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Abstract 

Background:  Structural variants (SVs) play a crucial role in gene regulation, trait association, and disease in humans. 
SV genotyping has been extensively applied in genomics research and clinical diagnosis. Although a growing number 
of SV genotyping methods for long reads have been developed, a comprehensive performance assessment of these 
methods has yet to be done.

Results:  Based on one simulated and three real SV datasets, we performed an in-depth evaluation of five SV geno-
typing methods, including cuteSV, LRcaller, Sniffles, SVJedi, and VaPoR. The results show that for insertions and 
deletions, cuteSV and LRcaller have similar F1 scores (cuteSV, insertions: 0.69–0.90, deletions: 0.77–0.90 and LRcaller, 
insertions: 0.67–0.87, deletions: 0.74–0.91) and are superior to other methods. For duplications, inversions, and trans-
locations, LRcaller yields the most accurate genotyping results (0.84, 0.68, and 0.47, respectively). When genotyping 
SVs located in tandem repeat region or with imprecise breakpoints, cuteSV (insertions and deletions) and LRcaller 
(duplications, inversions, and translocations) are better than other methods. In addition, we observed a decrease in F1 
scores when the SV size increased. Finally, our analyses suggest that the F1 scores of these methods reach the point of 
diminishing returns at 20× depth of coverage.

Conclusions:  We present an in-depth benchmark study of long-read SV genotyping methods. Our results highlight 
the advantages and disadvantages of each genotyping method, which provide practical guidance for optimal appli-
cation selection and prospective directions for tool improvement.
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Background
Structural variants (SVs) are genomic alterations of at 
least 50 bp in size, including insertions (INSs), deletions 
(DELs), duplications (DUPs), inversions (INVs), and 
translocations (TRAs) [1]. Although the number of SVs 
(20–30 k) is less abundant than single-nucleotide variants 
(SNVs, 3–4 M), these can cause more than three times 

more base-pair differences among humans than SNVs [2]. 
Recent studies have demonstrated SVs play an important 
role in gene expression [3, 4], phenotypic diversity [5–9], 
monogenic and complex diseases [10–12] in humans.

The identification of SVs mainly includes two stages: 
discovery and genotyping [13]. Discovery refers to the de 
novo detection process of discordant signatures between 
the sequenced individual and the reference genome [13]. 
It aims to discover and characterize SVs at a genome-
wide scale, including the type, size, and position of an SV 
[13]. Genotyping is the process of determining the pres-
ence and absence of variants in a given individual based 
on known and characterized SVs [13]. It is more targeted 
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and simpler than the SV discovery stage [14, 15]. Geno-
typing has major application values in clinical diagno-
ses [15] and basic science studies [16–19]. For instance, 
focusing on known clinically relevant SVs, genotyping 
can directly examine the presence/absence of an SV in 
sequenced patient samples [15]. In pedigree analysis, 
genotyping can identify de novo SVs (those are in the off-
spring with disease conditions and are not present in the 
unaffected parents) and is widely used for the diagnosis 
of rare and complex genetic diseases [16, 17]. Genotyp-
ing across population-scale samples increases the recall 
under low coverages and provides the basis for genome-
wide association studies [18, 19].

Numerous SV genotyping methods, which were based 
on short-read sequencing (SRS) data, have been devel-
oped in the past few years, including SVTyper [20], 
BayesTyper [21], Paragraph [22], vg [23], and Graph-
typer2 [24]. However, previous studies have shown that 
these methods have serious drawbacks mainly owing to 
the limitations of SRS data (e.g., uneven coverage across 
the genome [25], failure to sequence highly repetitive 
region, and incapable of unambiguously mapping reads 
to the regions that are polymorphic or not unique due 
to short read length [26]). First, these methods have 
poor genotyping accuracy for SVs in tandem repeat (TR) 
regions. Their false discovery rates are at least 40% [27]. 
Second, these methods are limited to specific SV types. 
A prior study [15] evaluated five SV genotyping methods 
based on SRS data, but none of these can genotype INS. 
Third, customized VCF files or information are required 
(e.g., paragraph requires precise breakpoints of the tar-
geted SVs [22]).

Platforms of Pacific Biosciences’ (PacBio) single-mol-
ecule real-time (SMRT) sequencing [28] and Oxford 
Nanopore Technologies’ (ONT) nanopore sequencing 
[29] dominate the long-read sequencing (LRS) market. 
PacBio sequencing technology uses a topologically cir-
cular DNA molecule template (known as SMRTbell) 
to integrate double-stranded DNA ranging from one to 
more than a hundred kilobases base pairs. The PacBio 
platform generates continuous long reads (CLR) (read 
N50: 5–60 kb; accuracy: 87–92%) or circular consensus 

sequencing (CCS) reads (read N50: 10–20 kb; accuracy: 
> 99%) [30]. ONT sequencing technology utilizes linear 
DNA molecules and infers sequence of bases based on 
ionic current fluctuations caused by a single-stranded 
DNA passing through biological nanopores. The ONT 
platform generates long (read N50: 10–60 kb; accuracy: 
87–98%) or ultra-long (read N50: 100–200 kb; accuracy: 
87–98%) reads [30]. With a read length > 10 kb and the 
ability to read through highly repetitive regions in the 
human genome, LRS technologies are revolutionizing 
the study of SVs [30–34]. A benchmark study from the 
Genome in a Bottle (GIAB) Consortium showed that 
methods using SRS data can only genotype 65% of dele-
tions and 53% of insertions in tandem repeats when eval-
uating their benchmark SVs [35]. Another study showed 
that SVJedi using LRS data had a two-fold increase in 
genotyping accuracy than SVtyper, which is based on SRS 
data [14].

Although an increasing number of LRS-based geno-
typing methods have been published, the performance 
of these methods has not been comprehensively evalu-
ated. In this study, we benchmarked five LRS-based SV 
genotyping methods, namely, cuteSV [36], LRcaller [32], 
Sniffles [37], SVJedi [14], and VaPoR [38] on both simu-
lated and real LRS datasets. We present a comprehensive 
assessment of genotyping accuracy of these SV genotyp-
ing methods based on multiple different factors, includ-
ing SV size, breakpoint located in TR regions, imprecise 
breakpoints, aligner, sequencing data type, and depth 
of coverage. Furthermore, we compare computational 
resource consumption. Our study highlights both the 
strengths and limitations of LRS-based SV genotyping 
methods to assist in the development of future SV geno-
typing methods and practical applications to genomic 
and clinical studies.

Results
Benchmark datasets
We collected one simulated and three real SV data-
sets (Table  1) in the present study. The simulated data-
set was generated using VISOR [39]. The simulated SV 
set includes a total of 15,453 heterozygous (0/1) and 

Table 1  Summary of the SV sets

Total is the total number of SVs for each SV set. “NA”: data are not available

SV set Total INS DEL DUP INV TRA​ SV size (kb)

Simulated data 15,453 7710 7290 167 72 214 0.05–364

HG002 Tier 1 12,745 7281 5464 NA NA NA 0.05–125

HG002 Tier 2 7001 4189 2812 NA NA NA 0.05–240

HG005 17,447 8867 8121 296 38 125 0.05–73
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homozygous non-reference (1/1) SVs with sizes ranging 
from 0.05 to 364 kb. We also simulated 30× PacBio CLR 
data using VISOR (see the “Methods” section for details).

The real SV datasets contain the SV calls of HG002 
and HG005 from GIAB [35] (Table 1). The HG002 sam-
ple includes 69× PacBio CLR, 28× CCS, and 47× ONT 
ultra-long reads data. The HG002 benchmark set has 
two tiers of SV calls. The Tier 1 benchmark set includes 
12,745 sequence-resolved SVs [35]. The Tier 2 bench-
mark set contains 7001 imprecisely determined SVs [35]. 
Because the HG002 benchmark set only includes INSs 
and DELs, we generated an SV dataset with five types 
of SVs using the 30× PacBio CCS data from the HG005 
sample and then evaluated the genotyping accuracy of 
the five methods (see “Methods” section for details). We 
observed a similar SV size distribution between the sim-
ulated and real SV sets (Fig. 1). Specifically, the frequency 
of SV decreases exponentially with increasing size for 

INSs, DELs, and DUPs (Fig.  1a-c and e-k). Moreover, 
we observed peaks at ~ 0.3 kb and 6 kb in the simulated 
(Fig. 1a, b), HG002 Tier1 (Fig. 1e, f ), and HG005 (Fig. 1i, 
j) SV sets, reflecting the  activities of Alu and LINE1 
transposable elements in the human genome.

Aligners and SV genotyping methods
The simulated and real LRS data were mapped to the 
human reference genome using NGMLR [37] and mini-
map2 [40]. We benchmarked five SV genotyping meth-
ods, including cuteSV [36], LRcaller [32], Sniffles [37], 
SVJedi [14], and VaPoR [38]. Table  2 lists the details of 
each SV genotyping method, including version, compat-
ible aligners, applicable SV types, acceptable sequenc-
ing data types, input, and output. Among these five SV 
genotyping methods, cuteSV and Sniffles were originally 
developed as de novo SV callers, but can perform SV 
genotyping function using the -Ivcf option. LRcaller and 

Fig. 1  Size distribution of SV sets. a-d The simulated SV set using VISOR. e, f HG002 Tier 1 SV set. g, h HG002 Tier 2 SV set. i-l HG005 SV set. The x-axis 
shows the SV size, and the y-axis represents the number of SVs in different size ranges. We excluded translocations in the plots as the length of 
translocations are not defined by SV callers. INS: insertion, DEL: deletion, DUP: duplication, INV: inversion
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SVJedi were developed as SV genotyper using LRS data. 
VaPoR is a long-read-based tool to visualize and geno-
type known SVs. cuteSV, LRcaller, and Sniffles are capa-
ble of genotyping all five types of SVs. SVJedi requires 
alternate allele sequences to genotype INSs and cannot 
genotype DUPs. VaPoR does not support genotyping 
TRAs. cuteSV, LRcaller, Sniffles, and VaPoR use BAM 
files from minimap2 or NGMLR as input. SVJedi takes 
sequencing data in the FASTA/FASTQ format or aligned 
PAF files from minimap2 as input (see the “Methods” 
section for details).

Evaluation of SV genotyping based on simulated data
First, we calculated the F1 scores of the five SV genotyp-
ing methods based on the simulated SV dataset that con-
sisted of 15,453 SVs (7710 INSs, 7290 DELs, 167 DUPs, 
72 INVs, and 214 TRAs). The benchmark results (Fig. 2, 
Fig. S1, and Table S1) showed that LRcaller achieved the 
highest F1 scores for INSs (0.97), DELs (0.99), and TRAs 

(0.99). Sniffles and SVJedi obtained the highest F1 scores 
for DUPs (0.82) and INVs (0.82) respectively.

Evaluation of SV genotyping based on real data
We next evaluated the performance of the five SV geno-
typing methods based on three real SV sets (the HG002 
Tier 1, HG002 Tier 2, and HG005) (Fig.  3, Fig.  S2, and 
Tables S2, S3 and S4). The results showed that for INSs 
and DELs in HG002 and HG005, cuteSV (INS: 0.69–0.90, 
DEL: 0.77–0.90) and LRcaller (INSs: 0.67–0.87, DELs: 
0.74–0.91) had similar F1 scores across three real SV 
sets and outperformed other three genotyping meth-
ods (Fig.  3a–c). For DUPs, INVs, and TRAs in HG005 
(Fig. 3c), LRcaller achieved higher F1 scores (DUPs: 0.84; 
INVs: 0.68; and TRAs: 0.47) than cuteSV (DUPs: 0.10, 
INVs: 0.56, and TRAs: 0.00), Sniffles (DUPs: 0.81, INVs: 
0.43, and TRAs: 0.01), SVJedi (INVs: 0.67, TRAs: 0.34), 
and VaPoR (DUPs: 0.52, INVs: 0.57). Note that SVjedi 
cannot genotype DUP and VaPoR cannot genotype TRA.

Table 2  Summary of SV genotyping methods

REF: the human reference genome; BAM: alignment in BAM (binary alignment map) format; VCF: targeted SVs in VCF (variant call format); FASTA/FASTQ: sequencing 
data in FASTA or FASTQ format; PAF: alignment in PAF (pairwise mapping format); BED: targeted SVs in BED (browser extensible data) format. “NA” indicates the data 
are not available. LRcaller employs five different genotyping models: direct (AD), variant alignment (VA), joint (J), presence (PR), and reference aware variant alignment 
(VAr), resulting in five genotypes [32]. We used the genotypes of the default joint model when comparing it with other SV genotyping methods

Category cuteSV LRcaller Sniffles SVJedi VaPoR

Version 1.0.11 0.2 1.0.12a 1.1.0 NA

Aligner minimap2, NGMLR minimap2, NGMLR minimap2, NGMLR minimap2 minimap2, NGMLR

SV type INSs, DELs, DUPs, INVs, TRAs INSs, DELs, DUPs, INVs, TRAs INSs, DELs, DUPs, INVs, TRAs INSs, DELs, INVs, TRAs INSs, DELs, DUPs, INVs

Data type CLR, CCS, ONT CLR, CCS, ONT CLR, CCS, ONT CLR, ONT CLR, CCS, ONT

Input REF, BAM, VCF REF, BAM, VCF BAM, VCF REF, VCF, FASTA/FASTQ; 
PAF, VCF

REF, BAM, VCF/BED

Output 1 genotype 5 genotypes 1 genotype 1 genotype 1 genotype

Fig. 2  F1 scores of SV genotyping methods based on the simulated data. The x-axis is the SV type, and the y-axis shows the F1 score of each SV 
genotyping method. Performance was estimated on ~ 30× PacBio CLR data. The alignment files were generated by minimap2 because its output 
was compatible to all SV genotyping methods. SVJedi and VaPoR are inapplicable to DUPs and TRAs, respectively. INS: insertion, DEL: deletion, DUP: 
duplication, INV: inversion, TRA: translocation
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Evaluation of SV genotyping based on Mendelian 
Concordance Rate (MCR)
MCR provides an independent evaluation of accuracies 
of variant calling and genotyping based on trio data [41]. 
We evaluated the MCR of each SV genotyping method 
based on the SVs of an Ashkenazim trio (HG002, HG003, 
and HG004) and a Chinese trio (HG005, HG006, and 
HG007) (Table 3). We used both HG002 Tier 1 and Tier 
2 SV sets in the evaluation. Our analyses showed that 
LRcaller had the highest MCRs (0.98, 0.96, and 0.98), 

followed by SVJedi (0.97, 0.96, and 0.97), VaPoR (0.95, 
0.92, and 0.96), Sniffles (0.91, 0.92, and 0.94), and cuteSV 
(0.92, 0.83, and 0.95) based on the SVs of the Tier 1 and 
Tier 2 of HG002, as well as HG005.

Impact of SV size on SV genotyping
We examined the impact of SV size on the F1 scores of 
SV genotyping methods based on three real SV sets. We 
observed that the F1 scores of different methods varied 
with SV size (Fig. 4). For example, with increasing of INS 
sizes from < 100 bp to ≥10 kb (Fig.  4a), the F1 scores of 
four methods decreased from 0.87 to 0.58 (cuteSV), 0.92 
to 0.52 (LRcaller), 0.82 to 0.00 (Sniffles), and 0.67 to 0.00 
(VaPoR). In contrast, we observed that the F1 scores of 
SVJedi increased from 0.75 to 0.93 when genotyping 
INSs from < 100 bp to ≥10 kb in size (Fig. 4a). For DELs 
(Fig.  4b, d, and f ), the impacts of SV size on F1 scores 
were weaker compared to INSs (Fig. 4a, c, and e). In par-
ticular, we found an increase in F1 scores when geno-
typing DELs ≥100 bp in size compared to shorter ones, 
suggesting the DELs < 100 bp in size are more difficult to 
identify compared to longer ones (Fig. 4b, d, and f ).

Furthermore, almost all genotyping methods achieved 
their best F1 scores for DUPs < 100 bp (except for 
cuteSV) (Fig.  4g). For example, with DUP sizes rang-
ing from < 100 bp to ≥1 kb, the F1 scores of three meth-
ods decreased from 0.96 to 0.66 (LRcaller), 0.89 to 0.79 

Fig. 3  F1 scores of SV genotyping methods based on real data. a HG002 Tier 1 dataset. b HG002 Tier 2 dataset. c HG005 dataset. The x-axis 
represents the SV type, and the y-axis shows the F1 score of each SV genotyping method. Performance was estimated on ~ 30× PacBio CLR data. 
The alignment files were based on minimap2 because it was compatible to all SV genotyping methods. SVJedi and VaPoR are inapplicable to DUPs 
and TRAs, respectively. INS: insertion, DEL: deletion, DUP: duplication, INV: inversion, TRA: translocation

Table 3  Mendelian concordance of SV genotyping methods on 
trio datasets

The Ashkenazim trio includes son HG002, father HG003, and mother HG004. 
The Chinese trio includes son HG005, father HG006, and mother HG007. 
Performance was estimated based on ~ 30× PacBio CLR data. The alignment 
files were from minimap2 because its output was compatible with all SV 
genotyping methods

MCR Mendelian concordance rate

SV genotyping 
method

MCR

HG002 Tier 1 HG002 Tier 2 HG005

cuteSV 0.92 0.83 0.95

LRcaller 0.98 0.96 0.98

Sniffles 0.91 0.92 0.94

SVJedi 0.97 0.96 0.97

VaPoR 0.95 0.92 0.96
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(Sniffles), and 0.56 to 0.46 (VaPoR). However, cuteSV 
showed a consistent increase in F1 scores with increas-
ing DUP size, due to its poor performance when geno-
typing DUPs < 1 kb in size (F1 scores < 0.12). In addition, 
we observed that all genotyping methods achieved their 
lowest F1 scores when genotyping the INVs  ≥ 10 kb 
(Fig. 4h).

Impact of tandem repeat region on SV genotyping
We further assessed the F1 scores of five methods when 
genotyping the SVs located in tandem repeat (TR) 
regions based on the three real datasets. We observed 
that the F1 scores of each method for SVs located in 
TR regions were lower than SVs outside of TR regions 
(Fig.  5). For example, compared to INSs within TR 
regions (Fig. 5a), the F1 scores of five methods for INSs 
located within TR regions declined from 0.90 to 0.86 
(cuteSV), 0.88 to 0.75 (LRcaller), 0.64 to 0.57 (Sniffles), 
0.93 to 0.82 (SVJedi), and 0.80 to 0.59 (VaPoR). A similar 
trend was observed in the HG002 Tier 2 (Fig. 5c, d) and 
HG005 datasets (Fig. 5e–i). Moreover, we found that TR 
regions had less impact on genotyping INVs and TRAs 
(Fig. 5h, i) compared to other SV types.

Impact of imprecise breakpoint on SV genotyping
Previous studies have shown that SV detection meth-
ods often generate SVs with imprecise breakpoints 
[42] due to an enrichment of breakpoints in highly 

repetitive regions [4] and high sequencing error rates 
(5–15%) in LRS data [22]. To investigate the impact of 
imprecise breakpoints on the genotyping accuracy of 
each method, we shifted the breakpoints of SVs in three 
real SV sets by 100 bp, 200 bp, 500 bp, and 1000 bp. 
Overall, we observed that the F1 scores of all methods 
decrease with increasing breakpoint shift (Fig.  6). For 
example, for INSs with breakpoint shifts ranging from 
100 to 1000 bp (Fig.  6a), the F1 scores of five meth-
ods declined from 0.88 to 0.69 (cuteSV), 0.52 to 0.01 
(LRcaller), 0.63 to 0.03 (Sniffles), 0.59 to 0.03 (SVJedi), 
and 0.53 to 0.09 (VaPoR).

Moreover, the robustness of genotyping methods var-
ies when handling different breakpoint shifts. For exam-
ple, for INSs and DELs in HG002 and HG005 (Fig. 6a–f), 
cuteSV was less sensitive to breakpoint shift than other 
methods, which showed a decrease in F1 scores < 0.04 
when breakpoint shifts ≤500 bp. For DUPs, INVs, and 
TRAs in HG005 (Fig. 6g–i), we found that LRcaller was 
quite robust when genotyping SVs with different break-
point shifts.

Impacts of aligner and sequencing data on SV genotyping
Next, we compared the F1 scores of SV genotyping 
methods under different combinations of aligners (mini-
map2 and NGMLR) and sequencing data (PacBio CLR, 
PacBio CCS, and ONT). We found that a combination 
of minimap2 and PacBio CCS data outperformed other 

Fig. 4  Impact of SV size on F1 scores of SV genotyping methods. a, b HG002 Tier 1 dataset. c, d HG002 Tier 2 dataset. e–h HG005 dataset. The 
x-axis represents SV size, and the y-axis shows the F1 score of each SV genotyping method in each size range. Performance was evaluated on 30× 
PacBio CLR data, and the alignment files were generated by minimap2. The TRA type has no definite size and is not included in the evaluation. INS: 
insertion, DEL: deletion, DUP: duplication, INV: inversion
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combinations (Table  4). For example, the F1 scores 
of cuteSV, LRcaller, SVJedi, and VaPoR based on the 
combination of minimap2 and PacBio CCS data were 

0.03–0.06 higher than other combinations when geno-
typing HG002 Tier 1 SVs. In particular, Sniffles showed a 
0.18 (from 0.65 to 0.83) increase in F1 score based on the 

Fig. 5  Stacked bar plots displaying impact of tandem repeat (TR) on the F1 scores of SV genotyping methods. a, b HG002 Tier 1 dataset. c, d HG002 
Tier 2 dataset. e–i HG005 dataset. The x-axis represents SV genotyping methods, and the y-axis shows the F1 score of each SV genotyping method 
in different genomic regions. TR and non-TR mean SVs located in and outside of TR regions, respectively. Performance was evaluated on 30× PacBio 
CLR data and the alignment files were based on minimap2. INS: insertion, DEL: deletion, DUP: duplication, INV: inversion, TRA: translocation

Fig. 6  Impact of imprecise breakpoint on the F1 score of SV genotyping methods. a, b HG002 Tier 1 dataset. c, d HG002 Tier 2 dataset. e–i HG005 
dataset. The x-axis is the offset (bp: base pair) between the original and shifted breakpoints, and the y-axis is the F1 score of each SV genotyping 
method in each breakpoint shift. Performance was evaluated on 30× PacBio CLR data and the alignment files were generated by minimap2. INS: 
insertion, DEL: deletion, DUP: duplication, INV: inversion, TRA: translocation
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combination of minimap2 and PacBio CCS data com-
pared to other combinations. For the HG002 Tier 2 and 
HG005 datasets (Tables  S5, S6), the F1 scores of geno-
typing methods showed a similar pattern to the HG002 
Tier 1 dataset.

Impact of depth of coverage on SV genotyping
To explore the impact of depth of coverage on SV geno-
typing, we downsampled ~ 69× HG002 PacBio CLR 
data to 60×, 50×, 40×, 30×, 20×, 10×, and 5× cover-
ages and ~ 57× HG005 PacBio CLR data to 50×, 40×, 
30×, 20×, 10×, and 5× coverages, respectively. Then, 
we aligned the downsampled data to the human refer-
ence genomes (hs37d5  and  GRCh38) using minimap2 
and calculated the F1 scores of each method at differ-
ent depth of coverages. The results showed that the F1 
scores of all genotyping methods in the present study 
rapidly increased at 5–20× with increasing coverages 
(Fig. 7). For example, when depth of coverage increased 
from 5× to 20× (Fig. 7a), the F1 scores of all methods 

Table 4  F1 scores of SV genotyping methods based on different 
aligners and sequencing data

Impact of aligner (minimap2 and NGMLR) and sequencing data (PacBio CLR, 
PacBio CCS, and ONT) on the F1 score of each genotyping method based on the 
HG002 Tier 1 dataset. Performance was evaluated on 30× HG002 sequencing 
data. SVJedi does not support the output from NGMLR. “NA” indicates the data 
is not available. The bold black number is the highest F1 score for each SV 
genotyping method. The “Max-Min” column represents the maximum F1 score 
minus the minimum F1 score for each SV genotyping method under different 
combinations of aligners and sequencing data

SV genotyping 
method

Aligner Sequencing data Max-Min

CLR ONT CCS

cuteSV minimap2 0.89 0.93 0.93 0.06

NGMLR 0.87 0.91 0.91

LRcaller minimap2 0.86 0.85 0.88 0.03

NGMLR 0.87 0.87 0.87

Sniffles minimap2 0.68 0.81 0.83 0.18

NGMLR 0.65 0.73 0.76

SVJedi minimap2 0.86 0.81 NA 0.05

VaPoR minimap2 0.67 0.71 0.71 0.04

NGMLR 0.67 0.71 0.71

Fig. 7  Impact of depth of coverage on the F1 score of SV genotyping methods. a, b HG002 Tier 1 dataset. c, d HG002 Tier 2 dataset. e–i HG005 
dataset. The x-axis represents depth of coverage, and the y-axis indicates the F1 score of each SV genotyping method in different sequencing 
depths. The gray line in each sub-figure represents the smooth curve generated by locally weighted regression using the loess function in R. For 
each dataset, we downsampled the sequencing data of HG002 and HG005 to different depths using SAMtools [43]. SVJedi and VaPoR cannot 
genotype DUP and TRA, respectively. INS: insertion, DEL: deletion, DUP: duplication, INV: inversion, TRA: translocation
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for INSs increased by 0.10–0.58 (i.e., cuteSV: 0.68 to 
0.87, LRcaller: 0.67 to 0.82, Sniffles: 0.49 to 0.59, SVJedi: 
0.27 to 0.85, and VaPoR: 0.42 to 0.71). However, when 
depth of coverage was increased from 20× to 60×, 
the F1 scores of INSs only increased by 0.01–0.05 (i.e., 
cuteSV: 0.87 to 0.92, LRcaller: 0.82 to 0.83, Sniffles: 0.59 
to 0.64, SVJedi: 0.85 to 0.92, and VaPoR: 0.71 to 0.72). 
We observed such a pattern in genotyping other types 
of SVs (Fig.  7b–i). Our results that a slight increment 
in performance after depth of coverage > 20× were 
also found in a prior study of SV calling methods using 
nanopore sequencing data [44].

Evaluation of computational resource consumption
We finally compared computational resource con-
sumption for each SV genotyping method based on the 
HG002 Tier 1 dataset using 30× PacBio CLR, PacBio 
CCS, and ONT sequencing data (Fig. 8). We found that 
SVJedi showed the shortest running time under single 
thread mode and requires the lowest memory no mat-
ter in single or multiple thread modes (Fig.  8a, b). In 
addition, LRcaller is the most efficient with regard to 
running time under multiple thread mode compared 
to other methods (Fig. 8a).

Discussion
LRS, with average read lengths over 10 kb, has signifi-
cantly boosted the study of SVs in humans and has been 
widely used in basic science [30, 32, 45] and clinical stud-
ies [31, 33, 46]. In this study, we comprehensively bench-
marked five state-of-the-art LRS-based SV genotyping 
methods (including cuteSV, LRcaller, Sniffles, SVJedi, and 
VaPoR) using both the simulated and real LRS datasets.

We observed that LRS-based genotyping methods not 
only genotyped higher numbers of SVs, but also yielded 
better accuracy than the SRS-based methods. For exam-
ple, cuteSV and LRcaller genotyped 99.98% (12,743 
of 12,745) and 100% (12,745 of 12,745) of Tier 1 SVs of 
HG002. In comparison, a prior study [35] showed that 
vg and paragraph, two SRS-based methods, genotyped 
88.76% (11,313 of 12,745) and 93.17% (11,874 of 12,745). 
In addition, we found 10,074 consistent genotypes for 
cuteSV, LRcaller, and Tier 1 SVs of HG002, which is 
higher than the number (6612) between vg [23] and 
paragraph [22], suggesting a better congruence of LRS-
based genotyping methods than the SRS-based methods. 
Second, our analysis revealed that LRS-based genotyp-
ing methods are quite robust when genotyping SVs with 
imprecise breakpoints (Fig.  6). For example, cuteSV 
showed a < 0.1 decrease of F1 scores when genotyping 

Fig. 8  Computational resource consumption of SV genotyping methods. a Runtimes (Min: minutes). b Memory cost (Gb: gigabyte). cuteSV, 
LRcaller, Sniffles, and SVJedi were run using at 1, 4, 8, and 16 CPU threads. VaPoR does not support multiple thread mode
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INSs and DELs with breakpoint shifts ≤500 bp in size. 
In contrast, previous studies have shown that SRS-based 
genotyping methods can only tolerate breakpoint shifts 
of up to 10 bp in size [22, 23]. Third, LRS-based geno-
typing methods are capable of genotyping all types of 
SVs, particularly INSs or TRAs, which are difficult to 
genotype using SRS-based SV genotyping methods [15] 
(Figs.  2 and 3). In addition, our down-sampling experi-
ments reveal high performance of genotyping methods 
from 20× coverage. For example, cuteSV with 20× cov-
erage obtained a F1-score of 0.87, while tripling the cov-
erage only resulted in a 0.05 increase of F1-score when 
genotyping INS. We observe a similar pattern when 
genotyping other types of SV. Finally, we found the LRS-
based genotyping methods performed best using PacBio 
CCS data (Table 4), which could result from an improved 
sequence alignment at highly repetitive or segmental 
duplication regions with the help of base-calling accuracy 
of HiFi reads [47].

We also observed that a strong impact of SV type on 
the performance of LRS-based SV genotyping methods. 
Better genotyping accuracies were observed for INSs and 
DELs than other types of SVs. In particular, we found that 
all LRS-based genotyping methods had the lowest accu-
racy (F1 scores ≤0.47) when genotyping TRAs (Fig. 3c). 
The observation may be relevant to the fact that TRAs 
involve fragments of two chromosomal segments that 
are often accompanied by some additional rearrange-
ments of up to millions of base pairs such as deletions 
and duplications [48], which are difficult to use in read 
alignment and in SV calling and genotyping. In addi-
tion, we cannot exclude that some of TRAs in the HG005 
SV dataset are false positive. Compared to sequenced-
resolved SVs (Fig. 3a), all genotyping methods had lower 
F1 scores when genotyping the imprecisely determined 
SVs (Fig.  3b). This may be because these regions with 
clustered SVs are difficult to sequence and align reads 
correctly [22] or SV genotyping methods cannot properly 
distinguish the supporting reads for each SV when they 
are too close to each other [23]. Our analyses also identi-
fied potential method-specific limitations. For example, 
cuteSV had poor performance for DUPs ≤100 bp in size 
(F1 score: 0.10) (Fig. 4g).

Limitations and conclusions
Here, we comprehensively assessed the performance 
of five SV genotyping methods using the simulated and 
real LRS datasets. The four datasets we employed have 
specific limitations in assessing SV genotyping. The 
HG002 dataset contains only INSs and DELs. The per-
formance of the genotyping methods on other types of 
SVs were evaluated using simulated and HG005 SV data-
sets. However, the simulated dataset cannot fully reflect 

the complexity of real human genomes. In addition, the 
synthetic reads were normally generated based on sim-
ple generative models. Although we only included the 
SVs that were supported by at least 2 callers when gen-
erating the HG005 benchmark SVs, this dataset is not 
well-curated and is likely to be biased to the SVs from 
easy-to-detect genomic regions. Further, the low num-
bers of DUPs (296), INVs (38), and TRAs (125) in the 
HG005 benchmark dataset may hinder our ability to 
comprehensively evaluate the performance of genotyping 
methods on these SV types. Nevertheless, we highlight 
the challenges or limitations of the current LRS-based SV 
genotyping methods. These benchmark results will facili-
tate the application and improvement of SV genotyping 
methods based on long reads.

Methods
Simulation dataset generation
VISOR v1.1 [39] was used for SV simulation. We 
extracted 7710 INSs, 7290 DELs, 167 DUPs, and 72 INVs 
from NA19240 sample callsets [49] (nstd152 in dbVAR 
[50]), and 214 TRAs from KWB1 sample callsets [51] 
(nstd107 in dbVAR). The downloaded SVs were inte-
grated into the human reference genome (GRCh38) to 
build one in silico donor genome, which was then used 
as input of VISOR (HACk mode) for SV simulation. We 
also simulated 30x Pacbio CLR sequencing data using 
VISOR LASeR mode with parameters --read_type pacbio 
--error_model pacbio2016 --qscore_model pacbio2016 
as well as other default parameters. Note that we used 
odd- and even-numbered autosomes for the generation 
of homozygous and heterozygous SVs, respectively. This 
was implemented using different purity values in VISOR 
LASeR mode.

The command lines for data simulation using VISOR 
are in Supplementary Materials.

GIAB dataset
The GIAB HG002 benchmark set was downloaded from 
NCBI (https://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​
Ashke​nazim​Trio/​analy​sis/​NIST_​SVs_​Integ​ration_​v0.6/​
HG002_​SVs_​Tier1_​v0.6.​vcf.​gz). The SVs in the bench-
mark set were classified into two categories, Tier 1 and 
Tier 2. The Tier 1 benchmark set contained 7281 and 
5464 isolated and sequence-resolved INSs and DELs 
respectively. The Tier 2 benchmark set consists of 7001 
clustered SVs with determined genotypes. The sequenc-
ing data for HG002 (PacBio CLR, PacBio CCS, and ONT 
data), HG003 (PacBio CLR), and HG004 (PacBio CLR) 
samples were downloaded from GIAB FTP server (ftp://​
ftp.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​Ashke​nazim​Trio/).

We downloaded the HG005 PacBio CCS read data 
from NCBI BioProject database (accession number 

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
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PRJNA540706) and converted the SRA files to FASTQ 
format using fastq-dump of SRA Toolkit (http://​www.​
ncbi.​nlm.​nih.​gov/​Traces/​sra/​sra.​cgi?​view=​toolk​it_​
doc&f=​fastq-​dump). The sequencing data of HG005 
(PacBio CLR), HG006 (PacBio CLR), and HG007 (PacBio 
CLR) were downloaded from GIAB FTP site (ftp://​
ftp.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​Chine​seTrio/). The 
CCS reads were mapped to human reference genome 
(GRCh38) using PBMM2 v1.4.0 (https://​github.​com/​
Pacif​icBio​scien​ces/​pbmm2) with CCS mode (−-preset 
CCS) and minimap2 (−ax asm20 --MD -Y) respectively. 
We conducted SV calling using three SV callers, includ-
ing PBSV v2.4.0 (https://​github.​com/​Pacif​icBio​scien​ces/​
pbsv), SKSV v1.0.3 [52], and DeBreak v1.0.2 [53]. The 
PBSV discover stage used the BAM file from PBMM2 
and was run using --tandem-repeats parameter (https://​
github.​com/​Pacif​icBio​scien​ces/​pbsv/​blob/​master/​annot​
ations/​human_​GRCh38_​no_​alt_​analy​sis_​set.​trf.​bed). The 
PBSV call stage was run with parameters “--ccs -A 3 -O 
3 -P 20 --gt-min-reads 3 -t INS, DEL, DUP, INV, BND”. 
For SKSV, it used sequencing files in FASTQ format as 
input. The index and alignment stages were performed 
with default parameters. SKSV call stage was run with  
parameter “--genotype” to generate genotypes. DeBreak 
used the BAM files from minimap2 as input and was 
run with full function mode. The BND calls from PBSV 
and SKSV were considered as TRA. We used the SVs 
that are > 50 bp, with the FILTER “PASS” tag, and deter-
mined genotype in the further analyses. Then, the SVs 
of three callers were merged using Jasmine v.1.0.1 [54] 
with parameters “--ignore_strand --output_genotypes”. 
“ignore_strand” allows to merge SVs on different strands 
since that the “STRANDS” tag is frequently missing in 
VCF files of SV callers. “--output_genotypes” outputs 
the genotypes of the consensus SV in the VCF files from 
different callers. Finally, we kept SVs with at least two 
consistent genotypes in the merged VCF file for evalu-
ation. The benchmark SV dataset of HG005 contains 
8867, 8121, 296, 38, and 125 INS, DELs, DUPs, INVs, and 
TRAs.

Read mapping and SV genotyping
The simulated PacBio CLR data were mapped to the 
human reference genome GRCh38 (only autosomal 
and sex chromosomes were included) using mini-
map2 v2.17-r941. PacBio CLR data of HG005 trio 
(HG005, HG006, and HG007) and PacBio CCS data 
of HG005 were also mapped to the human reference 
genome GRCh38 using using minimap2 v2.17-r941 
and NGMLR v0.2.7. The PacBio CLR (HG002, HG003, 
and HG004), PacBio CCS (HG002) and ONT (HG002) 

datasets were mapped to the human reference genome 
(hs37d5) using minimap2 v2.17-r941 and NGMLR 
v0.2.7, respectively. We used the parameters “-ax map-
pb --MD -Y”, “-ax asm20 --MD -Y”, and “-a -z 600,200 -x 
map-ont --MD -Y” to mapped PacBio CLR data, PacBio 
CCS data and ONT data respectively in minimap2. We 
used the parameter “-x pacbio” to align PacBio CLR 
and PacBio CCS data and “-x ont”  to align ONT data in 
NGMLR. SAMtools was employed for read extraction, 
sorting, indexing, and downsampling of BAM files.

The specific parameters of each SV genotyping 
method are described below:

For cuteSV v1.0.11, we used the parameters “--max_
cluster_bias_INS 100 --diff_ratio_merging_INS 0.3 
--max_cluster_bias_DEL 200 --diff_ratio_merging_DEL 
0.5 -mi 500 -md 500 -s 3 --genotype -Ivcf -L 150000” 
was run on PacBio CLR data, the parameters “--max_
cluster_bias_INS 100 --diff_ratio_merging_INS 0.3 
--max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 
0.3 -mi 500 -md 500 -s 3 --genotype -Ivcf -L 150000” 
was run on ONT data, and the parameters “--max_
cluster_bias_INS 1000 --diff_ratio_merging_INS 0.9 
--max_cluster_bias_DEL 1000 --diff_ratio_merg-
ing_DEL 0.8 -mi 500 -md 500 -s 3 --genotype -Ivcf -L 
150000” was run on PacBio CCS data.

For LRcaller v0.2, default parameters were used for 
PacBio CLR, PacBio CCS, and ONT datasets. LRcaller 
used five genotyping models and provided five geno-
types. The models were in order as follows: direct (AD), 
variant alignment (VA), joint (J), presence (PR), and 
reference aware variant alignment (VAr). The results of 
default J model were chosen to compare with other SV 
genotyping methods.

For Sniffles v1.0.12a, the parameter “--Ivcf ” was 
employed in genotyping using the mapping results of 
PacBio CLR and ONT. We used the parameters “--Ivcf 
--skip_parameter_estimation” for PacBio CCS datasets. 
When running SV genotyping, Sniffles converted DUP 
to INS and TRA to INV, respectively. Thus, before gen-
otyping, we separated the benchmark SVs into different 
VCF files based on SV type. After genotyping, the cor-
responding SV type was converted back.

For SVJedi v1.1.0, the configuration -d “pb” and “ont” 
was applied to PacBio CLR and ONT datasets, respec-
tively. SVJedi v1.1.0 allowed long-read sequencing data 
in FASTQ/FASTA format or aligned reads in PAF for-
mat as input.

For VaPoR, the mode “vapor bed” was used for gen-
otyping based on PacBio CLR, PacBio CCS, and ONT 
data. The output files were converted to VCF format 
using an in-house shell script.

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/
https://github.com/PacificBiosciences/pbmm2
https://github.com/PacificBiosciences/pbmm2
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv/blob/master/annotations/human_GRCh38_no_alt_analysis_set.trf.bed
https://github.com/PacificBiosciences/pbsv/blob/master/annotations/human_GRCh38_no_alt_analysis_set.trf.bed
https://github.com/PacificBiosciences/pbsv/blob/master/annotations/human_GRCh38_no_alt_analysis_set.trf.bed
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Evaluation factors for SV genotyping methods
The evaluation based on F1 score
Truvari v2.0.0-dev (https://​github.​com/​ACEng​lish/​
truva​ri) with “truvari bench --gtcomp (genotype com-
parison)” mode was used to calculate the precision, 
recall, and F1 score of the callsets generated by SV gen-
otyping methods. Precision is defined as the number of 
correct genotype calls divided by all determined geno-
types (0/0, 0/1, and 1/1) for each genotyping method. 
Recall is defined as the number of correct genotype 
calls divided by the number of benchmark SVs for each 
genotyping method. A F1 score was calculated using 
the following equation:

The evaluation of Mendelian concordance
We used BCFtools v1.14 (https://​samto​ols.​github.​io/​
bcfto​ols/) plugin “mendelian” with default parameters 
to count Mendelian concordance for each trio dataset. 
The HG002 Tier 1 and Tier 2 SV sets on autosomes were 
genotyped using ~ 30× PacBio CLR data from the Ash-
kenazim Trio, including son (HG002), father (HG003), 
and mother (HG004). The HG005 SV set was genotyped 
using ~ 30× PacBio CLR data from the Chinese Trio, 
including son (HG005), father (HG006), and mother 
(HG007). We calculated the proportion of SVs following 
Mendelian concordance genotypes in all estimated geno-
types to evaluate Mendelian concordance rate (MCR).

Evaluation of breakpoints located in tandem repeat 
regions
We downloaded the tandem repeat tracks of hg37d5 
(https://​github.​com/​Pacif​icBio​scien​ces/​pbsv/​blob/​mas-
ter/​annot​ations/​human_​hs37d5.​trf.​bed) and of GRCh38 
(https://​github.​com/​Pacif​icBio​scien​ces/​pbsv/​blob/​mas-
ter/​annot​ations/​human_​GRCh38_​no_​alt_​analy​sis_​set.​trf.​
bed). We identified the SVs that locate in the TR regions 
of the reference genome using the intersect mode in 
BEDTools v2.30.0 [55].

Evaluation of breakpoint shifting
We shifted the breakpoints of SV calls of HG002 (Tier 
1 and Tier 2) and HG005 SV calls using a customized 
script. We randomly shifted the breakpoints of SVs 
100 bp, 200 bp, 500 bp, and 1000 bp up- or down-stream. 

F1 score =
2 ∗ precision ∗ recall

precision + recall

MCR =
Mendelian concordance genotypes

Estimated genotypes

The modified SV sets were genotyped based on 30× 
PacBio CLR data.

Running time and memory consumption
The command “/usr/bin/time -v” of the Linux oper-
ating system was employed to record runtime and 
memory consumptions at the SV genotyping step. We 
extracted the elapsed (wall clock) time and the maxi-
mum resident set size from the output files and used 
these as the elapsed runtime and memory consumption, 
respectively.
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