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Abstract

Background: The marrow microenvironment and vasculature plays a critical role in regulating hematopoietic cell
recruitment, residence, and maturation. Extensive in vitro and in vivo studies have aimed to understand the marrow
cell types that contribute to hematopoiesis and the stem cell environment. Nonetheless, in vitro models are limited
by a lack of complex multicellular interactions, and cellular interactions are not easily manipulated in vivo. Here, we
develop an engineered human vascular marrow niche to examine the three-dimensional cell interactions that direct
hematopoietic cell trafficking.

Methods: Using soft lithography and injection molding techniques, fully endothelialized vascular networks were
fabricated in type | collagen matrix, and co-cultured under flow with embedded marrow fibroblast cells in the
matrix. Marrow fibroblast (mesenchymal stem cells (MSCs), HS27a, or HS5) interactions with the endothelium were
imaged via confocal microscopy and altered endothelial gene expression was analyzed with RT-PCR. Monocytes,
hematopoietic progenitor cells, and leukemic cells were perfused through the network and their adhesion and
migration was evaluated.

Results: HS27a cells and MSCs interact directly with the vessel wall more than HS5 cells, which are not seen to
make contact with the endothelial cells. In both HS27a and HS5 co-cultures, endothelial expression of junctional
markers was reduced. HS27a co-cultures promote perfused monocytes to adhere and migrate within the vessel
network. Hematopoietic progenitors rely on monocyte-fibroblast crosstalk to facilitate preferential recruitment
within HS27a co-cultured vessels. In contrast, leukemic cells sense fibroblast differences and are recruited
preferentially to HS5 and HS27a co-cultures, but monocytes are able to block this sensitivity.

Conclusions: We demonstrate the use of a microvascular platform that incorporates a tunable, multicellular
composition to examine differences in hematopoietic cell trafficking. Differential recruitment of hematopoietic
cell types to distinct fibroblast microenvironments highlights the complexity of cell-cell interactions within the
marrow. This system allows for step-wise incorporation of cellular components to reveal the dynamic spatial and
temporal interactions between endothelial cells, marrow-derived fibroblasts, and hematopoietic cells that
comprise the marrow vascular niche. Furthermore, this platform has potential for use in testing therapeutics and
personalized medicine in both normal and disease contexts.
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Background

Hematopoietic cells dynamically interact with the vascu-
lature and the surrounding microenvironment during re-
cruitment and residence in tissues. Much effort has been
made to understand the different endothelial adhesion
molecules and soluble factors that regulate recruitment
of roving hematopoietic cells, yet it remains unclear
which niche components and surrounding stromal cells
create permissive vascular environments for transmigra-
tion [1-7]. In particular, the functional contribution of
stromal and endothelial phenotypes to hematopoietic re-
cruitment within marrow vascular niche spaces is not
fully understood [5, 6, 8, 9]. To date, many individual
marrow components, such as mesenchymal stem cells
(MSCs), macrophages, and osteoblasts, have been iso-
lated and studied in two-dimensional in vitro cultures
[5, 11-13]. However, since interactions are dependent
on the context of a multicellular environment, more
complex models are needed to recapitulate these spaces.
Corresponding in vivo studies of the functional niche in
both healthy and diseased states have been precluded by
the complexity of marrow architecture and the difficulty
of systematic analysis of cell behavior in dense tissue [5,
9, 10, 14, 15]. Intravital microscopy has allowed for sin-
gle cell visualization of hematopoietic stem and progeni-
tor cell (HSPC)-endothelial interactions, [6, 14, 16—20],
although trafficking events are difficult to capture and
the detailed dynamics of multiple niche components are
still unclear. It is therefore important to develop new
tools that can recapitulate multicellular microvascular
environments and allow for functional analysis of
hematopoietic cell trafficking.

Cell extravasation across the endothelial wall has been
studied extensively for leukocytes [21-26], and HSPC
trafficking has been thought to follow a similar cascade
[27-31]. After vascular inflammation, the release of cy-
tokines signal for the recruitment and arrest of leuko-
cytes on the endothelium [21, 29, 32]. While in vitro and
in vivo studies have shown that leukocytes transmigrate
primarily in response to inflammatory signaling, the spe-
cifics about the cues for HSPC trafficking are not com-
pletely understood [6, 33-35]. In vivo, HSPCs have been
shown to reside in perivascular niche spaces, composed
of monocytes/macrophages, stromal fibroblasts, and
proximal vasculature [5, 9, 10, 36-38]. Monocytes and
monocyte-derived macrophages not only reside within
these perivascular spaces, they also interact with the
endothelial cells and stromal fibroblasts [10, 39, 40]. In
addition, the stromal-endothelial crosstalk results in
changes to the local secretion of niche-associated factors
to modulate HSPC recruitment [11, 13, 36, 39, 41-43].

In the marrow, the contribution of monocytes and
monocyte-derived macrophages has been noted but has
not been well detailed, particularly in the context of the
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perivascular niche [39, 40, 44—47]. Previous studies have
shown that co-culture of monocytes with marrow-
derived MSCs has led to diverse outcomes due to incon-
sistent definition of the MSC cell type and varying co-
culture conditions [4, 48, 49]. Coculture of monocytes
with a defined human marrow-derived stromal fibroblast
line, HS27a, in two-dimensional cultures results in close
associations between the cells, changes in matrix metal-
lopeptidase 9 (MMP9) secretion, adhesion molecule ex-
pression, cytokine secretion, and Notch signaling when
compared to each cell cultured alone [44, 50, 51]. Mean-
while, co-culture of monocytes with another human
marrow fibroblast line, HS5, does not change monocyte
or HS5 gene expression [44, 45]. Taken together, these
findings suggest that both the marrow stromal cell type
and monocyte co-culture conditions must be carefully
juxtaposed to understand cellular crosstalk.

In this study, we utilize a perfusable three-
dimensional (3D) microvessel system to develop a
marrow perivascular niche. We show that marrow-
derived fibroblasts modify endothelial phenotype and
the vascular microenvironment, which subsequently
directs the adhesion and transmigration of perfused
monocytes, CD34" HSPCs, and CD34" leukemic cells.
We show that the circulating monocytes can enter
the perivascular niche, interact with fibroblasts, and
further change HSPC and leukemic cell trafficking
patterns. Our study demonstrates the dynamic multi-
cellular interactions in the marrow microenvironment,
and our platform supports spatiotemporal control and
monitoring of these dynamics. It also allows for the
step-wise addition and subtraction of individual niche
elements to further understand the hematopoietic
microenvironment in health and disease.

Methods

Cell sourcing

Endothelial cells

All experiments were conducted using human umbilical
vein endothelial cells (HUVECs; Lonza) between passage
4 and 6 that were grown and cultured in endothelial
growth media (EBM + EGM bullet kit CC-3124, Lonza)
until confluent in T-75 flasks prior to use.

Bone marrow fibroblast cells

Stromal fibroblast cell lines HS5-GFP and HS27a-GFP were
generously provided by the Torok-Storb laboratory [51, 52].
These immortalized human marrow stromal lines were cul-
tured in RPMI 1640 medium (Thermo Fisher Scientific)
supplemented with L-glutamine (0.4 mg/mL, SAFC Biosci-
ences), sodium pyruvate (1 mM/L), penicillin-streptomycin
sulfate (100 pg/mL, Thermo Fisher Scientific), and 10% fetal
bovine serum (FBS; Thermo Fisher Scientific). Stromal fi-
broblasts were cultured to 70% confluence in T-75 flasks
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and trypsinized prior to embedding in vessels. HS27a con-
ditioned medium was removed after 5 days of culture and
centrifuged prior to use in vessels for conditioned media
experiments. Marrow MSCs were purchased from Lonza.
MSCs were cultured in MSCGM (Lonza) in T-75 flasks
and trypsinized prior to use.

Hematopoietic cells

Peripheral monocytes were obtained from fresh blood
samples under protocols approved by the Institutional Re-
view Board at the Fred Hutchinson Cancer Research Insti-
tute. Mononuclear cells were isolated from fresh blood
through Ficoll-Paque centrifugation (specific gravity
1.077) at 200 g for 30 min at room temperature. Mono-
cytes were isolated from this fraction through incubation
with CD14 microbeads (Miltenyi Biotec) for 20 min at 4 °
C, washed with phosphate-buffered saline (PBS)/2% FBS,
and purified using magnetic cell sorting (Miltenyi Biotec).
The monocytes were then incubated with CD14-PE and
CD45-PE (BD Biosciences) for 20 min at 4 °C and washed
twice with PBS/2% FBS prior to use. Healthy and acute
myelogenous (patient-derived) leukemic CD34" cells were
purchased through the Hematopoietic Cell Processing and
Repository (DK56465 and DK106829) at Fred Hutchinson
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Cancer Research Institute under protocols approved by
the Institutional Review Board of the Fred Hutchinson
Cancer Research Institute. Healthy CD34" progenitor cells
were isolated from granulocyte-macrophage colony-
stimulating factor (GM-CSF)-mobilized HSPCs in periph-
eral blood and stored by the Hematopoietic Cell Process-
ing and Repository. Healthy and leukemic CD34" cells
were allowed to recover overnight after thawing in Stem-
Span Serum-Free Expansion Medium (StemCell Tech-
nologies) supplemented with 10 ng/mL interleukin (IL)-6,
10 ng/mL stem cell factor (SCF), 10 ng/mL fms-like tyro-
sine kinase 3 (FLT3), 50 ng/mL thrombopoietin (TPO),
and 2 U/mL erythropoietin (EPO; Peprotech). Healthy
and leukemic CD34" cells were stained with CD34-APC
and CD45-APC (BD Biosciences) for 20 min at 4 °C and
then washed twice with PBS/2% FBS prior to use.

Vessel fabrication

The 3D microfluidic networks were fabricated as described
previously [53-55]. Briefly, soft lithography created a
PDMS mold patterning a 100-um diameter network, and
injection molding over the PDMS mold created a 100-um
collagen I gel microvessel which was sealed with a
collagen-coated coverslip (Fig. 1a) [53-55]. MSCs and
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human bone marrow-derived fibroblast cell lines HS27a
and HS5 were embedded uniformly in the collagen at 1
million cells/mL. The channels were then perfused with
HUVECs which adhered to the collagen and self-assembled
into a functional microvessel with an open lumen. Endothe-
lial cell culture media added to the inlet reservoir flowed
through the network driven by gravity, undergoing approxi-
mately an eightfold reduction in flow (~0.1 dyn/cm at
minimum). Vessels were cultured for 3-7 days prior to
analysis.

Hematopoietic cell perfusion through microvessels
Hematopoietic cells were perfused through vessels that
had been cultured for 3—4 days. For single cell-perfused
vessels, monocytes, healthy CD34", or leukemic CD34"
cells were added to the inlet of the vessel (100,000 cells in
100 pL PBS/5% EBS) and allowed to perfuse for 30 min.
Any remaining cell solution was then removed and vessels
were washed with media twice for 30 min each. In
double-perfused vessels, monocytes were perfused as
above and then 24 h later healthy or leukemic CD34" cells
were added to the inlet (100,000 cells in 100 pL PBS/5%
FBS) and allowed to perfuse through the vessels for 30
min (Fig. 1b). Excess cell solution was then removed and
vessels were washed twice with media (30 min each). For
vascular cell adhesion molecule-1 (VCAM-1) blocking ex-
periments, a VCAM-1 blocking antibody (50 pg/mL, R&D
Systems, clone BBA5) was perfused through the vessels
for 1 h and vessels were briefly washed with media prior
to HSPC perfusion. Then, 24 h after perfusion with cells,
vessels were fixed in 3.7% formaldehyde (20 min) and
washed with PBS three times (20 min each).

Immunostaining and imaging

Prior to immunofluorescence staining, nonspecific bind-
ing was blocked with 2% bovine serum albumin (BSA)/
0.5% Triton X-100 for 1 h. Staining for CD31 (Abcam),
VE-cadherin (VE-cad; Abcam), von Willebrand Factor
(VWF; Abcam), and a-smooth muscle actin (aSMA;
Thermo Fisher Scientific) was accomplished through
perfusion of immunofluorescence reagents through the
microvessel network as described previously [53]. Sec-
ondary antibodies with fluorochromes Alexa Fluor 488,
567, or 647 were used. Vessels were imaged on a Nikon
A1R confocal microscope.

Scanning electron microscopy

After immunofluorescence images of microvessels
were taken, microvessels were re-fixed in situ with
25% glutaraldehyde for 20 min and rinsed three times
with PBS. The microvessels were then dissembled into
top and bottom parts. The thick top portion of the
collagen microvessel was dehydrated in serial ethanol
washes (50%, 70%, 85%, and 100% ethanol) and
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further dehydrated by critical point drying (Tousimis).
The vessel was then sputter coated with gold-
palladium and analyzed by a FEI Sirion scanning elec-
tron microscope with an accelerating voltage of 5 kV,
spot size 3.

RT-PCR

To harvest RNA lysate from vessels, RLT Buffer was
perfused through the network and collected continu-
ously from the vessel outlet for 2 min. RNA lysate
from the vessels was purified using an RNA purifica-
tion kit (Qiagen). RNA purification was completed
following the provided protocol and quantified using
Nanodrop (Thermo Fisher Scientific). RT-PCR was
performed (see Additional file 1: Table S1 for primer
details) and results were normalized to RPL32 expres-
sion [56]. Significant differences were determined
using Welch’s two-sample, two-tailed ¢ test with Bon-
ferroni correction (a = 0.1, n = 3).

Adhesion and migration quantification

Quantification of stromal fibroblast location and
hematopoietic adhesion and migration in relation to
the vessel wall was analyzed using 3-10 confocal im-
ages of each vessel (n = 3) (Fiji, NIH). Images ana-
lyzed were selected from the low flow regions of the
vessel (non-inlet or outlet regions). Image stacks of
the vessel (120 pm depth) were z-projected to a sin-
gle plane and coordinates of vessel borders were
manually selected. Marrow fibroblast coverage of ves-
sels is presented as a percentage of projected vessel
area that is masked by fibroblasts. Coordinates of PE-
labeled monocytes or APC-labeled CD34" cells were
located via particle analysis on thresholded images.
Distances from cells to the vessel were calculated as-
suming that the cells migrated from the closest vessel
wall (Fig. 1c). Cells that were located within the ves-
sel boundaries were counted as adherent to the vessel
wall. The distance from the nearest vessel was nor-
malized to the vessel radius. Cell adhesion and migra-
tion data of perfused hematopoietic cells were
calculated as a percent of estimated total perfused
cells (based on the concentration and volume of cell
suspension added to the reservoir and the gravity-
driven flow rate). A sensitivity analysis of high, mid-
dle, and low estimates (75,000, 50,000, and 25,000
cells) was performed, showing no effect of the total
number of perfused cells on significant differences be-
tween groups. Data are presented based on a low esti-
mated number of perfused cells. Significant
differences between groups were determined using
two-sample, two-tailed student’s ¢ test. Error bars rep-
resent standard error measurements.
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Results

Stromal cells differentially interact with perfusable
microvessels

To recapitulate a 3D perivascular niche in vivo, we engi-
neered a 3D microvessel network in collagen gel com-
bining lithography and injection molding processes as
described previously [53-55]. The embedded lumens
were seeded with human umbilical vein endothelial cells
(HUVECs) to form a fully endothelialized vessel net-
work. Three different stromal fibroblasts, namely MSCs,
HS5, and HS27a cell lines, were embedded separately in
the collagen gel surrounding the lumen. These co-
cultured microvessel devices were maintained in culture
under gravity-driven flow for up to a week. MSCs are a
heterogeneous fibroblast population from the marrow
and have been widely studied for their ability to interact
with both the vasculature and hematopoietic cells to de-
fine a microenvironment [2, 5, 10, 57]. Here, we con-
sider their function as stromal fibroblasts sourced from
an MSC population. HS5 and HS27a are two marrow-
derived stromal fibroblast cell lines that identify distinct
functional phenotypes in vitro (see Additional file 2: Fig-
ure S1). The HS27a cell line is CD146-positive and ex-
presses stem cell niche-associated proteins (SDF-1,
angiotensin, osteopontin, and VCAM-1, among others)
whereas the HS5 line (CD1467) secretes ample amounts
of GM-CSF, G-CSF, IL-1, IL-8, MCP3, and MIP1a [51,
52]. When co-cultured with microvessels under perfu-
sion, the three stromal fibroblasts interact differently
with the endothelial cells (Fig. 1d—f). After 6 days of cul-
ture, both MSCs and HS27a cells displayed pericyte-like
close association with the microvessels in that they ex-
tended processes and wrapped around the endothelium
(Fig. 1d, e, e.ii, fi, fii). In contrast, HS5 cells did not as-
sociate closely with the microvessels (Fig. le.iii, f.iii) but
remain in the matrix. The vessel coverage was signifi-
cantly increased in the MSCs and HS27a co-cultured
microvessels (9.95 + 0.76% and 7.21 + 0.35%, respect-
ively) over the HS5 co-cultured vessels (3.18 + 1.0%)
(Fig. 1d). Under all three conditions, the endothelium
remained intact with robust junctions at regions of cell-
cell contact. We therefore selected the well-defined
HS27a and HS5 cell lines in this platform to represent
specific marrow stromal contribution (see Additional file
2: Figure S1).

Stromal cells modify endothelial cell phenotype

In addition to differences in coating, the two fibroblast cell
lines around the microvessels appeared to modify endo-
thelial phenotypes differently. Endothelial cells displayed
uniform cobblestone structure in HS27a co-cultured ves-
sels with homogeneous expression of CD31 and VE-
cadherin at regions of cell-cell contact (Fig. 2a). In HS5
co-cultured microvessels, however, endothelial cells had
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an irregular and heterogeneous shape with varying CD31
and VE-cadherin expression and were more elongated
along the direction of flow (shape index: 0.55 compared to
0.62 with HS27a co-culture; p < 0.05, Fig. 2a). In both
stromal modified vessels, von Willebrand Factor expres-
sion is low compared to endothelial cell (EC)-only vessels,
as shown by decreased appearance of Weibel Palade bod-
ies (Fig. 2a.iii, see Additional file 3: Figure S2) [58].
RT-PCR on microvessels comparing the HS27a and
HS5 stromal co-cultures to vessels with ECs alone
showed a significant reduction in vWF (75% and 57% re-
duction in HS5 and HS27a vessels compared to EC-only
vessels, respectively) and CD31 (59% and 58% reduction
in expression in HS5 and HS27a vessels, respectively)
expression in microvessels after co-culture. In HS5 co-
cultured vessels, TIE2 levels were significantly reduced
by 52% from EC-only vessels. This combination suggests
an activated or inflamed endothelium when co-cultured
with HS5 (Fig. 2) [59-62]. No significant change in
VCAM-1 RNA expression was seen between conditions.
Further expression analysis of vessels show that other in-
flammatory cytokines and endothelial surface markers
are modified with co-culture (see Additional file 4: Fig-
ure S3). Together, the stromal fibroblasts around the
microvessels modify the endothelial status and direct the
formation of a specific tissue microenvironment.

Perfused monocytes adhere and transmigrate

preferentially in HS27a-modified microvessels

Monocytes are known to circulate through the blood-
stream and extravasate through the endothelium to-
wards inflamed regions or tissue repair [63]. To test the
functional contribution of the fibroblast-driven endothe-
lial phenotype on monocyte interaction with vasculature,
we perfused CD45"/CD14"-labeled monocytes, isolated
from human peripheral blood, through the vessels and
monitored their adhesion and extravasation in EC-only
or co-cultured microvessels (Fig. 3). At 24 h after perfu-
sion, the percentage of monocytes adhered to the vessel
wall was significantly higher in HS27a co-cultured ves-
sels (1.69 + 0.40% of perfused cells) than in unmodified
(0.26 + 0.18%) or HS5 co-cultured vessels (0.11 + 0.04%)
(Fig. 3a—c). The percentage of monocytes that transmi-
grated into the matrix was also significantly increased in
the HS27a co-cultured vessels (0.28 + 0.07% of perfused
cells) compared to EC-only (0.04 + 0.02%) and HS5 co-
cultured vessels (0.02 + 0.01%) (Fig. 3c). In addition,
some monocytes that extravasated into the HS27a-
seeded matrix appear to make deliberate contact with
HS27a cell projections (Fig. 3d). To examine the source
of this interaction, monocyte adhesion within HS27a co-
cultured vessels was compared with EC vessels with
HS27a-conditioned media (see Additional file 5: Figure
S4). Monocytes adhered more in HS27a co-cultured
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vessels than in those with HS27a-conditioned media,
suggesting that contact-dependent cues rather than sol-
uble factors modulate monocyte adhesion (see Add-
itional file 5: Figure S4). This behavior has been seen in
vivo, where marrow biopsy samples show the in vivo
counterpart of HS27a cells, the CD146" fibroblast,
wrapped around marrow vessels and in contact with
monocytes/macrophages [44, 64]. The direct interaction
between monocytes and HS27a fibroblasts indicates cell-
cell crosstalk for the development of a complex tissue
microenvironment.

Monocytes modify HSPC adhesion and trafficking

During tissue regeneration, HSPC recruitment may be
directed by the local microenvironment. We next exam-
ined HSPC trafficking across the fibroblast-modified
microvessels. Labeled CD34*/CD45" HSPCs were per-
fused through the microvessel system in EC-only, HS5,
and HS27a co-cultures (Fig. 4a—c). Surprisingly, we
found no significant differences in adhesion (045 +
0.06%, 0.40 + 0.08%, and 0.41 + 0.07% of perfused cells

in EC-only, HS5, and HS27a vessels, respectively) or ex-
travasation (0.10 * 0.03%, 0.11 + 0.01%, and 0.10 +
0.01% for EC only, HS5, and HS27a vessels, respectively)
among vessels 24 h post-perfusion. This pattern suggests
that the fibroblast-endothelial microenvironments alone
do not strongly influence HSPC trafficking (Fig. 4c).
However, when monocytes were perfused 24 h prior to
HSPCs in these same vessel co-cultures, the pattern of
HSPC adhesion and extravasation was modified (Fig. 5).
When monocytes were present, HSPCs preferentially ad-
hered within the EC-only and HS27a co-cultured vessels
over the HS5 co-cultured vessels (0.35 + 0.12% and 0.20
+ 0.03% in EC-only and HS27a vessels, respectively, ver-
sus 0.05 + 0.01% in HS5 vessels) (Fig. 5a—c).

Further analysis of data from Iwata et al. shows that
the direct co-culture of monocytes with HS27a fibro-
blasts, but not HS5 fibroblasts or conditioned media, re-
sulted in an overall increase in VCAM-1 expression
which may partially explain the increased retention of
HSPCs in HS27a vessels (see Additional file 6: Figure
S5) [44]. The baseline HSPC adhesion and migration in
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the EC-only context did not change with the inclusion
of monocytes (0.45 + 0.06% HSPCs adhered, 0.10 +
0.03% migrated without monocytes compared to 0.35 +
0.12% HSPCs adhered, 0.06 = 0.02% migrated with
monocytes). In contrast, HSPC adhesion within HS5 and
HS27a co-cultured vessels was reduced when monocytes
were present compared with the corresponding vessels
without co-perfused monocytes: adhesion was reduced
from 0.40 + 0.08% to 0.05 + 0.01% in HS5 vessels, and
from 0.39 + 0.07% to 0.20 + 0.04% in HS27a vessels. To
explore the role of VCAM-1 in HSPC adhesion in these
co-perfused vessels, we perfused a VCAM-1 blocking
antibody after monocyte perfusion in the HS27a co-
cultured vessels and prior to HSPC perfusion (see Add-
itional file 7: Figure S6). However, after perfusion of
monocytes, blocking VCAM-1 did not change adhesion
or migration patterns of HSPCs in HS27a co-cultured
vessels (see Additional file 7: Figure S6C, D). These data
suggest that while monocytes and stromal fibroblasts

play a role in modulating HSPC adhesion, VCAM-1 is
not the adhesion molecule that significantly directs
HSPC trafficking. We show that monocytes interact with
stromal cells and modify the microvascular environment,
which in turn changes HSPC trafficking.

Leukemic cells show heightened response to fibroblasts
without monocytes

The establishment of a fibroblast niche further enables
the examination of leukemic cell behavior within the in
vitro marrow space. The differences between leukemic
cells and healthy HSPCs with respect to their interac-
tions with the endothelium are not well understood. In
order to examine the affinity of leukemic cells in the
fibroblast-directed microenvironments presented here,
patient-derived acute myeloid leukemic cells were per-
fused through unmodified, HS5, or HS27a co-cultured
vessels (Fig. 6). The adhesion and migration of leukemic
cells was significantly increased in HS27a co-cultured
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and migrated within vessels. d Scanning electron microscopic image of an hematopoietic stem cell (HSC) adhered and transmigrating through
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vessels, with 0.77 + 0.14% of perfused cells adhered in
HS27a vessels compared with 0.14 + 0.04% and 0.33 *
0.07% of cells perfused through EC-only and HS5 co-
cultured vessels, respectively (Fig. 6). A smaller but sig-
nificant increase in adhesion was also present in
leukemia cells perfused in HS5 co-cultured vessels over
EC-only vessels (Fig. 6¢). The same trend was present in
migrated cells, with significant increases from EC-only
vessels (0.01 + <0.01%) to HS5 vessels (0.02 + <0.01%)
and from HS5 vessels to HS27a vessels (0.19 + 0.04%)
(Fig. 6¢). Unlike HSPCs perfused alone, patient-derived
CD34" leukemic cells showed a strong fibroblast-
directed adhesion and migration pattern (Fig. 6¢).

When leukemic cells are perfused after monocytes, the
distribution of leukemic cells is changed compared with
perfusion of either cell type alone (Fig. 7). Co-perfused
leukemic cells showed no differences in adhesion be-
tween the vessel conditions (0.37 + 0.06%, 0.21 + 0.05%,

and 0.45 + 0.01% in EC-only, HS5, and HS27a vessels,
respectively; Fig. 7c). Transmigration of leukemic cells
also showed no significant differences among vessel con-
ditions (0.09 + 0.02%, 0.04 + <0.01%, and 0.05 + 0.01%
in EC, HS5, and HS27a vessels, respectively; Fig. 7c). In
combination, this suggests that when monocytes are
present, patient-derived leukemic cells lose their respon-
siveness to fibroblast-specific environments. This system
thus differentiates the niche components responsible for
dictating patterns of cell adhesion and extravasation.

Discussion

The vascular microenvironment plays an integral role
in hematopoietic cell adhesion, transmigration, and
engraftment [1, 7, 30, 35, 37, 65, 66]. Detailed explor-
ation of the dynamics between niche components and
the contribution of the fibroblasts, endothelial, and
hematopoietic cells is needed to understand marrow
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function and tissue regeneration [7, 67]. Here, we
have utilized an engineered microvascular platform to
show that fibroblast-directed  crosstalk  alters
hematopoietic cell adhesion and transmigration into
the extravascular space.

Through the use of this multicellular co-culture with a
perfusable vascular network, we first demonstrated the
influence of specific marrow fibroblasts on the endothe-
lium which subsequently influences monocyte adhesion
and extravasation. HS27a and HS5 represent functionally
distinct marrow components [51, 68]. In two-
dimensional cultures, analysis of multicellular interac-
tions with these cells is limited due to overgrowth. How-
ever, fibroblasts in 3D collagen are relatively nonmitotic,
more closely approximating their in vivo behavior [67,

68]. In our system, both MSCs and HS27a fibroblasts
wrapped around the vessel wall while the HS5 fibro-
blasts did not. The co-cultured vessels displayed differ-
ent RNA expression, and the interaction of these cells
with the endothelium creates a fibroblast-defined vascu-
lar niche. Though the use of marrow sinusoidal endothe-
lial cells would be ideal, the availability of this cell type
is limited. Here, we show that HUVECs are able to adapt
in response to microenvironmental influences from stro-
mal fibroblasts. Functional evidence of these changes is
shown through the differential adhesion of monocytes in
the fibroblast co-cultured vessels.

Our data further show that the crosstalk between
circulating monocytes and fibroblasts modifies the
vascular microenvironment. Perfused HSPCs showed
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no preferential adhesion or extravasation among any
co-culture conditions. However, after the perfusion of
monocytes, HSPCs demonstrated preferential recruit-
ment into HS27a co-cultured vascular space.
Leukemic CD34" cells, in contrast, had the opposite
trend compared with the healthy HSPCs. Alone,
leukemic cells showed preferential migration towards
the HS27a co-cultures. Monocyte perfusion removed
the leukemic cell preference towards a fibroblast-
modified microenvironment. The ability of these cells
to sense and respond to differences in the vascular
microenvironment demonstrates the necessity of a
specific co-culture system to study hematopoietic re-
cruitment and the niche space.

Previous studies have identified that monocytes/
macrophages create a permissive niche for HSPC

residence in the marrow, such that the combination
of these cells with stromal fibroblasts are necessary to
maintain marrow HSPC populations [3, 4, 10, 15, 46,
69]. Thus, these results suggest that the monocytes
recruited to the extravascular space modulate HSPC
and leukemic cell adhesion and extravasation through
cellular crosstalk [50, 64, 69]. Healthy HSPCs, there-
fore, rely on monocytes to regulate their extravasation
in the presence of stromal co-cultures, but not solely
through VCAM-1-mediated adhesive interactions
However, monocytes block leukemic cell sensitivity to
stromal contexts, perhaps due to a loss of adhesive
integrin interactions or prevention from adhesive in-
teractions by monocytes that occupy the same bind-
ing sites. In vivo studies also suggest opposing niche
spaces for leukemic and HSPC cells, indicating that
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different components are required to support
leukemic or healthy niche spaces [70, 71]. The use of
three separate acute myeloid leukemia patient samples
in this study could have contributed to a wide vari-
ation in leukemic cell behavior. Overall, the functional
crosstalk between hematopoietic cells and the vascular
microenvironment is evident in this platform. Im-
proved microphysiological models for human marrow
can greatly mitigate challenges to examining multicel-
lular interactions in hematopoietic biology.

Conclusions
Here, we have shown that different vascular microen-
vironments created by functionally divergent fibroblast

cell types affect hematopoietic trafficking across the
vasculature. Understanding these multifaceted cellular
interactions within a vascular system provides insight
into the endothelial niche. In disease contexts, micro-
environmental aberrations have been implicated in
the induction of disease phenotypes, particularly in
leukemia and other hematopoietic malignancies [70,
72-74]. There is significant potential for a tunable
system such as this to be used as a tool in preclinical
therapeutics testing and precision medicine. With this
platform, it is possible to study in further detail the
mechanisms behind dynamic spatial and temporal
cell-cell interactions within the vascular niche in both
healthy and disease-remodeled marrow spaces.
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from microvessels. RT-PCR shows similar expression of CXCR4, CXCL12, E-
selectin, ICAM-1, FLT-3, angiopoietin-1, IL-6, DKK3, MCP-1, HIF-1a, IL-1b,
TFGb, MIP1, and GM-CSF, IL-1a (normalized to L32 ribosomal protein).
KDR, P-selectin, angiopoeitin2, and FLT4 have increased expression in the
endothelial-only vessels. IL-6, IL-1b, and IL-1a have increased expression
in the HS5 co-cultured vessels. *p < 0.05, **p < 0.01, *** p < 0.001, ****p
< 0.0001. (PDF 2015 kb)

Additional file 5: Figure S4. Monocyte adhesion in HS27a vessels. (A)
Monocytes perfused through EC, EC with HS27a-conditioned media, or
HS27a co-cultured vessels. (B) Quantification of monocyte adhesion
shows no changes in adhesion between EC-only and EC with HS27a-
conditioned media but an increase within the HS27a co-cultured vessels.
Scale bars = 100 um. (PDF 858 kb)

Additional file 6: Figure S5. Expression of VCAM-1 in monocytes co-
cultured with stromal fibroblasts and conditioned media. Microarray ex-
pression analysis of (A) monocytes from two different donors alone. (B)
Expression of VCAM in HS5 cells, monocytes cultured with HS5-
conditioned media, and monocytes co-cultured with HS5 cells. (C) Expres-
sion of VCAM in HS27a cells, monocytes cultured with HS27a-conditioned
media, and monocytes co-cultured with HS27a cells. Expression values ex-
tracted from microarray data from Iwata et al. [44] (http://www.ncbinlm.-
nih.gov/geo/; accession numbers GSE9390 and GSE10595, gene ID:
203868_s_at) (PDF 152 kb)

Additional file 7: Figure S6. Monocytes, not VCAM-1, determine HSPC
trafficking in HS27a vessels. (A) HSPCs were perfused through HS27a co-
cultured vessels (i) alone, (i) after monocyte perfusion, or (iii) after mono-
cyte and VCAM-1 blocking antibody perfusion. (B) HSPCs are shown with
the vessel boundary (yellow dotted line). Scale bars = 100 pm. Quantifica-
tion of (C) HSPC adhesion and (D) migration behavior from these vessels
show that monocytes change HSPC adhesion and migration but blocking
VCAM-1 in the presence of monocytes does not significantly change ad-
hesion and migration. *p < 0.05, *p < 0.01, *** p < 0.001. (PDF 889 kb)
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