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Gliomas are a dismal disease associated with poor survival and high morbidity. Current
standard treatments have reached a therapeutic plateau even after combining maximal
safe resection, radiation, and chemotherapy. In this setting, stem cells (SCs) have risen
as a promising therapeutic armamentarium, given their intrinsic tumor homing as well
as their natural or bioengineered antitumor properties. The interplay between stem cells
and other therapeutic approaches such as nanoparticles holds the potential to synergize
the advantages from the combined therapeutic strategies. Nanoparticles represent a
broad spectrum of synthetic and natural biomaterials that have been proven effective in
expanding diagnostic and therapeutic efforts, either used alone or in combination with
immune, genetic, or cellular therapies. Stem cells have been bioengineered using these
biomaterials to enhance their natural properties as well as to act as their vehicle when
anticancer nanoparticles need to be delivered into the tumor microenvironment in a very
precise manner. Here, we describe the recent developments of this new paradigm in the
treatment of malignant gliomas.

Keywords: biomaterials, nanotechnology, nanoparticles, stem cells, glioma, bioengineering, targeting, surface
functionalization

INTRODUCTION

Gliomas are a dismal entity, associated with poor survival and high morbidity. The current
standard of care has reached a therapeutic plateau even after combining maximal safe resection
and chemoradiation (Stupp et al., 2005; Cantrell et al., 2019). In this setting, stem cell therapies
have risen as a promising therapeutic approach for gliomas; however, there still exist crucial
drawbacks holding its pass to an extensive acceptance in clinical applications. The development of
nanomedicine is a parallel phenomenon with potential deep implications in the way stem cells will
be introduced into human glioma therapy. Stem cells can be engineered using this nanotechnology
in different ways in order to increase our understanding about their biology, improve stem cells
antitumor properties, and synergize them with other approaches such as chemotherapy, radiation,
thermotherapy, etc. (Kim et al., 2011; Mangraviti et al., 2016; Karlsson et al., 2019; Kozielski et al.,
2019; Tian et al., 2020). We aim to provide an overview of the foundations of stem cell therapy
and nanoparticles to then explore the potential synergy between these two, through an up-to-date
analysis of the benefits of coupling both therapeutic approaches.

GLIOMAS

Gliomas are the most common and devastating primary brain tumors, representing approximately
75% of these. According to the World Health Organization (WHO), gliomas are classified in
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four histological grades (I–IV), being the glioblastomas the
corresponding WHO grade IV tumor. Glioblastoma (GBM) is the
most common and aggressive among all gliomas, accounting for
57.3% of the tumors in this group, with around 12,500 new cases
diagnosed every year only in United States (Cantrell et al., 2019;
Ostrom et al., 2019). Glioblastomas present a median overall
survival of 15 months and a 5-year survival rate of only 4.6%
even after maximal therapy (Cantrell et al., 2019). Furthermore,
most of the patients diagnosed with gliomas of lower grade,
such as astrocytomas and oligodentrogliomas grade II and III
(anaplastic), will eventually progress and perish because of the
disease. Overall, these facts are just the translation of the need
to develop novel therapeutic approaches able to help extend
survival and improve the quality of life of patients with the
diagnosis of glioma.

Limitation of Current Therapies
The current gold standard for the treatment of gliomas includes
surgery and chemoradiation. Maximal safe resection is advised
in all cases regardless of the WHO grade, given that the overall
survival is positively correlated with the extent of resection (EOR)
(McGirt et al., 2008, 2009; Chaichana et al., 2014a,b,c; Mahato
et al., 2018; Mampre et al., 2018; Marenco-Hillembrand et al.,
2020; Suarez-Meade et al., 2020). However, surgery is not curative
in any case. Chemotherapy and radiation are required for high-
grade gliomas. Anaplastic astrocytomas and oligodendrogliomas
(grade III gliomas) will require chemoradiation depending
on clinical parameters and tumor molecular characteristics
(Caccese et al., 2020). Glioblastoma tumors require postoperative
radiotherapy, with concurrent and adjuvant chemotherapy.
Unfortunately, despite this multidisciplinary treatment, gliomas
will inevitably recur due to their infiltrative nature and high
treatment resistance (Cantrell et al., 2019). By the time of surgery,
it is estimated that glioma cells have already migrated beyond
the macroscopically identifiable tumor, and thereafter, these cells
will ultimately seed local recurrence around the surgical cavity
(75–80% of cases) and/or non-local recurrence in the reminder
20–25% of cases (Brandes et al., 2009; Chamberlain, 2011;
Drumm et al., 2019).

A subset of gliomas cells have been pinpointed as the culprit
of this recurrence. The glioma cancer stem cells (CSCs) are a
subgroup of malignant cells with the potential of self-renewal,
forming tumors that resemble the original pathology, as well
as high resistance to current chemotherapeutics and radiation
(Singh et al., 2003; Galli et al., 2004; Beier et al., 2007; Li et al.,
2009; Cheng L. et al., 2013; Dahan et al., 2014). These cells
migrate beyond the macroscopic tumor, infiltrating apparent
normal brain parenchyma by the time of surgery and survive
even after receiving high-dose radiation and chemotherapy (Li
et al., 2009; Lathia et al., 2012). As these cells migrate beyond the
tumor bulk to seed further recurrence, a therapeutic strategy able
to track these newly developed microscopic glioma foci to deliver
antitumor cargoes is of utmost importance. In this setting, the use
of neural and mesenchymal stem cells (MSCs) as a therapeutic
armamentarium against gliomas represents a potential avenue to
achieve this goal and alter the treatment paradigm of this dismal

cancer (Pendleton et al., 2013; Li et al., 2014; Smith et al., 2015;
Mangraviti et al., 2016).

STEM CELLS AS ELEMENTS OF
THERAPY FOR MALIGNANT GLIOMA

Stem cells have risen as a promising therapeutic option for
the treatment of malignant gliomas, as they would be able to
migrate and home into glioma tumors, including microscopic
tumor foci, which harbor the potential to seed future recurrence
(Brown et al., 2003; Nakamura et al., 2004; Kim et al., 2005,
2018; Sonabend et al., 2008; Thu et al., 2009; Yong et al., 2009;
van Eekelen et al., 2010; Amano et al., 2011; Choi et al., 2011;
Kleinschmidt et al., 2011; Ryu et al., 2011; Altanerova et al., 2012;
Jiao et al., 2012; Kosaka et al., 2012; Cheng Y. et al., 2013; Huang
et al., 2013, 2014; Lee et al., 2013; Balyasnikova et al., 2014; Li
et al., 2014; Mooney et al., 2014b; Bryukhovetskiy et al., 2015; de
Melo et al., 2015; Martinez-Quintanilla et al., 2015; Morshed et al.,
2015; Park et al., 2015; Cheng S. H. et al., 2016; Kim S. J. et al.,
2016; Kim S. M. et al., 2016; Liu et al., 2016; Mangraviti et al.,
2016; Muroski et al., 2016; Meca-Cortes et al., 2017; Portnow
et al., 2017; Hsu et al., 2018; Lang et al., 2018; Pavon et al., 2018;
Tirughana et al., 2018; Zhang et al., 2018; Huang R. Y. et al.,
2019; Tanrikulu et al., 2019; Allahverdi et al., 2020; Jabbarpour
et al., 2020). Stem cells are relatively easy to grow in vitro and can
be bioengineered to deliver a wide range of antitumor payloads
such as proteins, oncolytic viruses, prodrugs, small interfering
RNA (siRNA), and nanoparticles (Brown et al., 2003; Nakamura
et al., 2004; Kim et al., 2005, 2018; Sonabend et al., 2008; Thu
et al., 2009; Yong et al., 2009; van Eekelen et al., 2010; Amano
et al., 2011; Choi et al., 2011; Kleinschmidt et al., 2011; Ryu
et al., 2011; Altanerova et al., 2012; Jiao et al., 2012; Kosaka et al.,
2012; Cheng Y. et al., 2013; Huang et al., 2013, 2014; Lee et al.,
2013; Balyasnikova et al., 2014; Li et al., 2014; Mooney et al.,
2014b; Bryukhovetskiy et al., 2015; de Melo et al., 2015; Martinez-
Quintanilla et al., 2015; Morshed et al., 2015; Park et al., 2015;
Cheng S. H. et al., 2016; Kim S. J. et al., 2016; Kim S. M. et al., 2016;
Liu et al., 2016; Mangraviti et al., 2016; Muroski et al., 2016; Meca-
Cortes et al., 2017; Portnow et al., 2017; Hsu et al., 2018; Lang
et al., 2018; Pavon et al., 2018; Tirughana et al., 2018; Zhang et al.,
2018; Huang R. Y. et al., 2019; Tanrikulu et al., 2019; Allahverdi
et al., 2020; Jabbarpour et al., 2020).

Stem cells are undifferentiated cells with capacity of self-
renewal and differentiation by definition. They can mature along
symmetric and asymmetric replication processes. The later type
of cell division will result in different hierarchies within stem cell
niches, which will now include progenitor cells; these are daughter
cells retaining the same stem cells properties but with a de novo
limited differentiation ability (Young et al., 2014).

Stem Cell Classification
Stem cells can be designated according to their developmental
status as adult, fetal, or embryonic stem cells. Their differentiation
potential can further define them as totipotent, pluripotent, or
multipotent stem cells. Totipotent stem cells are only found during
the very first days of life just after fecundation and have the
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capacity to derive into any type of human cells, including
placental tissues. Once the embryo has reached the blastocyst
stage, cells contained inside the inner cell mass are defined as
pluripotent, as they can differentiate into any cell of all three
germ layers but no placental tissues (Takahashi and Yamanaka,
2006; Qiao et al., 2018; Andres et al., 2019; Klimanskaya,
2019). Eventually, these pluripotent stem cells will restrict their
differentiation potential to only one of the three germ cell layers
and thereafter will be defined as multipotent stem cells, which can
actually be harvested from most of the organs of the human body
(Takahashi and Yamanaka, 2006; Qiao et al., 2018; Andres et al.,
2019; Klimanskaya, 2019).

Stem cells used in glioma therapy are usually multipotent cells
obtained from adult or fetal organs. In particular, neural stem
cells (NSCs), mesenchymal stem cells (MSCs), and hematopoietic
stem cells (HSCs) are the most common multipotent stem cells
used with this purpose (Aboody et al., 2000; Portnow et al.,
2017). It is noteworthy, however, that pluripotent cells such as the

induced-pluripotent stem cells (iPSC) or embryonic pluripotent
stem cells have also been described in cell therapy against glioma
(Parker Kerrigan et al., 2018; Table 1).

Development of Stem-Cell-Based Glioma
Therapy
The use of stem cells in glioma therapy relies on their tumor-
homing properties. This property was first described in 2000 by
Aboody et al. The group presented a seminal paper describing
the glioma tropism of neural stem cells. The study reported
on the capacity of NSC for engrafting into the glioma bulk
when intratumor NSC injections were performed, invading
normal parenchyma only when tumor cells migrate far from
the tumor mass; with this, they also showed the specific NSC
ability to track glioma cancer cells infiltrating along healthy
tissue. NSCs were also proven to migrate toward glioma tumor
masses when implanted distally to these, through ipsilateral,

TABLE 1 | Classification and major features of stem cells reported in glioma therapy.

Stem cell Defining criteria Source/Niche Linage

Pluripotent stem cells: capacity to differentiate into any cell of all three germ layers

Embryonic stem cells (ECSs) Markers of pluripotency as found in
ICM cells:
Transcription factors: Oct4, Nanog,
Rex-1
Cell surface markers: SSEA-3,
SSE-A4, TRA-1-60, TRA-1-81, alkaline
phosphatase

Blastocyst
Morula
Growth-arrested embryos
Somatic cell nuclear transfer
Single blastomere

As defined by pluripotency

Induce pluripotent stem cells (iPSCs) Essentially the same than ECS markers Reprogrammed adult somatic
cells—usually fibroblasts or skin cells.

As defined by pluripotency
given than iPSC are functionally
equivalent to ECS

Multipotent stem cells: capacity to differentiate into cells of one of the three germ layers

Neural stem cells (NSCs) Positive: GFAP, CD133, CD184, and
Nestin, Sox1, Sox2, and Pax6
Negative: CD271, CD44, CD24
Immune profile: Absent HLA II

Subependymal zone (SEZ)—lining the
lateral ventricles
Dentate gyrus of the hippocampus
*Obtained from fetal and adult
mammals

Neurons
Oligodendrocytes
Astrocytes
Ependymal cells

Mesenchymal stem cells (MSCs) MSC must comply with ISCT criteria:
Positive (>95% +): CD105, CD73,
CD90
Negative (<2% –): CD45, CD34,
CD14 or CD11b, CD79α, or CD19,
HLA DR
Adherence to plastic in standard culture
conditions In vitro differentiation to
osteoblast, adipocytes, and
chondroblasts.
Immune profile: Absent HLA II

Adult tissues: adipose tissue, bone
marrow, peripheral blood, dental pulp,
ligamentum flavum, synovium,
endometrium, sweat glands, and milk
Fetal tissues: umbilical cord, umbilical
cord blood, Wharton jelly, amniotic fluid,
chorionic villi, and placenta

Osteoblast
Adipocytes
Chondroblast
*Differentiation into ectodermal
and endodermal linages has
also been reported

Hematopoietic stem cells (HMSs) Negative: CD45R/B220 (B cells), Gr-1
(granulocytes), Mac-1 (macrophages),
Ter-119 (erythrocytes) and CD4/CD8
(lymphocytes)—for phenotypic
enrichment.
Positive: Sca-1, c-Kit, CD150
*They appear as side population in dye
exclusion assays due to the high
expression of MDR pumps

Adult tissues: bone marrow,
peripheral blood
Non-adult tissues: umbilical cord
blood, yolk sac, liver, spleen

Hematopoietic cells

IMC, inner mass cells; MDR, multidrug resistance.
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contralateral, and intraventricular NSC injections (Aboody et al.,
2000). These abilities and the possibility of being bioengineered to
secrete antiglioma cargoes turned NSC into a promising glioma
treatment, able to track and tackle this infiltrative malignant
tumor. Importantly, NSC showed to retain their stem cell
properties and had been proven non-tumorigenic (Snyder et al.,
1992). In 2017, the same group published the first phase I clinical
trial where NSC-based antiglioma therapy was proven safe; the
proof of concept of NSC tumor homing was also demonstrated
by the group (Portnow et al., 2017). Unfortunately, despite the
encouraging role of NSC in glioma therapy, limited availability of
human NSC (hNSC) as well as ethical concerns regarding its use
encouraged researchers to seek alternatives sources of stem cells.

Mesenchymal stem cells (MSCs) were first described by
Friedenstein more than 50 years ago (Friedenstein et al., 1968,
1970, 1974). He initially isolated MSC from rodent bone
marrow and proved that they were able to differentiate into
mesenchymal tissue (adipogenic, chondrogenic, and osteogenic
differentiation). MSCs ended up being an alternative to the
difficult-to-obtain NSC, as they are abundant in several adult
and fetal tissues such as bone marrow (BM-MSC) (Friedenstein
et al., 1968, 1970, 1974), adipose tissue (A-MSC) (Zuk et al.,
2001; Katz et al., 2005; Wagner et al., 2005), umbilical cord (UC-
MSC) (Girdlestone et al., 2009), umbilical cord blood, Wharton
jelly (Erices et al., 2000; Zeddou et al., 2010), endometrium
(Meng et al., 2007), dental pulp (Agha-Hosseini et al., 2010),
ligamentum flavum (Chen et al., 2011), etc. (Kassis et al., 2006;
Miao et al., 2006; Roubelakis et al., 2007; Poloni et al., 2008;
Patki et al., 2010; Ma et al., 2018). MSCs are easy to harvest
and isolate even from adult individuals, which would allow
for using patient-derived MSC as autografts in glioma patients,
thus avoiding ethical dilemmas as well as fears about immune-
mediated allograft rejection. In this context where MSCs could
be isolated from a variety of tissue sources, cultured following
different methodologies, and be defined by using different surface
markers, the Mesenchymal and Tissue Stem Cell Committee of
the International Society for Cellular Therapy (ISCT) proposed
a standard set of minimum criteria defining MSC for both
laboratory-based scientific investigations and preclinical studies
(Dominici et al., 2006). Thus, every study currently under
development should follow these guidelines in order to assure
a better cell homogeneity among different laboratories and
greater reproducibility.

The first report on the use of MSC in the treatment of gliomas
came from Nakamura et al. In 2004, the group demonstrated
that MSCs also possessed glioma-homing properties by proving
rat-derived BM-MSC homing in a rat glioma model. In 2005,
Nakamizo et al. were able to replicate the findings using human
BM-MSC on a murine model harboring glioma xenograft derived
from commercial human cell lines (U87, U251, and LN229).
Furthermore, both groups were able to bioengineer the MSCs
to deliver antitumor cargoes. To date, several reports on the
use of MSC as key elements for glioma stem cell therapy have
been published with exceptional promising results (Table 2;
Brown et al., 2003; Nakamura et al., 2004; Kim et al., 2005,
2018; Sonabend et al., 2008; Thu et al., 2009; Yong et al., 2009;
van Eekelen et al., 2010; Amano et al., 2011; Choi et al., 2011;
Kleinschmidt et al., 2011; Ryu et al., 2011; Altanerova et al.,

2012; Jiao et al., 2012; Kosaka et al., 2012; Cheng Y. et al., 2013;
Huang et al., 2013, 2014; Lee et al., 2013; Balyasnikova et al.,
2014; Li et al., 2014; Mooney et al., 2014b; Bryukhovetskiy et al.,
2015; de Melo et al., 2015; Martinez-Quintanilla et al., 2015;
Morshed et al., 2015; Park et al., 2015; Cheng S. H. et al., 2016;
Kim S. J. et al., 2016; Kim S. M. et al., 2016; Liu et al., 2016;
Mangraviti et al., 2016; Muroski et al., 2016; Meca-Cortes et al.,
2017; Portnow et al., 2017; Hsu et al., 2018; Lang et al., 2018;
Pavon et al., 2018; Tirughana et al., 2018; Zhang et al., 2018;
Huang R. Y. et al., 2019; Tanrikulu et al., 2019; Allahverdi et al.,
2020; Jabbarpour et al., 2020).

On the other hand, not all are in agreement, as there has been
a risen controversy in which some authors have described that
MSCs could eventually support glioma tumor growth. Different
types of MSCs such as BM-MSC, A-MSC, and UC-MSC have
been associated with these proglioma effects through increased
proliferation, cancer cells migration, angiogenesis, transition
to epithelial–mesenchymal phenotype, and decreased glioma
apoptosis (Iser et al., 2016; Ridge et al., 2017); however, this
adverse phenotype would vary on a differential basis depending
on specific glioma tumors (Breznik et al., 2017). In this same line,
brain tumor-derived MSC (BT-MSC) have also been described
in mouse- and human-derived glioma tumors supporting glioma
microenvironment (Behnan et al., 2014; Guo et al., 2014;
Svensson et al., 2017; Yi et al., 2018). In support to these findings,
Shahar et al. showed that higher percentages of human BT-MSC
directly correlate with worse patient prognosis (Shahar et al.,
2017). Overall, these data would suggest that stem cell therapy
should be carefully selected in future translational efforts.

In order to improve different aspects of stem cell therapies
against glioma, different approaches have been studied. The
use of nanoparticles for stem cell bioengineering is one
of these potential approaches and will be discussed in the
following section.

NANOPARTICLES AS ELEMENTS OF
THERAPY FOR MALIGNANT GLIOMA

Nanoparticles (NPs) are defined as nanomaterials sized between
1 and 100 nm in at least one of their external dimensions,
which confer them a high surface/volume ratio (European
Commission, 2011). Due to this small size, they present
significantly different properties when compared to conventional
materials of non-nanometric scale. The optical, magnetic,
electronic, and biological properties of these nanomaterials can
be tuned by size, shape, surface modifications (functionalization),
or even by combining them with different materials in order to
create new heterostructured nanoparticles (Thimsen et al., 2014;
Lee et al., 2017).

In Nano-oncology, nanoparticles represent an important
diagnostic and therapeutic tool, as they can be designed
to interact with most biological system with great precision
and specificity. This is possible due to their particular
physicochemical characteristics and the possibility of making
them able to target a specific tissue, specific cell types, or a specific
cellular compartment (targeted functionalization) (Portney and
Ozkan, 2006). The potential benefits of these nanomaterials in
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TABLE 2 | Stem cell therapy in glioma.

Stem cell type Delivery routes Applications

Neural stem cellsa,b
• Intravascular: vein (Brown et al., 2003)
• Intracranial (Mooney et al., 2014b; Morshed
et al., 2015)
• Intraventricular
• Intracerebral (Altanerova et al., 2012; de Melo
et al., 2015)

Prodrug activating enzymes: CD (Portnow et al., 2017), rCE, and hCE1m6 (Mooney
et al., 2014b), HSV-TK (Uhl et al., 2005; Tamura et al., 2020)
Oncolytic viruses: CRAd-S-pk7 (Morshed et al., 2015)
Cargo proteins: IL-4 (Benedetti et al., 2000), IL-12 (Ehtesham et al., 2002), PF-4 (Lee
et al., 2003), TRAIL (Balyasnikova et al., 2011), PEX (Kim et al., 2005), BMP4 (Liu et al.,
2016), TSP-1 (van Eekelen et al., 2010)
Nanoparticles (Mooney et al., 2014b)

• Stem cells tracking: FE-Pro (Thu et al., 2009), FTD (Kim S. J. et al., 2016) via MRI,
MSN (Cheng S. H. et al., 2016) via SPECT/CT

• Payload release: SD (Muroski et al., 2016)**, MSN-Dox (Cheng Y. et al., 2013)

Mesenchymal stem cells

Adipose-derived • Intranasal (Balyasnikova et al., 2014)
• Intracranial (Altanerova et al., 2012; de Melo
et al., 2015)

Prodrug activating enzymes: yeast CD (Altanerova et al., 2012), HSV-TK
(Meca-Cortes et al., 2017)(c), (de Melo et al., 2015)
Oncolytic viruses: ICOVIR17 (Martinez-Quintanilla et al., 2015)
Cargo proteins: TRAIL (Balyasnikova et al., 2014; Tanrikulu et al., 2019)
Oligonucleotides: miR-4731 (Allahverdi et al., 2020)

Bone marrow-derived • Intratumoral (Kosaka et al., 2012; Lee et al.,
2013): alginate microencapsulated
(Kleinschmidt et al., 2011)
• Intracarotid (Yong et al., 2009)

Prodrug activating enzymes: CD (Kosaka et al., 2012), HSV-TK (Amano et al., 2011)
Oncolytic viruses: Delta24-RGD (Yong et al., 2009), CRAd (Sonabend et al., 2008)***
Cargo Proteins: IL2 (Nakamura et al., 2004), INF-B (Park et al., 2015), TRAIL (Choi
et al., 2011), BMP4 (Li et al., 2014; Mangraviti et al., 2016)
Oligonucleotides: miR-124 (Lang et al., 2018; Lee et al., 2013) and miR-145 (Lee
et al., 2013), miRNA-584-5p (Kim et al., 2018)
Nanoparticles:

•Gene therapy: MTN (TRAIL) (Huang R. Y. et al., 2019)

•Intrinsic MSC modification: IO MNP (improve MSC homing) (Huang et al., 2014)

•Stem cell tracking: MNP (Huang et al., 2013), FTD (Kim S. J. et al., 2016) via MRI.
NIR675 (Kim S. M. et al., 2016) via near-infrared imaging

Human placenta-derived • Intratumoral (Lee et al., 2013) Cargo proteins: NK4 (Jabbarpour et al., 2020)
Oligonucleotides: miR-124 and miR-145 (Lee et al., 2013)
Nanoparticles

• Stem cell tracking: PEG-SPIO (Hsu et al., 2018) via MRI

Umbilical cord-derived • Intratumoral (Lee et al., 2013)
• Intravascular: tail vein (Pavon et al., 2018)

Cargo proteins: IL12 (Ryu et al., 2011)
Oligonucleotides: miR-124 and miR-145 (Lee et al., 2013)
Nanoparticles

• Stem cell tracking: MION-Rh (Pavon et al., 2018)*

Amniotic
membrane-derived

• Intratumoral (Jiao et al., 2012) Direct antiglioma properties: increased apoptosis (Jiao et al., 2012)

Hematopoietic progenitor
cells

• In vitro (Bryukhovetskiy et al., 2015) Migration in an in vitro model (Bryukhovetskiy et al., 2015)

CD, cytosine deaminase; rCE, rabbit carboxylesterase; hCE1m6, modified human carboxylesterase; MSN-Dox, doxorubicin loaded-mesoporous silica nanoparticles;
FE-Pro, ferumoxide–protamine sulfate complex; FTD, FerraTrack Direct; NIR675, NEO-LIVE, Magnoxide 675 nanoparticles; MSN, mesoporous silica nanoparticles; MTN,
magnetic ternary nanohybrid; IO MNP, iron-based magnetic nanoparticles; MNP, mesoporous nanoparticles; NK4, hepatocyte growth factor antagonist; PEG-SPIO,
polyethylene glycol-superparamagnetic iron oxide; PF-4, platelet factor 4.
*MSC were found to promote tumor growth.
**2u magnetic disks.
***Only specified as human MSC.
aGMP production and scale-up of these cells have been performed (Tirughana et al., 2018).
bFirst-in human studies have been performed assessing safety of intracranial injection (Portnow et al., 2017).
cModified MSC produced by CRISPR/Cas9.

medicine have led some of them to obtain Food and Drug
Administration (FDA) approval to be investigated under several
clinical protocols (Table 3).

Targeted Functionalization
In order to achieve a targeted distribution at a cellular or even
intracellular level, NPs can be functionalized via active targeting.
Active targeting is achieved by different methods; a method
called ligand targeting works by coating the nanoparticles’
surface with one or more ligands such as transferrin, epidermal

growth factor (EGF), folic acid, arginyl-glycyl-aspartic tripeptide
(RGD) peptide, hyaluronic acid, antibodies, and others (Ruiz-
Garcia et al., 2020). These ligands allow NPs to bind specific
“receptors” differentially expressed only in certain cancerous
blood vessels and/or tumor cells, thus leading to a precise
cellular internalization (Maier-Hauff et al., 2007; Kim et al., 2010;
Wegscheid et al., 2014; Cheng Y. et al., 2016; Shen et al., 2017; Yu
et al., 2017, 2019; Hua et al., 2018; Daniel et al., 2019; Denora et al.,
2019; Dufort et al., 2019; Kefayat et al., 2019; Kunoh et al., 2019;
Luque-Michel et al., 2019; Rego et al., 2019, 2020; Ruan et al.,
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TABLE 3 | Advances in the uses of nanoparticles in glioma therapy and diagnosis.

Use Experimental setting and nanoparticle type

Nanocarrier: Drug bioavailability/therapeutic efficacy enhancer
• Usually loaded with drugs such as doxorubicin or biological agents such as

siRNA (Yu et al., 2017)
• Usually functionalized with ligands of common GBM membrane proteins

Preclinical:
• In vivo: PLGA-NP (Sousa et al., 2019; Ye et al., 2019; Caban-Toktas et al., 2020;

Chung et al., 2020), RGD-NP (Ullah et al., 2020), oleic acid NP
(Wang H. et al., 2020)

• In vitro only: PLGA-NP (Luque-Michel et al., 2019; Ferreira et al., 2020;
Roberts et al., 2020), ethyl arachidate (TPLN) (Alves et al., 2020), FONP
(Daniel et al., 2019), pSiNPs

Standalone therapy Preclinical
• In vitro: Selenium NP (Xu et al., 2020), MNP (Shen et al., 2017)

• In vivo: MP (Cheng Y. et al., 2016; Kim et al., 2010)

Drug sensitizer Temozolomide: direct attenuation on EGFR and MET signaling, through delivered
miRNAs (Meng et al., 2020)

Imaging technologies enhancer Fluorescence: USPION (Denora et al., 2019)

Magnetic hyperthermia Clinical
• Phase I and II: SPION (Maier-Hauff et al., 2007; Wegscheid et al., 2014)

Preclinical
• In vivo: SPIONa (Rego et al., 2019, 2020; Shi et al., 2019)

Sonodynamic therapy Preclinical
• In vivo: (Liang et al., 2020)

Radiotherapy enhancer Charged particles

• Proton (Martinez-Rovira et al., 2020)

• Helium

• Carbon

• Oxygen

Photon therapy (X-rays)
• In vitro only: AuNP (Kunoh et al., 2019)

• In vivo: FA-AuNC (Kefayat et al., 2019), PEGylated-AgNP (Zhao et al., 2019),
PEGylated-liposome (Hua et al., 2018), AGuIX (Dufort et al., 2019)*

Photodynamic therapy enhancer Preclinical

• In vivo: 5-ALA (Wang X. et al., 2020), AuNS (Zhu et al., 2020)a, ICG
(ZhuGe et al., 2019)

Immunotherapy enhancer Functionalization with anti-PDL1 (Ruan et al., 2019; Zhang et al., 2019)

SPION, superparamagnetic iron oxide nanoparticles; USPION, ultrasmall SPION; PLGA, poly-lactide-co-glycolic acid; PEG, polyethylene glycol; RGD, arginyl-glycyl-
aspartic tripeptide; TPLN, FONP, fluorescent organic nanoparticles; pSiNPs, porous silicon nanoparticles; terpolymer-lipid nanoparticles; MP, permalloy magnetic particles;
FA-AuNC, folic acid gold nanoclusters; AuNP, gold nanoparticles, AgNP, silver nanoparticles; AGuIX, gadolinium-based nanoparticle; 5-ALA, 5-aminolevulinic acid; AuNS,
gold nanospheres; ICG, indocyanine green; HSPA5, heat shock protein A5r4t. *Theranostic NP: Possesses diagnostic and therapeutic functions. a Improve CT/MRI
imaging and also works as radiosensitizer by AuNS properties and loading an HSPA inhibitor.

2019; Shi et al., 2019; Sousa et al., 2019; Ye et al., 2019; Zhang
et al., 2019; Zhao et al., 2019; ZhuGe et al., 2019; Alves et al., 2020;
Caban-Toktas et al., 2020; Chung et al., 2020; Ferreira et al., 2020;
Kazmi et al., 2020; Liang et al., 2020; Martinez-Rovira et al., 2020;
Meng et al., 2020; Roberts et al., 2020; Ullah et al., 2020; Wang H.
et al., 2020; Wang X. et al., 2020; Xu et al., 2020; Zhu et al., 2020;
see Table 3 for examples of ligand targeting in glioma research).

Another active targeting method to increase functional
specificity of NPs that are used as gene delivery systems is the
transcriptional targeting, which can occur at a transcriptional
or posttranscriptional level (Golombek et al., 2018). Here,
the delivered gene includes a tumor-specific promoter (highly
functional only in cancer cells), which will secure a well-localized
expression of the transgene, limited to occur only inside the
cancer cells of interest. Posttranscriptional regulations of the
product encoded by the exogenously delivered gene are achieved
by controlling RNA splicing, RNA stability, and initiation of the
RNA translation once it is present in the cancer cell (Maier-Hauff
et al., 2007; Kim et al., 2010; Wegscheid et al., 2014; Cheng Y.

et al., 2016; Shen et al., 2017; Yu et al., 2017; Hua et al., 2018;
Daniel et al., 2019; Denora et al., 2019; Dufort et al., 2019; Kunoh
et al., 2019; Luque-Michel et al., 2019; Ruan et al., 2019; Rego
et al., 2019, 2020; Shi et al., 2019; Sousa et al., 2019; Ye et al., 2019;
Zhang et al., 2019; Zhao et al., 2019; ZhuGe et al., 2019; Alves
et al., 2020; Caban-Toktas et al., 2020; Chung et al., 2020; Ferreira
et al., 2020; Kazmi et al., 2020; Liang et al., 2020; Martinez-Rovira
et al., 2020; Meng et al., 2020; Roberts et al., 2020; Ullah et al.,
2020; Wang H. et al., 2020; Wang X. et al., 2020; Xu et al., 2020;
Zhu et al., 2020).

To date, several nanoparticles have shown to be effective
in improving different aspects of traditional and novel cancer
therapeutic approaches, to the point that several nanocarriers
and nanoradiotherapy enhancers are being studied in phase II
and III clinical trials (Maier-Hauff et al., 2007; Kim et al., 2010;
Wegscheid et al., 2014; Cheng Y. et al., 2016; Shen et al., 2017;
Yu et al., 2017; Hua et al., 2018; Daniel et al., 2019; Denora et al.,
2019; Dufort et al., 2019; Kunoh et al., 2019; Luque-Michel et al.,
2019; Rego et al., 2019, 2020; Ruan et al., 2019; Shi et al., 2019;
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TABLE 4 | Rational for a combinatorial approach using nanoparticles and stem cell therapy in malignant glioma.

Rational for nanoparticle-based stem cell therapy in malignant glioma

Drawbacks of using nanoparticles alone • Big nanoparticles could be engulfed by the phagocytic mononuclear system (macrophages/lymphocytes) depending
on their size

• Necrotic central core and histological heterogeneity predispose to uneven intratumor biodistribution of nanoparticles

• Infiltrative cells leaving the tumor bulk are unlikely to be tracked by nanoparticles

Potential advantages of using combine therapy • Stem cells can transport bigger nanoparticles, increasing nanoparticle loading capacity

• Stem cells could transport big nanoparticles through the BBB

• Stem cells could better deliver therapeutic nanoparticles into the hypoxic central glioma core where
treatment-resistant CSC locate

• Stem cells could track and deliver their cargo to CSC leaving the tumor bulk. These CSC have been pinpointed as
culprits of future tumor recurrence

BBB, blood brain barrier; CSC, cancer stem cells.

Sousa et al., 2019; Ye et al., 2019; Zhang et al., 2019; Zhao et al.,
2019; ZhuGe et al., 2019; Alves et al., 2020; Caban-Toktas et al.,
2020; Chung et al., 2020; Ferreira et al., 2020; Kazmi et al., 2020;
Liang et al., 2020; Martinez-Rovira et al., 2020; Meng et al., 2020;
Roberts et al., 2020; Ullah et al., 2020; Wang H. et al., 2020; Wang
X. et al., 2020; Xu et al., 2020; Zhu et al., 2020). In the next section,
we will briefly review the role of nanoparticles as a standalone
therapeutic approach for glioma tumors (Table 3), and then, we
will review in detail the role of nanoparticles as a tool to further
improve stem cell therapy (Table 4).

Classification
Nanoparticles can naturally occur in the environment mediated
by biological or geological processes (Sharma et al., 2015), or
as incidental by-product of human activities such as smelting
or other processes involving the generation of metal fumes
(Gonzalez-Pech et al., 2019). In addition, nanoparticles can be
artificially synthetized and engineered (Kus et al., 2018). Given
the wide variety of existing NPs, classification criteria are also
abundant. We present the classification of NPs according to their
origin and structure, as they will help understand the terminology
used to describe NPs used in cancer research.

Classification of Nanoparticles Based on Its Origin
Organic
Organic nanoparticles are based on natural compounds such as
lipids, glycosides, peptides and others, as well as synthetic organic
molecules (Romero and Moya, 2012; Tzeng et al., 2016; Kus et al.,
2018; Karlsson et al., 2019; Kozielski et al., 2019; Tian et al.,
2020). These organic elements can arrange themselves in three-
dimensional (3D) structures (Euliss et al., 2006), which is one of
the main characteristics that differentiate organic from inorganic
nanoparticles, as inorganic NPs do not form these 3D structures
in any case (Romero and Moya, 2012). Furthermore, due to the
weak interactions that hold many organic NPs together, they
present a dynamic nature that allows, for example, for fusion and
generation of larger structures depending on external conditions
(Romero and Moya, 2012).

Organic nanoparticles display highly desirable characteristics
in the biomedical field (Hussein Kamareddine et al., 2019). They
have a dynamic nature and are able to respond to environmental
variations in temperature, pH, and UV radiation (Jagannathan
et al., 2006; Affram et al., 2017; Hussein Kamareddine et al., 2019).

Furthermore, they can easily cross biological barriers and are
considered less toxic due to its biodegradability; therefore, they
are ideal as drug or gene delivery systems (Jagannathan et al.,
2006; Hussein Kamareddine et al., 2019). Liposomes, vesicles,
micelles, polymeric NPs, and dendrimers are all among the
most common organic nanoparticles (for specific characteristic
and applications, see Figure 1); however, among all of them,
polymeric NPs are probably the most relevant in cancer research.

Polymeric NPs, also known as polymeric nanospheres, are
commonly defined as solid polymer particles with matrix type
structure, where a cargo can be embedded within the polymer
matrix or included in the surface (Reis et al., 2006). Based on its
origin, polymeric NPs can be classified as natural or synthetic.
The first group contains NPs such as chitosan, which is a widely
available natural cationic carbohydrate polymer approved by
the Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) for drug and gene delivery and tissue
engineering in humans (Lara-Velazquez et al., 2020). The second
group, or synthetic polymer-based nanoparticles (SP-NPs), is the
most relevant in medicine, as they can be easily synthesized and
their properties can be tailored according to specific needs.

SP-NPs are prepared using synthetic polymers (Romero
and Moya, 2012), which can be classified in polyesters
such as poly(glycolic acid) (PGA), poly(lactic acid) (PLA),
poly(caprolactone) (PCL), and poly(lactic-co-glycolic acid) or
(PLGA); polyalkyl alcohols such as polyvinyl alcohol or
PVA; and polyethers such as poly(ethylene glycol) (PEG)
and poly(propylene glycol) (PPG) (Ranganathan et al., 2018).
Currently, there are around 15 FDA-approved nanomedicines
based on SP-NPs, 6 of them are used in cancer therapy (Bobo
et al., 2016; Farjadian et al., 2019). Up to date, glioma research
based on SP-NPs has been mainly focused on the development
of more effective delivery systems, able to cross the blood brain
barrier and specifically target the cancer cells (Ambruosi et al.,
2006; Hua et al., 2011; Jiang et al., 2011; Guo et al., 2013; Bishop
et al., 2016; Tzeng et al., 2016; Karlsson et al., 2019; Kozielski et al.,
2019). This includes the generation of hybrid systems using booth
synthetic polymers and natural compounds (Agrawal et al., 2015;
Cook et al., 2015; Alex et al., 2016; Wang et al., 2017; Qi et al.,
2020), as well as smart nanoparticles able to react according to the
surrounded conditions or to specific stimulus (Soppimath et al.,
2005; McNeeley et al., 2009; An et al., 2015; Mangraviti et al.,
2015; Gao et al., 2016; Ye et al., 2019).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 December 2020 | Volume 8 | Article 558375

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-558375 December 1, 2020 Time: 20:30 # 8

Ruiz-Garcia et al. Nanoparticles in Glioma Stem Cell Therapy

FIGURE 1 | Nanoplatforms used as nanocarriers in cancer therapy.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 December 2020 | Volume 8 | Article 558375

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-558375 December 1, 2020 Time: 20:30 # 9

Ruiz-Garcia et al. Nanoparticles in Glioma Stem Cell Therapy

Inorganic
Inorganic nanoparticles present unique physicochemical
properties (optical, magnetic, etc.), inertness, high stability,
and easy functionalization, which give them different
advantages when compared to organic NPs. Due to their
cellular internalization ability and low immunogenic response,
these nanoparticles were initially used as drug and gene delivery
systems (Xu et al., 2006; Evans et al., 2019). Different types of
elements and inorganic compounds based on metals [metal NP
(mNP)], metalloids, or non-metals such as gold, silver, iron,
magnesium, silicon, and others are differentially arranged and/or
combined in order to display specific properties. Thus, there are
some particular groups of NPs such as magnetic nanoparticles,
which are usually based in a core of iron oxide mNP with a large
magnetic momentum under an external magnetic field, which
allow its use as MRI contrast enhancer and thermotherapy agents
(Maier-Hauff et al., 2007; van Landeghem et al., 2009; Wegscheid
et al., 2014). Plasmonic nanoparticles refer to mNPs such as
gold (Au) or silver (Ag) NPs presenting with surface plasmon
resonance (SPR), meaning that NP free electrons can be excited
by electromagnetic fields (UV or infrared light) and resonate,
creating the possibility to sense these changes (biosensors),
produce heat (photothermal ablation/therapy), or create
technologies such as surface-enhanced Raman spectroscopy
(SERS) (Kaur et al., 2016; Chen et al., 2018; Liu et al., 2018).
Quantum dots (Qdots) are another group of inorganic NPs,
usually smaller than 50 nm; these semiconductor NPs efficiently
produce bioluminescence once excited by UV light, which has
led them to be used in single cell and in vivo imaging (Xu et al.,
2006; Figure 1).

Carbon Based
These nanoparticles are predominantly composed by carbon,
and their discovery revolutionized diverse scientific fields (Cha
et al., 2013; Patel et al., 2019). Carbon-based nanomaterials
have outstanding properties like high mechanical strength,
thermoelectrical conductivity, and flexibility (Cha et al., 2013).
These nanoparticles include fullerenes (carbon nanotubes),
graphene, and nanodiamonds. Their broad range of properties
makes these materials ideal imaging agents for tumor diagnosis
(Patel et al., 2019; Figure 1).

Classification of Nanoparticles Base on Their
Structure
Single Nanoparticles
Single nanoparticles are made of a single element such as gold,
silver, copper, among others, and due to their homogeneity and
electrochromic properties, they are widely used in electro-optical
applications, energy conversion, and storage (Evans et al., 2019).
Diverse systems for synchronized release of multiple drugs for
cancer therapy have been designed based on single nanoparticles
(Liao et al., 2014).

Heterostructured Nanoparticles
In an attempt to increase the performance and functionality
of nanomaterials, heterostructured nanoparticles composed of
two or more different materials were created. This technology
allowed for the design of advanced NPs with additional properties

arising from the synergy of the different materials (Wei and
Zhao, 2016). One method to concrete this effort was to coat
nanoparticles with one or more layers. Nanoparticles created
in this way can be classified as core–shell (CS), when a central
core (NP) is surrounded by one or more layers of different
material [shell(s)], or as yolk–shell (YS). when the a movable
core is located in a hollow cavity surrounded by a shell (Purbia
and Paria, 2015). A hollow core–shell structure or hollow NP is
another term referred to a NP without a core; the resulting empty
space inside the shell can then be loaded with drugs, microRNA
(miRNA), genes, peptides, and others that can now be released
in a controlled manner. Janus nanoparticles are a different type
of nanomaterials; they possess a tunable asymmetric structure;
their surface has two or more regions with different properties,
which confer them unique properties as selective reactivity or
directional interactions. The field of application is broad and
innovative including its use as sensors, self-propelled carriers, or
coatings (Agrawal and Agrawal, 2019; Figure 2).

Nanoparticles as a Theragnostic
Approach in Glioma
Nanoparticles as Radiosensitizers
Cancer tumors frequently contain a chemo and/or radioresistant
subpopulation that survives and proliferates after standard
treatments, contributing to the recurrence of a more aggressive
tumor (Dahan et al., 2014; Yuan et al., 2018). Cancer stem
cells (CSCs) represent this treatment-resistant subpopulation,
and huge efforts are being focused on developing strategies
to make them more amenable to current and novel therapies.
The use of radiosensitizers is a potential approach to overcome
radioresistance; however, its principal shortcoming is the lack of
target specificity, which may lead to low concentrations in tumor
tissue and toxic effects in healthy cells.

In this regard, nanoparticles have been tested as
radiosensitizers agents and also as radiosensitizers carriers,
showing promising results after photon and particle radiation
(Caban-Toktas et al., 2020; Chung et al., 2020; Kazmi et al., 2020).
For instance, Kunoh et al. developed DNA–gold nanoparticles
complexes to work as radiosensitizers; they showed good cellular
targeting and being effective in inducing cell death by mitotic
catastrophe in glioma CSC after X-ray irradiation (Kunoh
et al., 2019). Kefayat et al. also described good performance of
folic-acid-coated gold nanocluster in radiosensitizing orthotopic
C6 glioma tumor in a murine model (Kefayat et al., 2019). Folic
acid receptors are differentially expressed in the luminal side of
cancerous blood–brain barrier (BBB) endothelial cells as well as
in cancer cells but not in normal tissues, which explain the higher
concentration of these NP in glioma tumor when compared to a
healthy brain tissue (Kefayat et al., 2019).

Furthermore, in order to target the glioma-resistant
population specifically located in the tumor hypoxic niche, Hua
et al. developed hypoxia-responsive yolk–shell nanoparticles
(liposomes) by encapsulating radiosensitizer hydrophobic drugs
[aniopep-2-poly-(metronidazoles)n and doxorubicin (DOX)] in
hydrophilic polymers (PEG2000); these NPs were functionalized
to target gliomas cells and release its content only under hypoxic
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FIGURE 2 | Nanoparticle classification based on its structure. (A) Core–shell (CS) nanoparticle (NP) possesses a central core (NP) surrounded by one or more layers
of different material [shell(s)]. (B) Hollow core–shell structure or (hollow NP) refers to an NP without a core; the resulting empty space inside the shell can then be
loaded with drugs, microRNA (miRNA), genes, peptides, and others that can now be released in a controlled manner. (C) Yolk–shell (YS) NP possesses a movable
core that is located in a hollow cavity surrounded by a shell (Purbia and Paria, 2015).

conditions, increasing radiosensitization as shown in vitro and
in vivo after systematic NP administration (Hua et al., 2018;
Table 3).

Nanoparticles as Nanocarriers
The restricted permeability of the BBB has been one of the
biggest challenges in the mission of effectively treating brain
tumors. In nanomedicine, not all nanoparticles can efficiently
cross this biological barrier despite their size and physicochemical
characteristics; consequently, previously discussed strategies,
such as ligand targeting, or improvements on the enhanced
permeability and retention (EPR) effect are required.

While ligand targeting is an active targeting method and
required NPs to be designed with this purpose in mind, EPR effect
refers to a passive targeting mechanism common to all NPs. EPR
effect relies on pathophysiological characteristics of tumor vs.
healthy vessels as well as NP size, which is larger than individual
conventional chemotherapeutics (usually < 1,000 Da). Due to
their relatively larger size, NPs are not able to penetrate normal
blood vessels but can easily cross diseased vessels such as those
presented in brain tumors, leading to a selected distribution into
cancer tissues. NP with diameters of at least 5–10 nm present
reduced kidney excretion (by exceeding the clearance renal
threshold of 40,000 Da), prolonged blood half-life, and better
accumulation in the tissue of interest. For instance, the plasma
half-life of doxorubicin increases from 5–10 min to 2–3 days
when this is encapsulated into liposomes. In order to achieve
better results from the application of organic nanoparticles
such as liposomes, micelles, etc., some polymers such as PEG
can be used to decrease NP aggregation and opsonization by
plasma proteins, thus adding to the improved blood half-life
(Hua et al., 2018).

Unfortunately, EPR effect is highly heterogeneous at
inter- and intraindividual level, changing over time in the
same tumor and even being dissimilar among different brain
tumor lesions for the same patient. This, altogether, has led

to clinical outcomes that does not match with preclinical
results. In order to overcome these drawbacks, additional
strategies to enhance BBB disruption and facilitate NP
penetration have been applied. These strategies include
pharmacological and physical methods such as sonoporation
and radiation. Radiation can increase vascular permeability
due to increased secretion of vascular endothelial growth
factor (VEGF) and fibroblast growth factor (FGF) (Lee
et al., 1995; Park et al., 2001). Thus, Lammers et al. (2007)
showed a positive effect in the accumulation of DOX-
loaded polymeric NP sized between 5 and 10 nm (31 and
65 kDa, respectively) when tumors were primed with different
doses of radiation.

Overall, all the previously described strategies should
be carefully weighted when trying to optimize the use of
nanoparticles as nanocarriers. In this setting, when applied to
an orthotopic glioblastoma model, the use of functionalized
biodegradable polymeric nanoparticles coated or loaded with
anticancer drug has been able to confer longer survivals
in preclinical models (Yu et al., 2019). Among all the
different nanocarriers (Figure 1), liposomes have been
largely used. Preclinical studies using liposomes loaded
with doxorubicin or coated with temozolomide showed
higher concentrations of these drugs inside the brain when
compared with the plasmatic levels; in these same models,
survival benefit was also described (Zhao et al., 2018; Li
et al., 2019). Noteworthy, liposomal doxorubicin has been
clinically used in primary and recurrent high-grade glioma
patients, and good biodistribution and decent outcomes were
obtained; however, none of the studies were randomized
controlled trials (RCTs) and were published just before or
after the publication of the Stupp protocol (Fabel et al., 2001;
Hau et al., 2004).

Overall, these results point the use of nanocarriers as a
promising enhancer of effective therapies for the treatment of
patients with glioma (Table 3).
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Nanomachines
Nanomachines or nanobots are molecular self-propelled
nanodevices considered as smart delivery systems that respond
to specific triggers (Khawaja, 2011; Jager and Giacomelli, 2015;
Saxena et al., 2015; Fu et al., 2017). DNA nanorobots are
nanometric devices controlled by an aptamer-encoded logic
gate, able to sense specific stimulus such as intracellular pH
or cell surface ligands in order to activate and reconfigure its
structure for delivery of different payloads. Li et al. reported on
a DNA nanorobot created through the DNA origami method;
this was programmed to unfold itself upon binding to caveolin
molecules expressed in cancerous blood vessel endothelial cells
in order to deliver thrombin into tumor vessels. The authors
were able to prove this concept in a murine model of breast
cancer, successfully inducing intratumorally vascular thrombosis
that resulted in tumor necrosis and growth tumor inhibition (Li
et al., 2018). This technology is revolutionizing the traditional
way of treating different tumors and is a promising strategy
to improve prognosis on brain tumor patients. Other novel
approach introduced as a promising tool in the armamentarium
for the treatment of glioma tumors is the use of stem cells.
Along the next section, we will describe how the above-described
nanotechnology has been coupled to engineer improved stem
cell therapies for the treatment of brain cancer (Table 3).

APPLICATIONS OF NANOPARTICLES IN
STEM CELL GLIOMA THERAPY

Nanomedicine has extend the reach to several cancer
treatment approaches such as radiotherapy, chemotherapy,
immunotherapy, and others. In the case of stem cell therapies,
improvements in several aspects are clearly needed. In an
attempt to consolidate the translational potential of this
approach, nanoparticles have been used to enhance safety and
efficacy, stem cell tumor homing, and in vivo tracking after
stem cell delivery. On the other hand, apart from nanoparticle
surface modifications performed in an attempt to improve
pharmacokinetics and pharmacodynamics parameters, stem
cells appear as a reasonable option to overcome the suboptimal
penetration, distribution, and retention associated to some
nanomaterials when used as therapeutic nanocarriers. The use
of stem cells in this context definitely add another option for a
more targeted nanoparticle delivery. Thus, the benefit obtained
from this combined approach using nanoparticles and stem cells
is bidirectional.

Nanoparticles for Stem Cells Genetic
Engineering
Stem cells are known by their ability to serve as vehicles of
antitumor cargoes. For this purpose, viral gene vectors have
been traditionally used to transduce stem cells with a high
degree of gene delivery efficiency resulting in constant payload
production (anticancer proteins, cytokines, antibodies, viral
vectors, etc.). Although newer generations of viral vectors present
better safety profiles, these vectors have been associated with
immunotoxicity as a response to viral proteins production or

potential viral replication. They also would carry the hypothetical
risk of uncontrolled viral genome integration and insertional
mutagenesis, latent virus activation, and inflammatory responses
leading to demyelination or neurodegeneration (Dewey et al.,
1999; Mangraviti et al., 2016). In this setting, nanoparticle-
based gene delivery represents an attractive non-viral strategy
to bioengineer stem cells. Different from commercially available
reagents such as Lipofectamine 2000 (Thermo Fisher Scientific,
Waltham, MA) nanoparticles may represent a less toxic and more
effective approach for gene delivery.

Our group reported on the use of biodegradable polymeric
nanoparticles based on poly(beta-amino ester)s (PBAEs) to
enable effective BMP4 gene delivery on human A-MSC, allowing
for higher transfection rates than those of commercially available
reagents. Transfected MSC retained their multipotency and
their tumor-homing capacity and were functional, leading to
extended survival in a rat orthotopic GBM model (Yong et al.,
2009). Huang et al. also reported on the use of nanoparticles
for stem cell bioengineering; using hyaluronic acid (HA)-
decorated superparamagnetic iron oxide nanoparticles as part
of a magnetic ternary nanohybrid (MTN), the group was able
to construct tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL)-secreting human mesenchymal stromal cell
(hMSC). Decoration with CD44-binding HA and magnetic
forces were used in this approach to increase cellular uptake
of MTN. Impairment in tumor-homing properties were not
observed (Huang R. Y. et al., 2019). Overall, nanoparticles
raise as an option of safe and efficient gene delivery for stem
cell; thus, helping stem cell therapy to achieve its maximal
therapeutic potential.

Nanoparticles as Stem Cells Payloads
In the treatment of several malignancies, different nanoplatforms
acting themselves as anticancer agents (Mooney et al., 2014a)
or as carriers for these anticancer drugs (Mooney et al., 2014b)
have been delivered locally and systemically. Recent advances in
nanomedicine have allowed tuning nanoparticles properties in
such a way that crossing the BBB and reaching brain tumors
is now possible. However, there is a fine line between three
factors: (1) the ideal size that a nanoparticle must have to easily
cross the BBB (up to150 nm, optimal passage if < 15 nm) (Gao
and Jiang, 2006), (2) being big enough to still be able to carry
enough payload, and (3) being small enough to avoid engulfment
by the mononuclear phagocyte system but still contain all
the necessary ligands to assure specific cancer targeting
(Owens and Peppas, 2006).

Furthermore, even if researchers could secure that
nanoparticles reach the glioma tumor bulk, there exist other
potential drawbacks that are imperative to highlight; they are
related to the presence and location of glioma cancer stem cells
(1) Nanoparticles are neither able to track infiltrative glioma
cells leaving the tumor bulk to colonize distal healthy brain
parenchyma nor (2) to reach the necrotic glioma core where
blood flow is impaired. These areas do not present an EPR
effect, which would facilitate nanoparticles to distribute across
other areas of the tumor. Allowing nanoparticles to access the
hypoxic central core would be crucial, as the treatment-resistant
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subpopulation of glioma cancer cells would predominantly
locate in that area (Table 4). Even after active targeting strategies
including ligand targeting and microenvironment-related
targeting (delivering payload depending on pH, temperature,
etc.) (Koo et al., 2006; Bernardi et al., 2008; Madhankumar et al.,
2009; Hadjipanayis et al., 2010; Wang et al., 2011), nanoparticles
alone are still insufficient and would be unlikely to overcome the
above-mentioned roadblocks.

In this scenario, coupling stem cell therapy to
nanotherapeutics offers the possibility to solve the previously
stated dilemma regarding the inadequate distribution of
therapeutic nanoparticles to the hypoxic glioma core and
distant infiltrative tumor foci. Thus, stem cells could extend the
reach for nanoparticles to penetrate these areas. This approach
implies nanoparticles to be conjugated to stem cell surfaces
or internalized before migrating toward malignant gliomas.
Furthermore, the internalization of nanoparticles inside stem
cells would allow them to be up to fivefold larger than the
usual nanoparticles used in cancer therapy, without entailing
problems in crossing the BBB or a higher risk to be engulfed
by macrophages or lymphocytes (Koo et al., 2006; Bernardi
et al., 2008; Madhankumar et al., 2009; Hadjipanayis et al.,
2010; Wang et al., 2011). This increase in the nanoparticles’
longitudinal size translates into an approximately 125-fold
increase in the nanoparticle load potential (by a volume-based,
three-dimensional factor of 5) (Koo et al., 2006; Bernardi et al.,
2008; Madhankumar et al., 2009; Hadjipanayis et al., 2010;
Wang et al., 2011).

In this same line, the Aboody group demonstrated
that neural stem cells were able to improve intracranial
nanoparticle retention and tumor-selective distribution in
an in vivo model by coupling huge nanoparticles to NSC
surface (Mooney et al., 2014b). Taking advantage from the
significant differences in the environmental pH between
tumor and healthy tissues, the Aboody group loaded FDA-
approved NSC cell with pH−sensitive doxorubicin−loaded
mesoporous silica nanoparticles (MSN−Dox); the authors were
able to tune nanoparticles properties to delay doxorubicin
toxicity, allowing NSC to home into glioma tumors and
deliver its payload only after arriving at the acidic tumor
microenvironment. The approach led to a significant
difference in survival when studied in a preclinical in vivo
model (Cheng Y. et al., 2013). The same group also
evaluated the role of NSC loaded with gold nanorods
(AuNRs) to improve plasmonic photothermal therapy
(aka thermal ablation), where the nanoparticles help to
convert light into heat, aiming to eliminate cancerous
tumor cells. The authors found that intratumor injections
of AuNR-loaded NSC improved AuNRs distribution inside
the tumor bulk when compared to locally injected free
AuNRs in a brain metastasis heterotopic in vivo model
(Mooney et al., 2014a).

The role of mesenchymal stem cells as nanoparticle
carriers has also been investigated. Polymeric nanoparticles
(paclitaxel-encapsulated PLGA nanoparticles) were loaded
into BM-MSC. Osteogenesis, adipogenesis (chondrogenesis
was not evaluated), and tumor homing were not affected by

nanoparticle inclusion. The approach was associated with
improved survival in a rat orthotopic glioma model when the
modified MSCs were injected in the contralateral hemisphere
(Wang et al., 2018). A similar approach to the one described
by the Aboody group was performed on modified MSCs by
loading them with gold nanoparticles (nanostarts) to improve
phototherapy. Although studied in a heterotopic model of
prostate cancer, the results support the use of MSC to maximize
clinically relevant gold nanoparticles’ optical–electronic
properties by increasing nanoparticle intratumor distribution
(Huang L. et al., 2019).

Nanoparticles to Modulate Stem Cell
Tumor Homing
Several tumor cytokines and stem cells surface proteins have
been involved in enhancing MSC migration toward glioma
tumors; however, no specific mechanism has been described
yet. Tumor cytokines such as endothelial cell growth factor
(EGF), platelet-derived growth factor (PDGF), VEGF, tumor
growth factor β1 (TGF-β1), interleukin 8 (IL-8), monocyte
chemoattractant protein-1 (MCP-1), and stromal cell-
derived factor 1 alpha (SDF-1α) as well as stem cells surface
proteins such as CD44, CXC chemokine receptor 4 (CXCR-
4), integrin α4, and TGF-β receptors have been associated
with increased MSC homing in gliomas (Young et al., 2014;
Yamazoe et al., 2015).

The impact on stem cell behavior after being loaded
with nanoparticles for different purposes has not been the
principal focus of research. However, there already exist
reports describing the increase in migration toward cancer
cells after loading hMSC with iron oxide nanoparticles. This
would be related to the overexpression of EGFR observed
after nanoparticle inclusion and the characteristic elevated
production of EGF by colon cancer cells used in the in vitro
Boyden chamber experiments (Chung et al., 2011). Interestingly,
the same trend has been observed when human BM-MSC
were labeled with ferucarbotran nanoparticles and protamine.
Using cellular magnetic resonance imagining (MRI) to track
the labeled stem cells, increased BM-MSC migration toward
in vitro and in vivo glioma models was found, and the
SDF-1/CXCR4 signaling axis was associated to this phenomenon
(Chien et al., 2011).

Nanoparticles for Tracking Stem Cells
During Glioma Therapy
Stem-cell-based therapies rely on the ability of the grafted
cells to target the organ of interest. In case of malignant
gliomas, it is crucial to ensure stem cell tumor homing.
In the preclinical setting, conventional methods for tracking
migration and final fade of stem cells are traditionally based on
bioluminescence imaging; however, poor spatial distribution and
lack of translational applicability made necessary to establish a
reasonably translational method that can be easily applied in
a clinical setup.
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Cellular MRI-based tracking technologies have risen as gold
standard for non-invasive, real-time monitoring of transplanted
stem cells (Kim et al., 2011). This approach would allow the
study of stem cell biodistribution, migration, survival, and even
differentiation with high spatial resolution and without the need
for ionizing radiation. To make this possible, stem cells will
require being labeled with magnetic nanoparticles. Although
several options exit, magnetic iron oxide nanoparticles such
superparamagnetic iron oxide nanoparticles (SPIONs) have been
commonly used for this purpose (Cromer Berman et al., 2011).

The conjugation of stem cells and SPIONs has allowed for
tracking MSC migration and homing into glioma tumors in
a rodent glioma model without compromising such migratory
capacity (Wu et al., 2008; Menon et al., 2012). NSCs have also
been widely studied in this regard (Spina et al., 1975; Neri
et al., 2008). After 1 month of follow-up, it was demonstrated
that SPIONs would not impair multipotency, cell survival, or
proliferation (Agha-Hosseini et al., 2010). Furthermore, a NSC
migration speed of 50–70 µm/day has been calculated after the
cells were loaded with ferumoxide (SPION + dextran) (Flexman
et al., 2011). Clinically relevant results were those presented
by Thu et al. The group showed that loading FDA-approved
NSC with ferumoxide–protamine complex nanoparticles did
not impaired humor-homing properties in a murine glioma
model (Thu et al., 2009; Auffinger et al., 2013). Gutova
et al. also reported on similar findings when using ultrasmall
superparamagnetic iron oxide nanoparticles (USPIONs) in
clinically graded nanoparticles and FDA-approved NSC (Gutova
et al., 2013). Currently, different complementary imaging
modalities and nanoparticles stem-cell coupling techniques are
being studied (Egawa et al., 2015; Cheng S. H. et al., 2016;
Qiao et al., 2018).

Even when this approach was first evaluated in the clinical
setting around 2006 (Zhu et al., 2006) and has been used in
different pathologies and other cancers (de Vries et al., 2005),
glioma patients have not yet harnessed the benefit of the clinical
applicability of this technology. This could be related to the
difficulties in obtaining long-term follow-up of nanoparticle-
labeled stem cells, as their self-renewal capacity render less
nanoparticle concentration through each replicative cell cycle.

CHALLENGE, POTENTIAL PITFALLS,
AND FUTURE PERSPECTIVE

Challenge and pitfalls associated with this relatively novel
approach is proper of any disruptive technology. The ethical
concerns associated with the use of particular stem cells,
while seemingly addressed with modern techniques, need to
be further discussed before extensive use can be assumed

(Ramos-Zúñiga et al., 2012). Clinical endeavors utilizing stem
cells as potential therapeutic tools in glioma patients have
already glimpsed relative success. In this setting, careful and
individualized selection of specific types of stem cell will be
key in in future clinical applications for these patients. For
instance, we concentrate our efforts in the application of adipose-
derived MSCs, which can be easily obtained from the same
patient. Although still in preclinical phase, we expect them to be
rapidly bioengineered and used for autologous transplantation,
thus allowing for an individualized and expedited process so the
patients can therapeutically receive them even at time of surgery.

The introduction of the nanotechnology in stem cell therapies
has shown to be beneficial and hopefully will keep turning
stem cell therapies into a less worrisome and more controlled
therapeutic strategy. To date, we have explored NP for stem cell
bioengineering and cell tracking; however, we believe that their
malleability allows for further uses such as the ones previously
described, alone or in combination, and even for stem cell
functionalization (Kim et al., 2011; Bishop et al., 2016; Mangraviti
et al., 2016; Wilson et al., 2017a,b; Tian et al., 2020).

Finally, the combination of these therapies should not be
limited to only nanoparticles and stem cells; this combined
approach will need to explore if further value can be obtained
by coupling with additional fields such as radiotherapy,
thermotherapy, targeted systemic therapies, focused ultrasound,
and other novel diagnostic techniques such as ultrahigh
magnetic strength imaging and novel radiotracers in order to
maximize its benefits.
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