay and Darlington, 1995; Barton and Harvey, 2000) – or, in
the case of the social brain hypothesis (Dunbar, 1992), not to
have evolved according to any process at all. However, we can

see that this is a bad assumption (Figure 2). Rather, whole brain,
cerebellum, medulla oblongata, and olfactory bulb volume are
better supported by OU processes, suggesting that in this subset
of mammals different evolutionary processes are driving trait
changes in different brain regions. This highlights the importance
of finding the best model to explain the data under analysis,
because the evolutionary story that is reconstructed for those
data (e.g., an estimate of the brain volume of a clade’s ancestor
generated using ancestral state reconstruction under the best fit
model) will necessarily change depending on the model fit to
them.

The Multivariate Case
The brain is a complex organ with many interacting parts. Those
parts tend to be developmentally or functionally integrated,
which can result in co-evolution due to genetic covariance or

FIGURE 1 | Simulations of two traits co-evolving under different processes. In (A), the trait co-variance accrues linearly with time according to a BM process, while in

(B) the traits are attracted toward an optimum value. (C) An example of phylogenetic trait changes over time.

FIGURE 2 | Model fits and parameter estimates for mammalian brain regions. (A) Akaike weights for BM, OU, and EB models fit to brain or brain region volume for

mammalian species in Stephan et al. (1981). (B) Inferred evolutionary rate parameters for the best fit models. Note that, because the whole brain, medulla, cerebellum,

and olfactory bulb are best supported by an OU model, their rate estimates are artifactually elevated compared to other regions. Model fits and parameter estimates

computed using the R package mvMORPH (Clavel et al., 2015) on 100 posterior distributions of the mammalian phylogeny (Faurby and Svenning, 2015).
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correlated selection (Armbruster et al., 2014). So a frequent
question in comparative neuroanatomy is how two (or more)
traits co-evolve. The typical analytical approach for determining
correlations between two variables is ordinary least squares
(OLS) regression, but this assumes statistically independent data.
Because species share an evolutionary history, they are not
independent data points and therefore OLS regression is not
typically appropriate [but see Revell (2010)]. Rather, the most
popularmethod formeasuring correlations between species traits
is phylogenetic generalized least squares (PGLS; a generalization
of phylogenetic independent contrasts) (Grafen, 1989; Garland
and Ives, 2000; Blomberg et al., 2012). In its simplest (and most
common) form, PGLS assumes a BM process; but this comes
with certain theoretical and statistical limitations. Specifically, as
traits are not expected to evolve uniformly across a phylogeny,
especially when that phylogeny is large, PGLS regressions
assuming a BMmodel show high type I error rates (Revell, 2010).
Consequently, the residuals of trait values generated by different
processes simulated on the same tree are well fit by a PGLS
regression assuming a BM process, giving no indication of the
actual underlying evolutionary process (Figure 3). This would
lead to the spurious conclusion that the traits are correlated under
a BM process. Similarly, PGLS regression analyses on identical tip
data for trees simulated under different evolutionary processes
return statistically identical scaling coefficients, making no
distinction between considerably different evolutionary scenarios
(Figure 4). Again, this analysis masks the true and more complex
evolutionary history of these traits. Moreover, when there is
uncorrelated residual error in the dependent variable, PGLS
performs even worse than OLS (Revell, 2010). This is likely due
to the (overlooked) fact that PGLS does not measure evolutionary
covariance between traits, but rather the evolutionary covariance
of one trait with respect to the tip values of another and therefore
is not sensitive to trait covariance through time. In other words,
any evidence of correlation cannot (on its own) be interpreted as
adaptive, despite claims to the contrary (Nunn and Barton, 2001).
These theoretical and statistical pitfalls should be considered
when choosing an approach for modeling multivariate trait
evolution.

Fortunately, a number of methods have been developed to
detect evidence of adaptive evolution in co-evolving traits (e.g.,
Revell and Harmon, 2008; Revell and Collar, 2009; Hadfield,
2010; Eastman et al., 2011), which measure how traits affect
each other’s evolution. As mentioned, one of the most frequently
debated topics in comparative neuroanatomy is the evolutionary
relationship between brain and body size. However, this debate
has largely been focused on how species are sampled or how
brain size is measured, but has not been concerned with how
the relationship is modeled, even though this relationship is
significantly affected bymodel assumptions. Recently, Grabowski
et al. (2016) showed that brain size allometry in mammals is
best explained by a model (Hansen and Bartoszek, 2012) that
explicitly allows body size (a predictor variable) to cause changes
in the variance of brain size (a response variable). In addition
to highlighting the spurious affects of using the wrong model,
this result provides a more meaningful explanation for the
nature of brain-body allometry that goes beyond a simple scaling

coefficient. More broadly, there have been many advances to
estimating correlated rates of change using the evolutionary rate
matrix (Revell and Harmon, 2008; Bartoszek et al., 2012; Beaulieu
et al., 2012; Clavel et al., 2015), which provides a framework for
inferring the process behind evolutionary change in correlated
traits. An evolutionary variance-covariance matrix is especially
advantageous for studying correlated evolution, because it allows
for estimating rates for individual traits as well as covariance
between pairs of traits, which is additionally useful for testing
different models of trait evolution and detecting shifts in rates
leading to specific clades. To take the relationship between the
cortex (whole brain minus cerebellum) and cerebellum as an
example, which has been measured numerous times elsewhere
using PGLS and derived some correlational support under a BM
process (e.g., Barton and Harvey, 2000; Herculano-Houzel, 2010;
Barton and Venditti, 2014), we can estimate the relative support
of interacting and non-interacting BM and OU processes. In
doing so, we are directly comparing models in which rates
of change in the cortex and cerebellum co-evolve (with and
without stabilizing selection) against those in which cortical and
cerebellum volume evolve independently of one another. We
find that the co-evolution of cortical and cerebellum volume in
a subset of mammals (Stephan et al., 1981) is best explained by
a process in which both evolve toward optima under stabilizing
selection (1AICc = 11.68), while exerting negative influences
on each other over time (α = −0.489). To take another
example, of neuron and glia cell numbers in the mammalian
cortex (Herculano-Houzel, 2011), we find this relationship is
best supported by an interacting BM process (1AICc = 9.02),
wherein both cortical neuron and glia cell number evolve under
a BM model, but also exert positive influences on each other
through time (σ 2

= 0.045). (Note that here σ 2 represents
evolutionary covariance.) In both cases, the evolution of the two
traits – cortical and cerebellum volume and cortical neuron and
glia number – can be better explained by their covariance through
time rather than by treating them as independently evolving,
which is contrary to how the data were treated in previous
analyses.

Hypothesis-Based Approaches
It is often the case that we want to know not only the evolutionary
mode and tempo of a trait or even the correlated evolution
of two traits, but what other factors were involved in driving
evolutionary trait change. Any number of factors can affect
the rate of change of a trait, including habitat, interspecific
competition, or the global environment; and a number of models
have been developed to investigate the relative importance of
each of these factors. The environment-dependent model of
trait evolution (Clavel and Morlon, 2017) measures the rate
of change of a trait or the covariance of traits as a function
of some time-varying factor (e.g., temperature). The matching
competition (MC) model (Nuismer and Harmon, 2015; Drury
et al., 2016) can be used to estimate the effect interspecific
competition has on trait variance through time by computing
how changes of trait variance in one direction drive trait variance
in the opposite direction among species within a clade. These
models do not simply estimate the effects of the environment
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FIGURE 3 | PGLS regressions often lead to spurious or uninformative results. Slope coefficients for PGLS and phylogenetic independent contrasts (PIC) on trait

residuals using traits simulated under BM for σ2
= 0.1, OU for α = 5 and σ2

= 0.05, MC for S = −0.5 and σ = 0.05, and negative exponential diversity-dependence

(DD) for rate parameter β = −0.5, equivalent to three times the phylogenetic half-life (Weir and Mursleen, 2013). Despite the different underlying processes, PGLS and

PIC return coefficient estimates as if the processes were BM. Data simulated using mvMORPH (Clavel et al., 2015) and RPANDA (Morlon et al., 2016) and PGLS and

PIC fits computed with ape (Paradis et al., 2004).

or interspecific interactions on rates of trait evolution, but by
estimating likelihoods for each model they can be compared to
each other and the trait models above. We can see, for example,
that encephalization quotient (EQ) evolution in mammals is best
supported by a model of temperature-dependence (1AICc =

26.06) over BM, OU, EB, MC, or δ13C−dependence (Figure 5),
where EQ has a negative dependency on temperature through
time. By using these hypothesis-based models, we can add
another layer to our understanding of not only the mode and
tempo of brain evolution, but the environmental and ecological
selection pressures driving them.

There are, of course, a number of hypothesis-based models
that can be implemented beyond those tested here. These include
an interclade interaction model (Manceau et al., 2016), which
can be particularly useful in highly divergent but ecologically
connected clades, such as carnivores and ungulates, where a

predator-prey relationship may have driven an evolutionary
arms race in cortical evolution. State-dependent speciation and
extinction (SSE) models, which estimate the effects of changes
in trait variance with shifts in phylogenetic diversification
(Maddison et al., 2007) and can be especially useful in
disentangling shifts in rates of trait change from shifts in
speciation or extinction rates. Models that incorporate fossil data
(on, for example, endocranial volume) have also been developed
to guide evolutionary inference using the fossil record (Heath
et al., 2014). Perhaps the most widespread models are rate-
shifting models, which estimate shifts in rates of trait evolution
along certain branches or in certain clades (Rabosky, 2014).Many
comparative analyses assume clade-specific patterns a priori
and then derive different regression coefficients for those clades
as evidence of differences in patterns (e.g., Herculano-Houzel,
2011; Neves et al., 2014; Mota and Herculano-Houzel, 2015).

Frontiers in Neuroanatomy | www.frontiersin.org 5 July 2018 | Volume 12 | Article 54

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Lewitus Modeling Macroevolution of the Brain

FIGURE 4 | Slope coefficients and intercept estimates for PGLS analyses on trait data simulated using a BM process on a constant-rate birth-death tree, but

recovered using trees simulated under different processes. A trait simulated under a BM process on one tree should not be similarly distributed across a tree

simulated under a completely different process and therefore the returned slope estimate should be different.

FIGURE 5 | Inferring the evolutionary process underlying mammalian EQ evolution. (A) AIC scores and (B) Akaike weights for BM, OU, EB, two

environment-dependent models, and the MC model fit to mammalian EQ data from Boddy et al. (2012). (C) Temperature-dependent evolutionary rate through time of

EQ variance in mammals, showing that variation in EQ (solid) changes as an inverse exponential function of temperature (dashed): σ2(t) = 0.05e−9.13T (t).

Environmental curves from Mayhew et al. (2008); Hannisdal and Peters (2011).

Of course, clades are hypotheses themselves and constraining
analyses by such assumptions not only limits the questions
we can ask (and answer), but also biases analyses toward
finding clade-specific patterns. Rate-shifting models, therefore,

are an unbiased approach to determining whether there are
indeed shifts in trait (co-)variances leading to certain clades.
In total, the inclusion of these models can provide a much
larger framework for inferring evolutionary scenarios leading to
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changes in neuroanatomy and estimating exactly the effect of
those scenarios on neuroanatomical differences across species.

A Checklist for Applying Model-Based
PCMs to Neuroanatomical Data
The model one chooses to use in an analysis is as much an
hypothesis as the biological question under analysis. Therefore,
there are a number of questions that should be asked in the
data analysis pipeline. Equally importantly, these questions (and
their qualifications) should be stated explicitly in any analysis,
in order to help the reader understand why a certain model
was chosen and what assumptions (and limitations) should be
associated with the result. Firstly, how good is our phylogeny?
Approximately no trees are perfectly accurate, and so to account
for a lack of confidence in topology and branch-lengths, it
is best practice to use a distribution of phylogenies and sum
results over all of them. This can be done, for example, using
Bayesian inference to take a posterior probability distribution of
a phylogenetic reconstruction (Bouckaert et al., 2014). Secondly,
which models are appropriate for our data? It is, of course,
possible to simply run the gamut of available trait models and
see what sticks (best), however, this makes it increasingly difficult
to interpret results in a meaningful way. In the most basic sense,
a phylogenetic analysis should be treated like an experiment,
leveraging a hypothesis-driven model (e.g., OU or MC) against
a null one. Commonly used methods for estimating the presence
of any phylogenetic signal include Blomberg’s K (Blomberg et al.,
2003), Moran’s I (Münkemüller et al., 2012), and Pagel’s λ

(Pagel, 1999). [The latter, however, should be used with care:
smaller trees are biased toward near-zero λ irrespective of a
true phylogenetic signal; and traits with a complex evolutionary
history can return spurious λ values (Boettiger et al., 2012)].
Thirdly, do we have enough power to derive a meaningful result?
This, too, is a quantification of certainty in results and can be
assessed by computing Akaike weights of different models, in
order to give a sense of how much better one model is compared
to another. If all models show comparable Akaike weights, then
we may not have enough power to accurately assess the true
evolutionary process (e.g., the phylogeny is too small) or we may
not have included the correct model in our analysis. Finally, how
many ways can we interpret our results? Because data collection,
phylogeny reconstruction, and model choice are all hypotheses
with associated assumptions, the derived results of any analysis
are necessarily a product of those assumptions. Therefore, it is
crucial to report not only the statistical confidence of results, but
also the conceptual confidence based on the limitations imposed
by every analytical step.

Connecting Neurobiological Processes to
Macroevolutionary Processes
So much of comparative neuroanatomy has been devoted to
characterizing cell-biological or molecular differences between
species (Yeung et al., 2017). This has helped find, for
example, similarities in cortical pyramidal neurons across
primates (Sherwood et al., 2003), differences in glia-neuron
ratios in primates and carnivores (Lewitus et al., 2012), and
modifications to visual pathways in monkeys and humans
(Preuss and Coleman, 2002). There is also, of course, a
monumental body of experimental work demonstrating the
functionality of differences in gene architecture and neural cell
morphology in model organisms, from the characterization of
neural progenitor diversity in primates (Betizeau et al., 2013)
to the identification of human-specific brain expansion genes
(Florio et al., 2015). Ecological pressures act on behaviors,
which lead to changes in developmental programming of
the circuitry regulating those behaviors, and those changes
are underwritten by selection on genes. Yet, these scales of
biological phenomena are rarely integrated into phylogenetic
studies of brain evolution. The few exceptions, including work
on the role of microcephaly genes in primate brain evolution
(Montgomery and Mundy, 2012) and the adaptiveness of self-
renewing bipolar progenitors in the evolution of cortical folding
(Lewitus et al., 2014), have shown the potential of integrating
these scales to fine-tune our understanding of how the brain
evolved. Future studies can take advantage of the advancing
approaches devoted to identifying and characterizing modularity
Goswami and Finarelli (2016) and co-evolution in multiple
neuroanatomical traits (Morlon et al., 2016), which can be
used to investigate how functionally integrated aspects of the
brain evolved. Model-based phylogenetics provides a framework
for investigating the macroevolutionary processes governing
changes in neuroanatomy across species and can become a
useful tool for investigating the social and environmental factors
that have shaped the brain at the morphological and molecular
level.
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