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ABSTRACT: Continuous use of antibiotics leads to the ability of bacteria to adapt by developing complex antibiotic resistance
(AR) mechanisms. The synthesis of β-lactamases is a widely observed AR mechanism. The class C β-lactamase (AmpC) causes
significant resistance toward β-lactam antibiotics, and new treatments are urgently needed. Noncovalent inhibitors have been
developed against a broad spectrum of β-lactamases. In this study, we developed robust and accurate models for predicting
noncovalent inhibitors of AmpC using large compound data sets and machine/deep learning modeling. We created support vector
machine (SVM), random forest (RF), and feed-forward neural network (FFNN) classification models. The cross-validation (CV)
accuracies varied between 80 and 82%, as combined models reached an accuracy of 83%. We analyzed the physicochemical
characteristics of the noncovalent inhibitors and predicted the binding modes for some of them. Such models are helpful for
identifying new noncovalent inhibitors in order to establish novel solutions against the growing resistance to standard β-lactam
inhibitors. The best RF, SVM, and FFNN models for predicting noncovalent inhibitors of AmpC β-lactamase are available in the
GitHub repository, https://github.com/UPCmctr/ML-DL-AmpC-B-lactamase.

1. INTRODUCTION
Continuous use of antibiotics leads to the ability of bacteria to
adapt by developing complex antibiotic resistance (AR)
mechanisms. In particular, the production of β-lactamase
enzymes is a widely observed AR mechanism. Among the
numerous β-lactamases, Ampicillinase C (AmpC) (Figure 1), a
class C β-lactamase,1,2 shows significant resistance toward β-
lactam antibiotics, including penicillin, cephalosporins, and
carbapenems.3 AmpC is expressed in gram-negative bacteria
such as Enterobacter cloacae and Pseudomonas aeruginosa,
among others.2,4 Bacteria producing high levels of AmpC β-
lactamase via alteration of regulatory genes are constantly
increasing.5

Identifying new AmpC β-lactamase inhibitors is urgently
needed to develop novel effective treatments against the
resistant bacteria.6 Conventional strategies utilize β-lactam
inhibitors such as clavulanic acid, sulbactam, and tazobactam,7

which are efficient for class A β-lactamases.7,8 However, β-
lactamases classes B, C (as AmpC β-lactamase),8 and D9,10 are
slightly affected by these first-generation β-lactamase inhib-
itors. Currently, non-β-lactam inhibitors, such as diazabicy-
clooctane (DBO) derivatives (e.g., avibactam, relebactam) or

boronic acid-based inhibitors (e.g., vaborbactam11,12), are
employed to restore the activity of β-lactams against bacteria
producing AmpC β-lactamase. In addition, noncovalent
inhibitors are of particular interest as showing efficacy against
a broad spectrum of β-lactamases,13 including AmpC β-
lactamases.14,15

Virtual screening has been recently used for discovering new
noncovalent inhibitors of AmpC β-lactamase.14,15 Lyu et al.
performed large-scale virtual screening against AmpC,
synthesized 44 diverse potential hits, and identified a phenolate
compound as a novel strong inhibitor of AmpC with IC50 of 77
nM15 (see Figure 1). Recently, machine learning (ML) and
deep learning (DL) have also emerged as new strategies for the
identification of β-lactamase inhibitors. The application of
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ML/DL methodologies has been proven to be successful in
drug discovery,16 e.g., for identifying promising candidates for
various therapeutic targets, e.g., enzymes and nuclear receptors,
among others.17−20 Stokes et al. utilized a deep neural network
(DNN) to predict antibacterial candidates and discovered
halicin showing a broad-spectrum bactericidal activity.21 Li et
al. built predictive models for identifying antibacterial
compounds using support vector machines (SVM) and
random forests (RF) that suggested numerous FDA-approved
drugs as potential antibacterial agents.22 Hsieh et al. employed
QSAR and ML k-nearest-neighbors (k-NN) modeling for
predicting new inhibitors of AmpC β-lactamase based on a
small training set of 21 compounds.23 Five weak noncovalent
inhibitors of AmpC were found, the best one showing a Ki
value of 135 μM. Recently, Anant et al. developed classification
and regression models based on a large data set from ChEMBL
using RF, logistic regression (LR), and support vector
regression (SVR) to predict the potency of new compounds
against AmpC.24

In this study, we developed robust and accurate models for
predicting noncovalent inhibitors of AmpC using diverse
compound data sets and ML (RF, SVM) and DL (up to three
hidden layers were tested) modeling. We built RF,25 SVM,26

and feed-forward neural network (FFNN)27,28 models. To
enhance the predictive capabilities of our approach, we also
combined models integrating the best SVM, RF, and FFNN
models. We analyzed the physicochemical characteristics of the
used noncovalent inhibitors and predicted the binding modes
for some of them. Such models are helpful for identifying new
noncovalent inhibitors in order to establish novel solutions
against the growing resistance to standard β-lactam inhibitors.

2. MATERIALS AND METHODS
2.1. Data Set Preparation. The data sets were based on

the PubChem bioassay ID 585 for the AmpC β-lactamase of
Escherichia coli, where 70,699 molecules were used for high-
throughput quantitative screening (qHTS). Compounds

exhibiting an IC50 < 28 μM were taken as inhibitors, resulting
in 130 inhibitors. The compounds showing <1% inhibition at a
concentration of 28 μM were considered noninhibitors,
resulting in 68,782 noninhibitors. Focusing here on drug-like
compounds, we applied the same “soft” drug-like filtering and
curation protocol for both inhibitors and noninhibitors (see
the Supporting Information (SI) for details). That resulted in
97 inhibitors and ∼50,000 noninhibitors. For the non-
inhibitors, we finally randomly chose 500 molecules to exceed
the number of inhibitors by 5 fold. We performed principal
component analysis (PCA) of the 500 randomly selected
noninhibitors and 50,000 ones (see Figure S1 and details in
SI), showing a good distribution of the 500 compounds in the
chemical space of the 50,000 noninhibitors. The training set
was built by randomly choosing 80% of the data set (68
inhibitors and 350 noninhibitors), while the remaining 20%
(29 inhibitors and 150 noninhibitors) was used as the external
test set. The lists of inhibitors included in the training and
external test sets are provided in the SI.
2.2. Descriptor Calculation. We calculated 354 two-

dimensional (2D) and three-dimensional (3D) physicochem-
ical descriptors for the compounds of the training and external
data sets using MOE software.29 Descriptors with zero variance
were removed. Descriptors exhibiting a Pearson correlation
coefficient of 0.85 or higher were additionally analyzed. For
each pair of correlated descriptors, we applied a Student’s t-test
to determine the more discriminative descriptor between
inhibitors and noninhibitors. The descriptor showing a higher
p-value was removed. Finally, 177 descriptors were retained.
2.3. Machine Learning Classification Modeling. We

employed SVM and RF algorithms to develop classification
models for the prediction of the AmpC inhibitors.

2.3.1. Importance of Descriptors. In the ML modeling, we
included the best descriptors ranked based on their relative
importance in predicting inhibitors of AmpC. The importance
is measured by the Gini impurity index,30 which is a measure
of the probability of incorrectly classifying a randomly selected
element in a data set. The Gini impurity index was calculated
using an RF approach, constructing multiple decision trees. We
built 1000 RF models on the training set using default
hyperparameters (given in SI Table S1) and selected the subset
of descriptors with the highest Gini importance.

2.3.2. RF Modeling. RF classification models were built
using the Random Forest R library31 of the R software.
Multiple decision trees were built with bootstrap samples from
the training data. To introduce diversity into the RF ensemble
trees, each tree utilizes a random subset of descriptors to make
decisions at its nodes. The classification was obtained by taking
the results of all of the trees through a majority vote.

We first developed RF models using the default hyper-
parameters (see SI Table S1). Then, we optimized the RF
models. This process was carried out through a search for the
best combination of the hyperparameters: ntree (number of
trees in the forest), mtry (number of selected descriptors at
each node), and sampsize. The ntree parameter was explored
within the range 128−1024 and mtry was tested within the
range 5−50. The sampsize parameter was tuned for the number
of inhibitors ranging from 60 to 80% of the total number of
compounds and the number of noninhibitors from 70 to 120%
of the inhibitor counts. This parameter is essential to handle
imbalanced data to improve the model performance. The
optimization of these hyperparameters was conducted by using

Figure 1. 3D structure of E. coli’s AmpC β-lactamase cocrystallized
with a noncovalent inhibitor ZINC54971964315 (PDB ID 6DPT).
The residues of the active site are shown as a surface in cyan atom
type. The inhibitor is in sticks and colored in orange atom type.
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a grid-based search. The 5-fold cross-validation (CV)
procedure was repeated 10 times.

2.3.3. SVM Modeling. SVM methodology is based on
minimization concepts in the statistical learning theory32 and
employs various kernel functions to project data into higher-
dimensional spaces. This technique is especially effective in
instances where data sets are not linearly separable. We
employed SVM algorithms implemented in the R package with
the Caret library33 to build our classification models.

The initial SVM models were trained using default
hyperparameters (see SI Table S1). The descriptors were
centered around a zero mean and scaled to have a variance of
one. We used the radial basis function kernel (SVM-Rad).
Then, we optimized the hyperparameter to improve the SVM
models. The cost parameter was optimized in the range of 2 to
218, where a higher cost value may lead to a more complex
model and overfitting, while a lower value may lead to
underfitting. The hyperparameter γ, influencing the decision
boundary of the model, was optimized in the range of 2−14 to
2°. To address the imbalance of our data set, we also optimized
the weight parameter. The optimization of the SVM
hyperparameters was also undertaken using a grid-based search
and employing a ten-time repeated 5-fold CV.

2.3.4. Additional Runs of Model Optimization. After
obtaining the first optimized RF and SVM models, we carried
out three successive runs of optimization. This involved
recalculating the importance of the descriptors selected in the
previous run and tuning the hyperparameters through CV.
2.4. Feed-Forward Neural Network Classification

Modeling. Commonly referred to as multilayer perceptron
(MLP), FFNNs constitute artificial neural networks of multiple
interconnected layers of neurons, facilitating the propagation
of information in a unidirectional manner from the input layer
to the output layer. We constructed a classification predictive
FFNN model using Python version 3.7.1634 and employed

TensorFlow V 2.11.0,35,36 which incorporates the Keras API37

for the model implementation.
Our FFNN model is based on a variety of hyperparameters

requiring thorough optimization. These include the number of
hidden layers, number of neurons per layer, batch size,
optimizer type, class weights, and learning rate. To avoid
overfitting in our models, we integrated the L2 regularizers in
each hidden layer. These regularizers penalize higher weights
and maintain the balance of the model. The coefficients
associated with these L2 regularizers are also considered as
hyperparameters entering the optimization (see SI Table S2).
We defined the search space for each hyperparameter for
efficient optimization. Each hidden layer within our
architecture utilizes the rectified linear unit (ReLU) activation
function, while the output layer employs the sigmoid function
optimized for binary classification tasks (SI Table S2). To
evaluate the performance of our FFNN model, we used a 5-
fold cross-validation method, repeated 10 times, in which we
calculated the metrics described in the SI.

Compared to RF and SVM modeling, FFNN integrates a
greater number of hyperparameters to be optimized. This
makes an exhaustive grid search of a map impractical. As a
more efficient alternative, we employed Bayesian optimization
(BO) using the GpyOpt Python library38 based on
probabilistic modeling for efficiently finding the best
combination of hyperparameter values, ensuring the best-
performing model. The optimization started by defining the
ranges for each hyperparameter present in the initially created
FFNN model and distributing random values for each
hyperparameter within the defined ranges (SI Table S2).
Our BO included 400 successive optimization cycles of
Gaussian processes (GP)39 and expected improvement (EI)
acquisition function,40,41 simplifying the objective function and
thus ensuring accelerated finding of an optimized combination
of hyperparameters at each optimization cycle.

Figure 2. Workflow of the used machine learning and deep learning modeling. FFNN: feed-forward neural network, SVM: support vector machine,
RF: random forest, and CV: cross validation.
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The statistical metrics used to evaluate the predictive
capabilities of all models are listed in SI.
2.5. Molecular Docking. To explore possible binding

modes for some of the AmpC β-lactamase inhibitors present in
our data set, we performed molecular docking on the chain B
of the 3D structure of E. coli β-lactamase AmpC (PDB ID
4KZ5, resolution 1.35 Å, selected after analysis of the PDB
structures 4KZ4, 1C3B, 1FCO, and 3BLS). We performed
docking of two compounds using AutoDock Vina 1.1.2.42 This
software employs conformational gradient-based docking
coupled with an empirical scoring function to predict the
protein−ligand interaction energy in kcal/mol. The 3D
conformations of the ligands were generated using CORINA
software,43 and their protonation states at pH 7 were assigned
using Pipeline Pilot software v.20.1.44 The protein and ligand
structures were preprocessed with AutoDockTools,45 the
solvent molecules were removed, nonpolar hydrogens were
merged, and Gasteiger charges were assigned. A grid box of 26
Å × 24 Å × 26 Å with a spacing of 1 Å and centered in the
binding pocket was used for docking. The maximum number
of binding modes was set to 20, and a global search
exhaustiveness of 10 was utilized. The ligands were flexible,
and the protein was kept rigid, except for residue Q120 of the
binding pocket displaying different positions in the different
crystal structures mentioned above. The docking results were
analyzed and visualized using the software PyMol v 2.3.2.46

3. RESULTS AND DISCUSSION
In order to develop ML and DL models for predicting
noncovalent inhibitors of AmpC β-lactamase, the following
procedure was done: (i) we prepared data sets of noncovalent
inhibitors and noninhibitors of AmpC β-lactamase; (ii) we
calculated MOE physicochemical descriptors; (iii) we
performed SVM, RF, and FFNN modeling; and (iv) we
validated the models in the external test set (see Figure 2).
3.1. Chemical Space of Data Sets. Following the

descriptor selection, 177 descriptors were retained for ML
and DL modeling (see Section 2 for details). Principal
component analysis (PCA) was performed on the 177
descriptors, and the projection of the training and external
test sets is displayed in Figure 3A. The subspace depicted is
defined by the first two principal components. Overall, the
compounds of the training and test sets covered similar
chemical spaces. Interestingly, the noninhibitors of the training
and test sets cover the entire chemical space represented by the
PCA, while the inhibitors are concentrated in a restricted area,
which is a small part of the noninhibitor space (Figure 3B,C).
The chemical space of the data sets is limited by the “soft”
drug-like filter thresholds (see in Section 2.1), which define the
applicability domain of our models.
3.2. Performance of ML Models for Predicting

Inhibitors of AmpC. First, we developed preliminary RF
and SVM models using the retained 177 MOE descriptors
without optimizing the model parameters (the default
parameters are listed in SI Table S1). These models displayed
poor performances (shown in SI Tables S3 and S4). Very low
sensitivity and an overfitting of specificity were obtained on the
internal CV and external test sets. Such performance disparity
arises from the imbalanced number of inhibitors and
noninhibitors. Thus, we performed further optimization of
the hyperparameters.

First optimization for both RF and SVM models: After
ranking the 177 descriptors based on their importance (see

Figure 3. Chemical space of the training and external test sets is
represented by the principal component analysis (PCA). (A) PCA of
training versus test sets. (B) PCA of the inhibitors versus
noninhibitors of the training set. (C) PCA of the inhibitors versus
noninhibitors of the test set.
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Section 2.3), we selected an importance threshold of 0.7,
resulting in 60 descriptors (see SI Figure S2). The first
optimization performed with the 60 descriptors allowed us to
build better performing models. Notably, we achieved a
significant improvement in balancing the sensitivity and
specificity for both RF and SVM models (see Table 1).

Then, we proceeded with a second optimization where the
importance of the 60 descriptors was recalculated using the
previously optimized RF model. This process led to a
reranking of the descriptors, choosing a new importance
threshold of 0.5 (see SI Figure S3) and a reduced number of
descriptors of 24. The newly optimized models, including 24
descriptors, improved the predictive performance (see Table
2) when compared to the first optimized models with 60
descriptors, in particular, the SVM models.

For the third optimization, the re-evaluation of the 24
descriptors’ importance revealed that the importance of the
descriptors ranked after the best 12 descriptors did not change
significantly (see SI Figure S4). Consequently, the best 12
descriptors were retained for further modeling. The perform-
ance of the best predictive RF and SVM models is shown in
Table 3.

The models built with 12 descriptors displayed a similar
performance to those with 24 descriptors, slightly enhancing
the SVM sensitivity on the external test set. In fact, the RF and
SVM models optimized with 60, 24, and 12 descriptors show
similar performance with a small improvement after each
optimization. The models obtained after a fourth optimization
with 6 descriptors (see SI Figure S5 and Tables S3 and S4)
showed slightly worse performance. Taking into account that

Table 1. Performance of the RF and SVM Models after the First Optimization

60 descriptors/1st optimization method balanced accuracy (%) sensitivity (%) specificity (%) MCC (%) AUC (%)

internal CV RF 79 78 79 50 79
SVM 78 79 77 45 78

external test set RF 84 93 75 52 84
SVM 82 86 77 49 82

Table 2. Performance of the RF and SVM Models after the Second Optimization

24 descriptors/2nd optimization method balanced accuracy (%) sensitivity (%) specificity (%) MCC (%) AUC (%)

internal CV RF 79 78 80 48 79
SVM 81 83 79 50 80

external test set RF 85 93 77 57 87
SVM 85 86 84 58 85

Table 3. Performance of the RF and SVM Models after the Third Optimization

12 descriptors/3rd optimization method balanced accuracy (%) sensitivity (%) specificity (%) MCC (%) AUC (%)

internal CV RF 80 79 80 48 80
SVM 81 82 80 50 81

external test set RF 86 93 79 57 86
SVM 86 90 83 59 86

Figure 4. Density map and marginal histograms of the hyperparameter search in Bayesian optimization. The PC1 and PC2 represent the first and
second principal components, respectively. The intensified research areas are marked by tight contours with three principal zones. The optimal
hyperparameter combinations with the highest balanced accuracies in CV are indicated by red dots for each zone of density. Marginal histograms
on top and right represent trial distribution across PC1 and PC2, respectively.
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the models based on 60 descriptors are more complex than the
others, we considered the RF and SVM models optimized with
24 or 12 descriptors as the best ML predictive models
developed.
3.3. Performance of FFNN Models for Predicting

Inhibitors of AmpC. FFNN integrates a large number of
hyperparameters that need to be optimized. We employed
Bayesian optimization (BO), which is a powerful optimization
technique based on probabilistic modeling for efficient
exploration of the hyperparameter space in order to find the
combination of hyperparameter values that would maximize
the performance of the FFNN model.47

Figure 4 shows the outcomes of the BO applied to the
hyperparameter search. In this density map, the first principal
component (PC1) and the second one (PC2) account for
approximately 75% of the total variance. The areas of
intensified research marked on the map indicate a high
concentration of hyperparameter trials. Notably, there are
three main research zones, each corresponding to a set of
conditions that were tested more frequently. The best balanced
accuracies are denoted by red dots, highlighting the hyper-
parameter sets that exhibited the highest performance during
the CV. These balanced accuracy values show slight variations,
ranging from 80 to 82%, suggesting that the optimization
identified several closely performing solutions. The area with
the highest research density, encompassing the hyperparameter
values that produced the top-performing model with a
balanced accuracy of 82%, suggested that Bayesian optimiza-
tion precisely targeted the most effective hyperparameters.
This observation supports not only the relevance of this
technique for refining model performance but also its efficiency
in terms of computational time. These results confirm the
successful applicability of BO as an appropriate method to
efficiently tune hyperparameters for FFNN modeling. Among
the developed FFNN models, the neural network with three
hidden layers exhibited the best performances in CV (see
Table 4 and SI Table S2 for the optimal hyperparameter
values).

The developed FFNN and the optimized RF and SVM
models (with 24 or 12 descriptors) show different perform-
ances both in CV and external testing. In CV, the FFNN
outperformed the best models RF and SVM by achieving an
AUC of 88% versus ∼80% (see Tables 23−4). The same
tendency is observed on the external test set. Interestingly, the
three methods show equilibrated sensitivity and specificity. On
the external test set, RF achieved a remarkable sensitivity of
93% but a lower specificity of 79%. SVM exhibited an excellent
sensitivity of 90% and specificity of 83%. FFNN demonstrated
excellent sensitivity of 93% and specificity of 83%, thus a better
balance between the ability to detect true positives and true
negatives. Validation of the best FFNN and the optimized RF,
SVM models with 12 descriptors was also performed on an
additional 1000 randomly chosen noninhibitors, confirming

the excellent predictivity of these models (see Table S5 and
Figure S6 in the SI).

In this study, we compared the performance of predictive
models, including various numbers of descriptors. The SVM
and RF models performed well with a set of 24 or 12
descriptors, whereas the FFNN model included a much
broader spectrum of 177 descriptors. Although the optimized
ML models (SVM and RF) and DL model (FFNN)
demonstrated excellent predictive performance, each of them
exhibits its own specificities. Figure 5 illustrates the chemical

space of the entire external test set and the five inhibitors badly
classified by the best RF, SVM, and FFNN models. The
inhibitors CID 5309621 and 3601182, accurately classified by
the SVM and RF models, were misclassified by the FFNN
model. The FFNN model correctly identified the compound
CID 5307628 as an inhibitor, incorrectly classified by the SVM
and RF models. Interestingly, CID 5307628 is placed in the
chemical space, mostly covered by the noninhibitors. There-
fore, one may speculate that FFNN might better discriminate
between positive and negative data when they share the same
chemical space, being capable of detecting minor differences
between the compounds.

A combination of the three predictive methods (RF, SVM,
and FFNN) could be a strategy to identify as many inhibitors
as possible, but with the risk of decreasing the specificity. A
combined model may consider a compound to be classified as
an inhibitor if it is predicted as such by at least one of the three
models. Such a model, combining the FFNN and the best
SVM- and RF-optimized models with 12 descriptors, was
evaluated (see SI Table S6). As expected, a significant
improvement in the sensitivity was achieved (90% in CV),
with a reduction of the specificity to 76% (in CV) due to the
increase in the number of false positives. The application of the

Table 4. Performance of the Best FFNN Model

177
descriptors/

FFNN
balanced

accuracy (%)
sensitivity

(%)
specificity

(%)
MCC
(%)

AUC
(%)

internal CV 82 81 83 56 88
external test

set
88 93 83 61 91

Figure 5. Chemical space of the external test set is represented by the
principal component analysis (PCA). The inhibitors misclassified by
the three models are displayed.
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combined model on the external test set demonstrated a
sensitivity of 100% and a specificity of 72%.

We can conclude that we obtained high-quality models
predicting noncovalent inhibitors of AmpC with the RF, SVM,
FFNN, and combined techniques. Our models largely
outperform others recently reported by Anant et al.24 In
their work, the authors employed RF, LR, and SVR based on a
large data set of ChEMBL containing >60 K compounds to
create models for predicting the potency of compounds
inhibiting AmpC. The best AUC achieved for their
classification models was around 0.5. The reason for such
unsatisfactory performance could be that their data set
comprised <1% of inhibitors without undertaking any
balancing procedures.
3.4. Interactions of AmpC β-Lactamase and Non-

covalent Inhibitors. Experimental structures of AmpC with a
bound inhibitor of our data set have not been reported by now.
In order to predict binding modes for some of these inhibitors,
we performed docking and compared the poses to the
experimental binding modes of other noncovalent inhibitors
of AmpC β-lactamase identified by NMR and SPR fragment-
based screening.48 Barelier et al. reported the crystal structure
of the AmpC β-lactamase cocrystallized with two noncovalent
fragments, CID426788 and CID16770253, showing strong
inhibition (PDB IDs 4KZ5 and 4KZ4). By calculating the
Tanimoto coefficient, we found that the inhibitor CID5309397
of our data set had a structural similarity with the cocrystallized
inhibitor CID426788 of 44%, and the inhibitor CID6603584
of our data set had a structural similarity of 39% with the
cocrystallized compound CID16770253. We focus here on the
inhibitors similar to the cocrystallized ones to only analyze the
docking poses because there is no clear correlation between
the calculated docking scores and the similarity between the
inhibitors and noninhibitors (see Figures S7 and S8 in SI).

Figure 6 shows the comparison of the experimental binding
modes of the two cocrystallized inhibitors and the best ranked
docking pose of the two inhibitors of our data set. The docking
results suggest similar p-p staking between the halobenzene
and Y221 for the two compounds CID426788 and
CID5309397 and hydrogen bonding with S64 and N152.
Similar compounds CID16770253 and CID6603584 are
stabilized by hydrophobic contacts with Y221, L119, L293,
and V211 and hydrogen bonding with S64 and N289. The
similar interactions found by our docking results for the two
compounds of our data set and those observed for the
cocrystallized fragments reinforce the hypothesis for a similar
inhibitory mechanism against the AmpC β-lactamase. The
presence of several hydrophobic residues in the active site,
L119, Y150, V211, Y221, and L293, and several hydrophilic
residues, S64, N152, N289, and N343, shows the mixed nature
of the pocket in terms of polarity. Notably, the two
experimental binding modes show electrostatic interactions
of the carboxylic groups of CID426788 and CID16770253
with the two important arginine residues R204 and R349,
respectively, missing in the docked poses. This provides a
possibility for further optimization of the noncovalent
inhibitors.

We also performed an analysis of the inhibitors and
noninhibitors of AmpC β-lactamase of our data set based on
the best 24 descriptors derived from the second optimization.
The differences in the most important 24 physicochemical
descriptors between inhibitors and noninhibitors are illustrated
by 24 boxplots in SI Figures S5 and S6. Notably, among the
top 12 descriptors ranked after the first optimization (with 60
descriptors) and the second optimization (with 24 descrip-
tors), 11 are the same, and among the top 12 descriptors
ranked after the second optimization (24 descriptors) and the
third optimization (12 descriptors), seven are the same,

Figure 6. Binding poses of noncovalent inhibitors of AmpC β-lactamase. The active site residues interacting with the compounds are colored in
cyan atom type. The inhibitors are colored in an orange atom type. (A) CID426788 cocrystallized with AmpC β-lactamase (PDB ID 4KZ5). (B)
The top-ranked pose of CID5309397 docked into AmpC β-lactamase. (C) CID16770253 cocrystallized with AmpC β-lactamase (PDB ID 4KZ4).
and (D) The top-ranked pose of CID6603584 docked into AmpC β-lactamase.
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showing the stability of the optimized models after the second
and third optimizations.

Four out of these seven descriptors are associated with the
compound hydrophobicity: vsa_hyd, vsurf_d5, logP,
PEOE_VSA-0, and one, vsurf_CW1 (SI Table S7). In the
same line, GCUT_PEOE_0 and logS are lower for the
inhibitors. Overall, the inhibitors have the tendency to be more
hydrophobic than the noninhibitors. This is in agreement with
the several hydrophobic residues of the binding pocket
(Figures 1 and 6) (L119, Y150, V211, Y221, and L293)
clustered in one area of the pocket.

Interestingly, two out of the seven most important
descriptors are associated with the compound stability,
E_ang and BCUT_PEOE_0, showing that the inhibitors are
more stable than the noninhibitors (see SI Table S7 and
Figures S9 and S10).
3.5. Conclusions. In this study, we developed high-quality

predictive models for identifying noncovalent inhibitors of the
AmpC β-lactamase enzyme using RF, SVM, and FFNN
algorithms with cross-validation accuracies between 80 and
82%. FFNN slightly outperformed RF and SVM and was
particularly effective in managing a large number of molecular
descriptors without introducing noise or degrading perform-
ance. The created models can be used for screening large
compound libraries for identifying new potential noncovalent
inhibitors of AmpC β-lactamase for future development and
optimization. The performed docking analyses permitted the
prediction of the binding modes of two compounds, showing
partial structural similarities with noncovalent inhibitors with
known experimental binding modes, suggesting a similar
inhibition mechanism and binding in the active site of
AmpC. Our study can be helpful in establishing novel
solutions against the growing resistance to standard β-lactam
inhibitors.
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