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Abstract

Studies of audiovisual perception of distance are rare. Here, visual and auditory cue interac-

tions in distance are tested against several multisensory models, including a modified

causal inference model. In this causal inference model predictions of estimate distributions

are included. In our study, the audiovisual perception of distance was overall better

explained by Bayesian causal inference than by other traditional models, such as sensory

dominance and mandatory integration, and no interaction. Causal inference resolved with

probability matching yielded the best fit to the data. Finally, we propose that sensory weights

can also be estimated from causal inference. The analysis of the sensory weights allows us

to obtain windows within which there is an interaction between the audiovisual stimuli. We

find that the visual stimulus always contributes by more than 80% to the perception of visual

distance. The visual stimulus also contributes by more than 50% to the perception of audi-

tory distance, but only within a mobile window of interaction, which ranges from 1 to 4 m.

Introduction

Crossmodal interactions are often analyzed in light of the available multisensory perception

theories of the time. For most of the twentieth century, these interactions were described by

identifying which cue determined the multisensory percept. The terms sensory dominance,

capture and ventriloquism were often used [1–6]. In the early 2000s the paradigm shifted away

from the winner-takes-all perspective into a more probabilistic approach. Sensory interactions

were expected to include weighing processes where the most reliable sensory cue contributed

the most to the multisensory percept [7]. The Maximum Likelihood Estimation (MLE) model

in particular, which assumes that this weighing process is statistically optimal, has been

broadly tested and applied to a number of cue combination cases [8–14].

In recent years there has been a significant change in how multisensory interactions are

described (see Fig 1 for an illustration of the multisensory models). No longer a unitary percept

is expected to arise from multisensory stimulation [15]. It has been proposed that Bayesian

causal inference mechanisms can explain human multisensory perception [16–20]. From

bisensory stimulation perceivers can infer either one single causal event or two. The higher the
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temporal or spatial discrepancy, the more likely one is to infer two underlying events. It follows

that cue integration is only expected to occur when both stimuli are perceived as stemming

from the same physical event. These mechanisms have been shown to describe well the percep-

tion of audiovisual horizontal space [19, 20]. However, so far this model was only tested with

generative models and using several free parameters. By free parameters we mean unknown

values that the model does not predict. As a way of calculating the free parameters, the model

was fit to the empirical data itself. Through the fitting procedure the values of the free parame-

ters were obtained: they were the values that led to the best fit between the model and the data.

This approach is valid, but there is a risk of overfitting and it is very computationally demand-

ing. Here the causal inference model was tested with a new proposed approach. All model

components were tested through numerical predictions and a generative model was avoided.

We do so by proposing a new way of calculating the posteriors. This includes issuing predic-

tions of distribution of estimates and of common causality.

The empirical study described in this manuscript analyzes and models the multisensory

interactions in audiovisual distance perception. Psychophysical data were obtained in an

experiment where visual and auditory stimuli of a person playing an organ were presented at

Fig 1. Representation of four models of multisensory interaction. Blue areas represent external events

and green areas represent internal events. In Causal Inference, the first step is to find the likelihood of the

stimuli having been caused by one or two sources. If one source is inferred, then Mandatory Integration takes

place, which can be predicted by the MLE model. If two causes are inferred, then the estimates will be given

by the No Interaction model. In the No Interaction model each sensory estimate in the multimodal condition

can be approximated by the corresponding unisensory percept. In the Sensory Dominance model each

sensory estimate in the multimodal condition can be approximated by the best unisensory percept. The

models are described in detail in the section Multisensory Modeling.

doi:10.1371/journal.pone.0165391.g001
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several distances inside a room. The bimodal trials consisted of several stimuli distance combi-

nations. Subjects reported both the perceived visual and auditory distance of the stimuli. The

above mentioned causal inference model is tested against other multisensory models. Sensory

weights are calculated according to a new formula that accounts for causal inference. This

allows for the description of cue interactions at several cue positions and discrepancies in

space.

1 Multisensory Modeling

1.1 Causal Inference

Causal inference in multisensory perception assumes that multisensory stimuli can stem either

from the same source or from separate sources. Further detail on causal inference in multisen-

sory perception can be found in an article by [18]. This approach can be decomposed into four

problems: 1) calculating the percept if a single cause is assumed; 2) calculating the percept if

separate causes are assumed; 3) finding out the probability of common and separate causes;

and 4) calculating the final percept accounting for all previous steps. These four problems have

been previously solved [20] using a generative model with several free parameters. Here we

solve them in a similar way, but without a generative model. A causal inference model is pro-

posed where predictions of variance are added and the multisensory estimates are modeled

assuming normal distributions.

1.1.1 Single Cause. When a single underlying event is inferred (C = 1), multisensory inte-

gration mechanisms can be predicted. We assume an unbiased perceiver whose estimates ŝi

can be well approximated by the underlying sensations xi. The underlying sensations can be

indirectly observed in the unisensory estimates. Note that while spatial prior biases may exist

in the formation of estimates of unisensory signals from external stimuli (e.g. [20, 21]), no

such biases are known between the estimate and the underlying sensation, or from the sensa-

tion under unimodal stimulation to the sensation under bimodal stimulation. If any bias were

to be observed in the bimodal condition, it is hypothesized that it would be due to the concur-

rent stimulus, and not due to a change in the prior of the sensation itself. We also assume the

sensations xi to have a normal distribution with parameters N(μ, σ) and that added sensory

noise is independent across modalities. In this case, the estimates ŝi can be calculated using the

Maximum Likelihood Estimation (MLE) model [7, 19]:

ŝA;C¼1 ¼ ŝV;C¼1 ¼

xA
s2

A
þ

xV
s2

V
1

s2
A
þ 1

s2
V

ð1Þ

The benefit of multisensory integration is also observed in its predicted variance in which,

when all assumptions are true, the inverse-variance-weighted estimate is also the minimum

variance estimate of the stimulus property [7]:

s2
A;C¼1

¼ s2
V;C¼1

¼
s2

A � s2
V

s2
A þ s2

V
ð2Þ

1.1.2 Separate Causes. When two causes are inferred (C = 2), sensory estimates are not

affected by the concurrent sensory stimulation. Therefore, they can be approximated by the

corresponding unimodal sensations:

ŝA;C¼2 ¼ xA and ŝV;C¼2 ¼ xV ð3Þ
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In a similar way their variances correspond to the variance of the unimodal sensation.

Therefore it is hypothesized that the variances of the estimates do not change from the unimo-

dal to the bimodal condition, when two causes are inferred:

s2
A;C¼2

¼ s2
A and s2

V;C¼2
¼ s2

V ð4Þ

1.1.3 Probability of Common Causes. In Eq (1) it is assumed that when there is a com-

mon cause sensory estimates are the same for both sensory modalities. Therefore, the causal

probability can be indirectly observed by the similarity of the estimates ŝi. When the estimates

are similar, a common cause can be inferred. A separate cause is inferred in the remaining

cases:

pðC ¼ 1 j xV ; xAÞ ¼ pðxA ¼ xVÞ

and

pðC ¼ 2 j xV ; xAÞ ¼ 1 � pðxA ¼ xVÞ

ð5Þ

1.1.4 Calculating the Final Percept. The estimate of the probability of a common cause is

rarely perfectly 0 or 1. When p(C = 1) is any number between 0 and 1, it must be determined

how the estimates from Eqs (1) and (3) are combined. We test three strategies proposed by [20].

In the model selection strategy one may simply choose the estimate from the most likely

causal structure:

ŝAjxV ;xA
¼

( ŝA;C¼1 if pðC ¼ 1Þ > 0:5

ŝA;C¼2 if pðC ¼ 1Þ < 0:5
ð6Þ

Let us assume an example where a given stimulus pair has p(C = 1) = 0.3. According to

model selection, in our example, the estimates would always follow the most likely causal

structure, which is C = 2. The estimates would therefore follow a normal distribution with

mean and variance as observed in the unimodal condition.

In the model averaging strategy subjects have access to both independent estimates and

provide a combined estimate. The final estimate is a linear weighted average of the estimates

from both causal structures.

ŝAjxV ;xA
¼ pðC ¼ 1 j xV ; xAÞ � ŝA;C¼1 þ pðC ¼ 2 j xV ; xAÞ � ŝA;C¼2 ð7Þ

In our example, the final auditory estimate would therefore be the sum of 30% of ŜA;C¼1

with 70% of ŜA;C¼2. To test this strategy, and in the absence of a better prediction from previous

research, we also hypothesize that the variance of this estimate is a linear weighted average of

the predicted variances for each causal structure.

s2
AjxV ;xA

¼ pðC ¼ 1 j xV ; xAÞ � s2
A;C¼1
þ pðC ¼ 2 j xV ; xAÞ � s2

A;C¼2 ð8Þ

A third strategy, probability matching, assumes that estimates vary from trial to trial, fol-

lowing either ŝA;C¼1 or ŝA;C¼2. Each estimate type occurs proportionally as many times as its

causal probability:

ŝA ¼

( ŝA;C¼1 if pðC ¼ 1 j xV ; xAÞ > z

ŝA;C¼2 if pðC ¼ 1 j xV ; xAÞ < z
ð9Þ
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where z is sampled randomly from the uniform distribution [0:1]. Returning to our example,

in practice, the estimates will follow the mean and variance of p(C = 1) in 30% of the trials and

of p(C = 2) in the remaining trials. It follows that the response distribution according to this

strategy is composed of two gaussian distributions, each with the relative size of each causal

probability.

1.2 Models without causal inference

All the strategies described above assume causal inference. Additional models that do not

assume causal inference were also tested. This testing aimed at establishing if causal inference

is likely to take place in the perception of visual and auditory distance. Three alternative

explanatory models were tested. Sensory dominance was tested by assuming that the most reli-

able cue always takes over. Therefore, the sensory estimates ŝi in the multisensory condition

can be approximated by the perceived distance xi in the unimodal condition that had the low-

est variance, as given by

ŝAjxV ;xA
¼ ŝVjxV ;xA

¼

( xA if s2
V > s2

A

xV if s2
V < s2

A

ð10Þ

and in a similar manner the distribution of the estimates in the multisensory condition corre-

sponds to the smallest distribution of the estimates of the unimodal sensation. Mandatory inte-
gration was tested by assuming that all estimates follow the linear inverse variance weighting

rule. Therefore, the estimates in the multisensory condition are given by Eq (1), and their dis-

tribution is given by Eq (2). Finally, no interaction was also tested, where all estimates and dis-

tributions were given directly by the respective unimodal sensation, as described in Eqs (3)

and (4).

1.3 Sensory Weights

Finally, we aimed at quantifying the relative contribution of each sensory cue by applying the

principles of causal inference. In the conventional MLE model [7] it is assumed that the sen-

sory weight is given by the normalized inverse of the variance of the unisensory estimate:

wA ¼
1=s2

A

1=s2
A þ 1=s2

V
ð11Þ

To calculate the sensory weights accounting for causal inference one must calculate sepa-

rately the weights for each causal structure. In the case of dual causality, it is assumed that the

cues do not interact. Therefore, the weight of the auditory stimulus on the auditory distance

estimate equals 1. In the case of a common causality, one may assume the weights as predicted

by the MLE. Both in the probability matching and in the model averaging strategy, the

average sensory weights correspond to the combination of the weights of perceived common

(p(C = 1)) and separate (p(C = 2)) causes:

wA ¼ wA;C¼2 � pðC ¼ 2jxV ; xAÞ þ wA;C¼1 � pðC ¼ 1jxV ; xAÞ ð12Þ

Therefore, the sensory weights can be calculated as follows:

wA ¼ pðC ¼ 2jxV ; xAÞ þ pðC ¼ 1jxV ; xAÞ �
s2

V

s2
A þ s2

V
ð13Þ
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and

wV ¼ pðC ¼ 1jxV ; xAÞ �
s2

A

s2
A þ s2

V
ð14Þ

where wi is the weight of each sensory modality on a given auditory estimate.

2 Materials and Methods

2.1 Ethics Statement

The experiment followed the policies on human subjects research as described in the Declara-

tion of Helsinki. Participants provided written informed consent. The experimental protocol

was approved by the Aalto University Ethics Committee. The individual in Fig 2 of this manu-

script is an author and has given written informed consent (as outlined in PLOS consent

form) to publish this figure.

2.2 Participants

There were six participants. One participant was a female and one participant was one of the

authors. Participants had normal hearing and vision. Participant age ranged from 21 to 33.

2.3 Stimuli

There were three blocks of experiments, each corresponding either to the audiovisual, the

visual, or auditory experimental conditions. All subjects performed the audiovisual block first.

The auditory and visual conditions were tested in one single session two months later. The

visual and auditory blocks were counterbalanced in order across participants. The rationale

behind this method was that all participants did the audiovisual localization trials—the main

condition under study—without any prior training or knowledge of the stimuli. The two-

month period between the sessions intended to create a gap in which the subjects would forget

any learning occurred in the first session. Therefore, all conditions were run without interfer-

ence of knowledge from other conditions.

Fig 2. Stimuli at 1, 5 and 7 m in distance.

doi:10.1371/journal.pone.0165391.g002
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Visual and auditory stimuli consisted of immersive reproductions of a young man playing

an electronic portable organ in a room. In the visual condition only video, and no sound, was

presented. In the auditory condition only sound was presented. In the audiovisual condition

both video and sound were presented. Both visual and auditory stimuli were recorded in a

large classroom, 10.9 m long by 6.5 m wide, and 2.2 m high. The reverberation time of the

room was 1.9 sec. Stimuli were recorded along the 12.7 m room diagonal. Both the cameras

and the microphone were positioned in one corner of the room, 1 m away from each wall, and

at a height of 1.6 m. Recordings were taken of a male playing the C chord on an organ at differ-

ent positions along the room diagonal.

The visual stimuli were recorded with 6 GoPro cameras mounted on a cubical support

Freedom 360. With Autopano Video software the 6 videos were stitched together and thus a

spherical 360 deg video was obtained. Visual stimuli were reproduced with an Oculus Rift

device and allowed for free head movement with realtime rendering of the room. Auditory sti-

muli were recorded with an Eigenmike microphone (32 channels) reduced to first-order B-for-

mat (4 channels) rotating the axis in order to match video and audio directions. The

Eigenmike microphone was chosen due to its structure, which has higher aliasing frequency

than other B-format microphones available. Recording was rendered to create a 3D real-time

audio environment using Directional Audio Coding [22, 23]. The auditory stimuli were repro-

duced through a set of Sennheiser HD 650 headphones. The audio was synchronized with the

video using a cross correlation function. Recordings lasted for 3.3 sec and the organ was played

continuously for 2 sec, starting at sec 0.7. The reason for the long stimulus duration had to do

with the need to include enough information for subjects to access the direct-to-reverberant

energy ratio and to access the full room reverberation. Both cues are known to be critical in

auditory distance perception. There was a metronome playing in the background, which was

positioned at the same distance as the organ. Its purpose was to time the keypress in all record-

ings. The visual stimuli consisted of random presentations of the spherical recording of the

organ being played at 1, 3, 5, 7 and 9 m from the camera (Fig 2). The auditory stimuli consisted

of random presentations of the sound environment of the organ being played at every meter,

from 1 to 10 m in distance from the microphone. The audiovisual stimuli consisted of all the

possible combinations of visual and auditory stimuli, randomly presented. In all conditions

there were six repetitions per stimulus.

2.4 Apparatus and Procedure

Experiments took place in an acoustically treated room. Participants were seated on a chair,

with the Oculus Rift placed over the eyes and the headphones over the Oculus Rift (Fig 2). The

image was centered so that the stimuli were presented straight ahead. The visual, auditory, and

audiovisual conditions were tested in separate sessions. The audiovisual condition was tested

in two sessions. Before the beginning of each condition participants had a practice block. In

the practice block, each stimulus was presented once in random order. Participants were

instructed to pay attention to the room and to the stimuli, and to provide responses in the

response interface. The response interface consisted of an iPad containing two sliders and one

Continue button. One slider allowed to input responses to the visual stimuli, and the other one

to the auditory stimuli. There was only one slider in the visual and auditory condition. The

iPad interface and input could be seen on the Oculus Rift. By moving the slider participants

could choose any value, ranging from 0 to 10. Participants were told that 0 corresponded to

their own position in space, that 10 corresponded to a position just before the corner at the

other end of the room, and that the values corresponded to actual meters in the room. Partici-

pants were asked to always answer to both visual and auditory distance after each audiovisual

Modeling the Perception of Audiovisual Distance
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trial, but they were allowed to choose which one to respond to first. They were specifically

asked to always provide the same answer if both stimuli were perceived as stemming from the

same point in space. This was important, as the rate of matching answers was used to compute

the probability of perceived common cause in the causal inference model. Participants were

further asked to provide the most honest report of what they actually perceived, not what they

believed was the correct answer. This instruction had to do with the fact that there was no time

limit to provide answers. It aimed specifically at asking subjects to avoid developing theories of

what the experimental design might be and to avoid trying to find the correct answer, instead

focusing in simply reporting percepts. Each trial started after pressing the Continue button.

2.5 Statistical Tests

To analyze the effect of each sensory modality over the visual and auditory distance estimates,

a Kruskal-Wallis test was used. The choice of a non-parametric test had to do with the small

number of subjects (n = 6). To test the multisensory models, a simple linear regression test was

used. All pooled data were used, organized by subject, corresponding to the response counts

per each of the 10 points in space in each of the 50 stimulus pairs per subject, fit to the corre-

sponding predicted response counts (10 distances � 50 stimuli � 6 subjects = 3000 data points).

Residuals were found to be normally distributed. Linear regressions were used because data

were linearly related to the models. No model correction, such as Akaike’s criterion, was used

because all models had the same number of parameters in the fitting procedure and no genera-

tive model was used. Separate linear regressions were calculated for each model, for the visual

estimates/predictions, the auditory estimates/predictions, and both. Separate regressions were

also calculated for each subject.

3 Results

Overall, the localization of visual stimuli in distance was more accurate than that of the audi-

tory stimuli. In the unimodal visual condition the average localization error was 0.34 m (0.49

SD), while in the unimodal auditory trials, the average localization error was 1.42 m (1.28 SD).

In audiovisual trials, visual distance estimates had an average error of 0.33 m (0.51 SD). The

auditory distance estimates in that condition had an average error of 1.48 m (1.33 SD). In

bimodal trials, the perceived auditory distance was significantly affected both by auditory stim-

ulus distance (χ2
(9,5) = 1040.01, p = 0.000) and visual stimulus distance (χ2

(9,5) = 20.52,

p = 0.000). However, the perceived visual distance was only affected by visual stimulus distance

(χ2
(9,5) = 1731.23, p = 0.000) and not by the auditory stimulus (χ2

(9,5) = 0.28, p = 1.000).

Multisensory integration was modeled using causal inference. For each stimulus pair, we: 1)

calculated the mean (Eq (1)) and variance (Eq (2)) of the percept for a single underlying cause;

2) calculated the mean (Eq (3)) and variance (Eq (4)) of the percept for two underlying causes;

3) quantified the probability of common and separate causes (Eq (5)); and 4) calculated the

final percept accounting for all previous steps (Eqs (6)–(9)). In the calculation of the final per-

cept three strategies were tested: probability matching (Eq (6)), model averaging (Eqs (7) and

(8)) and model selection (Eq (9)). Three additional models were tested: sensory dominance (Eq

(10)), mandatory integration (Eqs (1) and (2)) and no interaction.

A visualization of the multisensory mechanisms simulated in each model is presented in

Fig 1. The predicted distributions for each model were generated and tested against the actual

response distributions. In Fig 3 all of the obtained auditory distance responses ŝA in each mul-

tisensory trial type are presented together with the predictions from the probability matching

strategy. The visual and auditory unimodal pooled distributions are also presented at the

Modeling the Perception of Audiovisual Distance
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topmost and leftmost graphs, respectively. It is observed that the probability matching strategy

constitutes a close approximation to the average auditory distance responses.

Figs 4 and 5 present visual and auditory distance responses in a sample of trial types against

the predictions from the probability matching, model averaging and model selection strategies.

In Table 1 a summary of all model fitting is presented. Looking at all data together (All), the

causal inference models explained the data better, followed very closely by the no interaction
model. The probability matching strategy yielded the best fits. This was also true in the data

from each individual subject: for all subjects, the best fits were obtained with the causal infer-
ence model resolved with probability matching. In general, better fits were obtained for the

visual distance estimates than for the auditory estimates. This may be related to the fact that

visual estimates were more consistent and had lower variance that auditory estimates. The

Fig 3. Auditory distance response distributions in all bimodal conditions (blue connected circles)

and response distributions as predicted by Causal Inference resolved with the probability matching

strategy (red area). The topmost graphs correspond to the unimodal visual distance distributions. The

leftmost graphs correspond to the unimodal auditory distance distributions. Distributions were obtained by

pooling all responses from all subjects. Auditory stimulus distance ranges in rows from 1 m distance (A = 1) to

10 m (A = 10) and visual stimulus distance ranging in columns from 1m to 9 m (V1 to V9 respectively).

doi:10.1371/journal.pone.0165391.g003
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Fig 4. Five examples of visual distance response distributions (blue connected circles) and corresponding response distributions as predicted by

Causal Inference resolved with the probability matching, model averaging, and model selection strategy (green area). Response distributions

obtained from all pooled data.

doi:10.1371/journal.pone.0165391.g004

Fig 5. Five examples of auditory distance response distributions (blue connected circles) and corresponding response distributions as predicted

by Causal Inference resolved with the probability matching, model averaging, and model selection strategy (magenta area). Response distributions

obtained from all pooled data.

doi:10.1371/journal.pone.0165391.g005
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visual estimates were well predicted by all tested models, and the best fit values was obtained

with the causal inference model resolved with model averaging.

In a final step, sensory weights were calculated accounting for causal inference. The sensory

weights were calculated as described in section 2B (Eqs (13) and (14)). They were calculated

for each stimulus pair by averaging across all pooled data. The calculation followed the steps:

1) calculating each sensory weight for a single underlying cause; 2) calculating each sensory

weight for two underlying causes; and 3) calculating the average of each weight accounting for

the probability of each causal structure. In Fig 6 the sensory weights for the auditory distance

estimates are presented for each stimuli pair. It can be observed that at all distances there is a

window within which the visual cue largely affected the auditory estimate. This window of

interaction is mobile and centered around the auditory stimulus position, meaning that when

both stimuli were in close proximity they interacted in the formation of the auditory estimate.

In those cases the auditory estimate was pulled in the direction of the visual stimulus. We can

quantify the window size as the area where the weight of the visual cue surpasses that of the

auditory cue. We find that the smallest window is observed with the auditory stimulus at 1 m,

and it is 1 m wide. The largest interaction window occurs when the auditory stimulus is at 5 m,

and is 4 m wide. The average interaction window is approximately 3 m, and stimuli interact lit-

tle outside of it. The sensory weights in the visual distance estimates were markedly different.

At all distances, the visual cue was the most weighted. The highest visual weights were found

when the visual stimulus was at 1 m, where they were always equal to 1. The lowest weights

were observed with the visual stimulus at 9 m, where the visual weight was close to 0.8 when

the auditory stimulus was at 9 and 10 m.

4 Discussion

4.1 Audiovisual Distance

We studied the perception of distance from visual and auditory stimulation. It is remarkable

that so little attention has been paid to multisensory interactions taking place in the extraper-

sonal space [24]. Little is known about the cue interactions in the audiovisual perception of

distance. It is known that for visual and auditory events to be perceived as synchronized the

auditory stimulus must lag the visual stimulus accounting for sound propagation velocity [25–

27]. Previous research shows some potential audiovisual interactions. A cueing sound at the

same distance as a visual target enhanced the detection of the visual target [28]. It has also been

Table 1. Goodness of fit of each model (r2).

Model All All (A) All (V) s1 s2 s3 s4 s5 s6

SensoryDominance 0.451 0.121 0.853 0.435 0.462 0.66 0.530 0.411 0.447

MandatoryIntegration 0.448 0.074 0.952 0.378 0.475 0.469 0.506 0.410 0.472

NoInteraction 0.838 0.613 0.838 0.934 0.874 0.780 0.775 0.755 0.851

CausalInferencePM 0.863 0.679 0.963 0.938 0.885 0.804 0.826 0.792 0.883

CausalInferenceMA 0.841 0.618 0.964 0.935 0.869 0.778 0.790 0.743 0.872

CausalInferenceMS 0.849 0.642 0.963 0.935 0.872 0.787 0.795 0.790 0.867

Goodness of fit of each model against all distance estimates (All), the auditory distance estimates (All (A)) and the visual distance estimates (All (V)). Causal

inference was tested with three strategies: probability matching (PM), model averaging (MA), and model selection (MS). The goodness of fit was obtained

by simple linear regression with ordinary least squares regression. The regression analysis fit predictions against observed response rates per stimulus type

and subject.

doi:10.1371/journal.pone.0165391.t001
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reported that having visual references about the space improves auditory distance localization

[29]. Seeing all response options, namely seeing an array of loudspeakers, improves localiza-

tion of sounds in distance [30], while seeing only one loudspeaker biases the perceived distance

toward it [31–34]. In those studies there were never visual events to relate the auditory events

to. Therefore, the localization of visual and auditory events in distance when presented

together had never been analyzed. The impact of sound events on visual distance perception

remained unexplored, too, and it was not known how visual and auditory cues interact under

congruent and incongruent conditions, and at several distances. In our experiment, subjects

Fig 6. Sensory weights in auditory distance estimates. Calculated from all pooled data.

doi:10.1371/journal.pone.0165391.g006
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were immersed in an audiovisual recorded room and were allowed to move their heads, since

stimuli were generated in realtime. Therefore all sensory distance cues were available, except

for binocular rivalry.

We found that visual distance estimates were for the most part accurate and that the impact

of auditory cues was negligible. Auditory information had a maximum weight of 20 percent

over the visual distance estimate, namely when stimuli were presented in proximity of each

other and at large distances. In the bimodal trials it was found that vision has a large impact

over the perceived auditory distance, contributing with more that 50 percent of the weight,

namely when stimuli are presented within 3 m of each other. With larger stimuli separations

the perceived auditory distance is mostly unaffected by visual stimulation. In light of the causal
inference model, this window of interaction can be interpreted as the window within which

humans alternate between inferring one and two separate external causes.

The fact that auditory cues had such low impact on visual distance estimates, and that visual

cues only affected the auditory estimates within well defined windows may be related to the

choice of stimuli employed in this experiment. In fact, stimuli were relatively longer in dura-

tion when compared to other audiovisual localization experiments. This choice of duration

had to do with the fact that two main cues for auditory distance localization are reverberation

time and direct-to-reverberant energy ratio [35–39], and reverberation as cue has a longer

duration. Other auditory distance cues include sound level, auditory parallax, high frequency

components and high room reflectance [35, 37, 40–43]. Our study included all of the above

cues. This may certainly have increased the accuracy of the auditory image and therefore

reduced uncertainty, which in turn may have contributed to lowered cue integration, higher

rates of perceived separate causes, and generally low levels of cue interaction. In a similar way,

our visual stimuli were very rich in distance cues: retinal size, familiar size, parallax, optic flow,

texture gradient, and light and shade were available (see [44] for an overview on visual distance

cues) and stimuli duration was enough for all cues to be processed with accuracy. Therefore,

perhaps if stimuli duration was shorter, or if stimuli were impoverished and abstract, higher

perceived common causality could have been obtained, or higher interaction observed. On the

other hand, the use of realistic stimuli under well-controlled conditions can provide an insight

on the mechanisms of multisensory combination as they often occur. It also provides for a

preservation of stimulus identity from a common audiovisual source, which promotes multi-

sensory binding [45]. From this point of view it is equally arguable that realistic and congruent

stimuli could be associated to higher levels of perceived common causality and integration

than if more abstract stimuli were used.

4.2 Multisensory Models

To assess the multisensory interactions in distance perception we tested several multisensory

models. One of these models, the causal inference model, was tested with a different approach

from previous multisensory studies. The model predicted that when separate causes are

inferred the estimates have the same distribution as in the unisensory condition. When com-

mon causes are inferred it predicted that the distribution of the estimates can be given by the

MLE model. It also proposed possible distributions of the combined estimates. While other

distributions may be equally or more valid, we found that all tested causal inference models fit

the data well. Three other longstanding models that do not assume causal inference were

tested. It was found that overall causal inference fit better to the data, closely followed by the no
interaction model. Sensory dominance, the longest standing model, explained the smallest por-

tion of the overall data. Mandatory integration, which is still widely used as the main current

model in multisensory processing, was the second worst. Note that mandatory integration is
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also a part of the causal inference model. In the causal inference model it would be expected to

occur if a common source was often inferred. Therefore, it is likely that the poor performance

of the mandatory integration model in explaining the results from our experiment has to do

with the low rates of perceived common causality. The no interaction model explained more

than 80% of the overall data and did considerably well across all subjects. This model, too, is

partly integrated in the causal inference model. It is expected to take place when two causes are

inferred. Since in the experiment we report there were high rates of perceived separate causes,

the good performance of the no interaction model is not surprising. The causal inference
yielded the best fits in every tested case. Resolved with the probability matching strategy, it was

found to explain the largest proportion of the overall data, which is in line with the finding of

the study that proposed these resolving strategies [20]. In fact, when observing the response

distributions of the auditory distance estimates it is often observed that there are two peaks.

This bimodal distribution corresponds well to the estimates of each causal structure and it is a

key feature in the probability matching strategy. It can be therefore hypothesized that, instead

of combining each of the estimates from the inferred causal structures, perceivers alternate

their response strategy between one and the other. All subjects seemed to follow more the

probability matching strategy, which is not to say they did not alternate between strategies dur-

ing the experiment. Indeed, looking at the visual distance estimates separately, we see that

model averaging did slightly better, although all models fit very similarly. [20] compared the

three causal inference strategies in a large population of subjects for localization of audiovisual

horizontal stimuli. They found that the majority of the subjects followed more the probability

matching strategy, while others followed more a model averaging or model selection strategy.

A model averaging strategy means that subjects respond mostly according to a linear weighted

average on the two causal structures, while a model selection strategy means that subjects

respond mostly according to the most probable causal structure. It must be noted that here

these strategies were tested with different calculations from the study by [20]: no generative

model was used, and instead model predictions were obtained by using the same calculations

for response centroid, but original calculations for response distribution. Therefore result

comparisons between studies should be read with caution. The models used here seem how-

ever to work as a plausible alternative to test the causal inference model with much reduced

computational complexity and demand.

In a final step, with the purpose of quantifying the overall importance of each sensory cue

over the other, we proposed a new method to calculate sensory weights. This computation

allows for an intuitive visualization of the interactions between cues in all tested cue combina-

tion cases. It also allows for the quantification of the relevance of each cue, and for the mea-

surement of the window of interaction. Here, the window of interaction was defined as the

stimuli range within which the sensory estimates of one sensory modality were affected in

more than 50% by another concurrent sensory modality. In this case, it was observed that

there is a clear window of interaction in auditory distance perception, which is always centered

around the stimulus position itself. However, there is no such window in the perception of

visual distance.

Taking an overview of our data, they seem to suggest that visual distance and auditory dis-

tance percepts are formulated though different mechanisms. The sensory weights of each cue

are different for visual and for auditory distance estimates, even when they are mostly per-

ceived as co-localized. Also, the multisensory model that best explains estimates in one sensory

modality might not be best suited for the other sensory modality. This possibility calls for the

need of analysing the multisensory percepts in each modality separately, and for the testing of

multisensory models with this in mind.
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Several notes should be taken while reading our test of multisensory models in the percep-

tion of audiovisual distance. Firstly, it must be noted that the performance of each tested

model against our data may have been influenced by the research method itself. It may be that

the fact that only 10% of the trials presented co-localized stimuli decreased the probability of

inferred common causality. It may also be that the availability of very clear distance cues com-

bined with a long stimulus duration might have decreased the level of cue interaction. How-

ever, it is also true that currently all research testing the causal inference model uses similarly

low rates of congruent stimuli. Indeed, even articles testing other multisensory mechanisms

such as the MLE tend to exhibit this limitation. In any case, it remains an open question

whether the rate of congruent stimuli would affect model performance, and future studies

should address this issue. It may also be that the availability of most distance cues, combined

with long stimulus duration, may have affected the level of cue interaction. This is also an open

question in most research experiments in this field, and only a new battery of tests manipulat-

ing stimulus quality would be able to answer it. Nevertheless, the causal inference model is sen-

sitive to changes in rate of cue integration, by simply assuming different values of probability

of common cause, and it can therefore be expected that the model would perform equally as

well with different stimuli arrangements and experimental designs.

Finally, the proposed causal inference model was merely a first suggestion of how perceptual

causal inference mechanisms might be estimated with simple mathematical formulations.

There is the need to further look into this model and explore the existence of potential biases,

test alternative distributions, and alternative resolution strategies. The proposed model should

also be tested against other causal inference model formulations and other datasets.

5 Conclusion

The models of multisensory integration are a very useful tool to describe quantitatively how

different sensory cues interact to produce a sensory estimate. Here, these models are brought

forward to explain the data from an experiment on the audiovisual perception of distance. The

causal inference model with probability matching strategy approximated the overall data better

than the other models. The causal inference principles can also be used to calculate the sensory

weights under all stimuli combinations. These weights revealed that, within a given window,

the visual cue has greater importance than the auditory cue in the perception of auditory dis-

tance. The visual cue is the most prominent one in the perception of visual distance.
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