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INTRODUCTION

Respiratory distress syndrome in preterm infants is caused by 
a lack of pulmonary surfactant that results in respiratory fail-
ure immediately after birth, with various comorbidities in 
preterm infants.1 Lack of surfactant leads to a failure to lower 
surface tension (ST) followed by alveolar collapse.2 The first 
clinical trial that applied artificial surfactant to preterm infants 
was performed by Fujiwara, et al.3 who selected bovine surfac-
tant mixed with phospholipids. For a couple of decades there-
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after, various commercial agents were developed, and many 
randomized controlled trials confirmed the use of surfactants 
as a standard treatment of choice.4 Such practice have enabled 
markedly improved survival in preterm infants.5

Artificial surfactants can be categorized into two different 
compositional features according to type of surfactant pro-
teins (SPs). First are animal derived SPs. These SPs are minced 
or extracted from lung tissue from pigs or cows. Most of the 
currently used commercial products contain animal derived 
SPs. The second type of surfactants contains synthetic pep-
tides. Only two synthetic products have been approved com-
mercially, but mostly are inferior to animal SP containing sur-
factants.6-9

Of four types of SPs, SP-B and SP-C are known to be physi-
cally active. Complete synthesis of full length human SP-B is 
impossible, because it is a very heavy molecule and complex 
in structure. In particular, its disulfide bond cannot be stably 
synthesized. The structure of fully synthesized human SP-C is 
extremely unstable.10 Therefore, based on this problem, ana-
logues of these SPs may be of better use, instead of the whole 
sequence peptides. Accordingly, we chose two analogue pep-
tide sequences for SP-B and SP-C from previous research and 
aimed to certify the efficacy of each individually or a mixture 
thereof. 

MATERIALS AND METHODS 

Synthetic surfactant preparation 
We chose part of the C-terminal sequence of human SP-B as 
follows: RMLPQLVCRLVLRCSMD. For SP-C analogue, we 
chose the following: CPVHLKRLLLLLLLLLLLLLLLL. Those 
peptides were synthesized via Anygen Co., Ltd., Jangseong-gun, 
Korea. Dipalmitoylphosphatidylcholine (DPPC), phosphatidyl-

glycerol (PG), and palmitic acid (PA) were prepared by Sigma-
Altrich Co. (St. Louis, MO, USA). Synthetic surfactant Synsurf-1 
was made by a mixture of DPPC:PG:PA:SP-B=75:25:10:3 (w/w). 
Synsurf-2 comprised DPPC:PG:PA:SP-C=75:25:10:3 (w/w) and 
Synsurf-3 DPPC:PG:PA:SP-B:SP-C=75:25:10:3:3 (w/w).

Three kinds of SP compounds were dissolved in a small 
amount of trifluoroacetic acid and mixed with DPPD:PD:PA 
(75:25:10, w/w) in CHCL3:CH3OH (2:1, v/v). Further melting 
down was accelerated with 10% ethanol solution and evaporat-
ed at 40–45°C temperature over 15 minutes. Finally, lyophiliza-
tion was performed to render Synsurf-1, -2, and -3 as powders.

In vitro experiments with synsurf -1, -2, and -3
The physical surface properties were compared between our 
newly synthesized surfactants and one commercial product, 
Surfacten® (Mitsubishi-Tokyo Pharma Corporation, Osaka, Ja-
pan), which contains bovine protein as SPs. To measure ST, we 
used pulsating bubble surfactometer (PBS; Electronetics Cor-
poration, CT, USA) and modified Wilhelmy balance test (Aco-
ma, Tokyo, Japan). The dissolution condition of all the prepara-
tions were the same at 30 mg/mL diluted in normal saline. PBS 
renders the minimum-ST (min-ST) and maximum-ST (max-
ST). The ideal artificial surfactant should be less than 10 mN/m 
as min-ST and over 30 mN/m as max-ST. By using modified 
Wilhelmy balance equipment, we can obtain ST-area diagram 
(hysteresis curve), surface spreading rate, and surface adsorp-
tion rate. We used ideal surfactant criteria as stated by Robert-
son and van Golde11 (Table 1). 

In vivo experiments with synsurf-1, -2, and -3 
(animal model)
A New Zealand white rabbit model was used. C-section was 
done to harvest preterm pups on G27 and term pups on G31 
from mother rabbits. Soon after delivery, we performed tra-

Table 1. In Vitro Criteria for Surface Properties of Ideal Artificial Pulmonary Surfactant

Pulsating bubble surfactometer 
Minimum-ST less than 10 mN/m
Maximum-ST about 30 mN/m

Modified Wilhelmy balance 
Rapid spreading: less than 10 sec to reach an equilibrium ST of 24–27 mN/m
Rapid adsorption: less than 1 min to reach a ST of 27–30 mN/m (surface pressure 42–45 mN/m)
Minimum-ST less than 10 mN/m with only 20–30% surface compression
Reproducible ST-area diagram with a maximum-ST of 27–30 mN/m
Very low surface compressibility (less than 0.03 m/Mm) at ST 10 mN/m

ST, surface tension.
Modified from Robertson, et al. Elsevier Science Publishers; 1992. p.561-92, with permission of Elsevier Science Publishers.11

Table 2. Birth Weight of Newborn Pups in Each Group 

Preterm control Term control
Preterm 

Surfacten®

Preterm 
Synsurf-1

Preterm 
Synsurf-2

Preterm 
Synsurf-3

n 20 18 23 6 15 6
Birth weight (g) 29.8±3.3 58.5±7.0 34.6±3.1 29.1±1.8 34.6±4.8 36.2±2.2
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cheostomy and gentle forced ventilation of 0.3–0.5 cc air with 
a syringe over 30 cycles. Study groups were as follows: 1) pre-
term pups control (preterm control), 2) term pups control (term 
control), 3) preterm pups with Surfacten® administration (Sur-
facten® group), 4) preterm pups with Synsurf-1 administration 
(Synsurf-1 group, SP-B), 5) preterm pups with Synsurf-2 ad-
ministration (Synsurf-2 group, SP-C), and 6) preterm pups 
with Synsurf-3 administration (Synsurf-3 group, SP-B&C).

Dosage was 100 mg/kg in all treatment groups (Surfacten®, 
Synsurf-1, -2, and -3). In all six groups, we plotted pressure-
volume curves in the deflation phase. The measured volume 
was calculated per body weight. Pathologic findings were also 
analyzed. Soon after the pressure-volume curve test, we 
blocked the tracheostomy at 10 cm H2O and fixed in formalin 
solution. Both left and right lung tissue samples were H-E 
stained to observe histologic findings. The ×100 magnified 
images were analyzed for aerated area ratio via ImageJ pro-
gram (V 1.48 for Windows, NIH, Bethesda, MD, USA). Two 
sites from each of the right and left lungs were used. Animal 
Institutional Review Board approved this study. 

RESULTS

Forty-seven preterm pups and forty-one term pups from 17 
mother rabbits were included in this study. The preterm pups’ 
total birth weight was 32.0±4.5 g and term pups’ total birth 
weight was 45.1±13.0 g (Table 2). Min-ST and max-ST as mea-
sured by PBS are described in Table 3. The ideal artificial sur-
factant should show less than 10 nM/m of min-ST and higher 
than 30 nM/m of max-ST. Surfacten®, Synsurf-2, and Syn-
surf-3 fulfilled these criteria. Modified Wilhelmy balance test 

rendered surface spreading rate, surface adsorption rate, and 
ST area diagrams (Fig. 1). In this test, Surfecten®, Synsurf-2, 
and Synsurf-3 showed active ST lowering effect. Table 4 out-
lines the measured physical properties. The physical proper-
ties of the four different surfactant preparations are listed in 
Table 3 and 4. According to Fujiwara’s ideal artificial surfac-
tant criteria (Table 1), Synsurf-1 showed poor performance in 
both PBS and modified Wilhelmy balance tests; however, 
Synsurf-2 and Synsurf-3 fulfilled those criteria. Pressure-vol-
ume curve analyses were expressed in the deflation phase, 
which implied the deflation phase among the hysteresis curve 
(Fig. 2). Similar to the Wilhelmy analyses curve results, Syn-
surf-1 was worst, and Synsurf-2 and Synsurf-3 were excellent. 
These findings were compatible with the histologic findings 
(Figs. 3 and 4). 

DISCUSSION

Human pulmonary surfactant consists of 86% phospholipids, 
8% neutral lipids, and 6% SP. Although SPs are only 6% of the 
composition, they are essential elements for lowering ST. Since 
artificial surfactant replacement therapy was introduced clini-
cally, mortality in premature infants has remarkably improved 
and extremely premature survival has also been maximized. In 
the history of artificial surfactant development, early commer-
cial synthetic surfactants included Exosurf® (GlaxoSmithKline, 
Brentford, UK) and Surfaxin® (Discovery Laboratories, War-
rington, PA, USA). Exosurf® contains DPPC only without SP, 
while Surfaxin® has the synthetic peptide KL4 as an analogue of 
human SP-B.12 However, animal derived (bovine and porcine) 
natural SP has been found to be clinically superior to synthetic 
surfactant. In a Cochrane review, animal natural surfactant was 
recommend for better safety and outcomes.13 However, many 
researchers are still trying to find a fully synthetic surfactant, 
rather than a natural one, which can potentially have hazard-
ous proteins, such as prion fibrils, and requires mass slaughter-
ing of pigs or cows, causing ethical problems and cost benefits.

There are four types of human SPs, which are SP-A, SP-B, 
SP-C, and SP-D. Two hydrophilic proteins, SP-A and SP-D, in-
volve surfactant synthesis and release, anti-inflammatory ac-
tion, and immunologic response. SP-B and SP-C are very hy-
drophobic and amphipathic, which confer direct mechanical 

Table 4. Physical Properties of Surfacten and Synsurf Emulsions Measured by Modified Wilhelmy Balance Study

Surfacten® Synsurf-1 Synsurf-2 Synsurf-3
Surface spreading (less than 10 sec to reach an equilibrium ST) 27* 43 27* 27*
Surface adsorption (less than 1 min to reach a ST) 28* 35 29* 27*
Minimum-ST with only 20–30% surface compression 9* 12 8* 8*
Reproducible ST-area diagram with maximum-ST 28* 47 36 36
Surface compressibility at ST 10 mN/m 0.03 0.05 0.03 0.03
ST, surface tension.
*Compatible with ideal artificial surfactant criteria. 

Table 3. Min-ST and Max-ST of Three Different Synsurfs Checked by 
Pulsating Bubble Surfactometer at 1 and 5 Minutes

Min-ST Max-ST
1 min 5 min 1 min 5 min

Surfacten® 6.2±0.9* 5.5±0.4* 33.8±1.5* 32.8±1.6*
Synsurf-1 16.2±0.9 16.7±0.6 27.6±1.8 28.7±1.5
Synsurf-2 8.1±1.1* 7.9±1.0* 33.0±1.7* 33.1±1.6*
Synsurf-3 8.0±0.9* 7.1±0.8* 34.6±0.8* 34.5±1.0*
min-ST, minimum-ST; max-ST, maximum-ST; ST, surface tension (mN/m). 
*Fulfilled ideal surfactant criteria (min-ST <10 mN/m and max-ST >30 mN/m). 
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or physical properties in the mixture of surfactant.14 It is im-
possible to reconstruct intact human SPs based on the known 
full sequences, because of their instability and complicated 
structure. 

We selected SP-C analogue sequences (CPVHLKRLLLLLLL 
LLLLLLLLL) from Otsubo, et al.15 and Bae, et al.16 study. Otsubo, 
et al.15 and Otsubo and Takei17 named it as SP-CL16 according 
to its poly Leucine sequence. The authors demonstrated good 
surface activity for SP-CL16 as a SP-C analogue in 2002. How-
ever, subsequent validation of its surface properties was not 
performed until the study of Bae, et al.16 in 2015, which showed 
stable reproducibility. SP-CL16 has poly-Leucine residues, 
unlike human SP-C, which has poly-Valine residues. This prop-
erty confers more stable amphipathic features. Furthermore, 
there is another advantage of having poly-Leucine. If an α- 
helical structure of SP-C is abnormally unfolded and changes 
to a β-sheet structure, it undergoes fibril formation of lung 
surfactant, which is similar as an abundance of amyloid fibrils 
composed of abnormal SP-C in pulmonary alveolar proteino-
sis. However, the poly-Leu sequence of synthetic SP-C has 
more stable α-structure than poly-Val sequence.18

Unlike the previous SP-CL16 research, we intended to add a 
SP-B counterpart in our pulmonary surfactant. There are stud-
ies that emphasize including both SP-B and SP-C in synthetic 
surfactants. Even though SP-B is not structurally perfect to hu-
man one, it seems that SP-B is necessary.19,20 Selecting the se-
quence as a SP-B analogue, we chose RMLPQLVCRLVLRCSM 
D, which was studied by Bae, et al.21 It does not contain the full 
sequence, but 17 residues of the C-terminal. It is simple, short, 
and very stable when synthesized, and it is easy to produce. 
The authors concluded that the sequence had possible poten-
tial as an artificial synthetic SP-B analogue that can be mixed 
with DPPC and PG. Normally, functional human SP-B, which 
consists of 79 residue peptides, has its characteristic disulfide 
bond rendering V-shape. It is not clear whether the SP-B ana-
logue in this study has disulfide bond structure in itself, al-
though its addition in Synsurf-3 brought better outcomes than 
containing SP-C analogue alone as PSs in aerated area ratio. 
The literature on SP-B defect revealed severe pulmonary dis-
eases, such as congenital alveolar proteinosis.22 This might ex-
plain how our SP-B analogue acted as certain human SP-B 
mimicking function in Synsurf-3. 

Our study showed good results of synthetic SP analogue 
containing surfactants. The physical surface properties mea-
sured through PBS and modified Wilhelmy surface balance 
test were ideal for Synsurf-2 and -3. These physical activity 
measurements are very essential to validate pulmonary sur-
factant effects. Although we had limitations using very small 
rabbit fetuses, our deflation curves and histologic findings 
were comparable between Synsurf-2, -3, and Surfacten®. When 
we plotted the pressure-volume curve, especially in the defla-
tion phase, we found that there was a significant difference in 
volume at the pressure of 15 cm H2O (Fig. 2). Statistical analy-

Fig. 1. Diagrams generated by modified Wilhelmy balance test. (A) Sur-
face spreading rate test. Synsurf-1 was slow. Synsurf-2 and -3 and Sur-
facten® were similarly fast in regards to surface spreading rate test. (B) 
Surface adsorption was best for Synsurf-3, followed by Surfacten®, 
Synsurf-2, and Synsurf-1 in that order. (C) In surface tension area dia-
gram, all four preparations showed hysteresis curves. Among these, 
Surfacten® showed the lowest minimum-ST, which was the best. Syn-
surf-2 and -3 showed similarly in the middle and Synsurf-1 was the 
worst. ST, surface tension.
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sis was conducted at 15 cm H2O; however, we also noted a dif-
ference at 0 cm H2O as well. The difference did not come from 
lung tissue selection bias, but from pre-treatment with the dif-
ferent preparations. This reflects the different functional re-
sidual capacities that the four different surfactants resulted in. 

It is noteworthy that Synsurf-1 was the worst. This means that 
SP-B alone cannot generate ST lowering effect in artificial sur-
factant. Nevertheless, synthetic SP-B (RMLPQLVCRLVLRC-
SMD) and SP-C (CPVHLKRLLLLLLLLL LLLLLLL) provided 
the best synthetic surfactant. Limitations of the present study 

Fig. 2. Pressure volume curves. (A) shows the difference between term (n=9) and preterm controls (n=13, p<0.001). (B) shows deflation curves for the 
four different surfactant preparations. Synsurf-2 (n=7, p=0.0068), Synsurf-3 (n=6, p=0.0031), and Surfacten® (n=18, p<0.001) showed higher pressure 
volume curves in the term group than the preterm group; Synsurf-1 (n=6, p=0.4811) showed no difference. Mann Whitney U test was used to compare 
volumes at 15 cm H2O pressure.
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include that we could not evaluate the efficacy of our Synsurfs 
in comparison to other available commercial preparations, for 
example Curosurf® (Chiesi Farmaceutici, Parma, Italy) (por-
cine SP) or Surfaxin® (synthetic SP). Further study should be 
performed to conform reproducibility of the same results in a 
larger sample size.
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