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Abstract: The development of smart cities calls for improved accuracy in navigation and positioning
services; due to the effects of satellite orbit error, ionospheric error, poor quality of navigation
signals and so on, it is difficult for existing navigation technology to achieve further improvements
in positioning accuracy. Distributed cooperative positioning technology can further improve the
accuracy of navigation and positioning with existing GNSS (Global Navigation Satellite System)
systems. However, the measured range error and the positioning error of the cooperative nodes
exhibit larger reductions in positioning accuracy. In response to this question, this paper proposed
a factor graph-aided distributed cooperative positioning algorithm. It establishes the confidence
function of factor graphs theory with the ranging error and the positioning error of the coordinated
nodes and then fuses the positioning information of the coordinated nodes by the confidence function.
It can avoid the influence of positioning error and ranging error and improve the positioning accuracy
of cooperative nodes. In the simulation part, the proposed algorithm is compared with a mainly
coordinated positioning algorithm from four aspects: the measured range error, positioning error,
convergence speed, and mutation error. The simulation results show that the proposed algorithm
leads to a 30–60% improvement in positioning accuracy compared with other algorithms under
the same measured range error and positioning error. The convergence rate and mutation error
elimination times are only 1/5 to 1/3 of the other algorithms.

Keywords: cooperative positioning; distributed positioning; factor graphs; total least squares

1. Introduction

With the development of smart cities, navigation and positioning techniques are now more
important in daily life. However, it is extremely difficult to improve the accuracy of navigation
and position with existing satellite navigation systems, Inertial Navigation Systems (INS), and other
navigation systems. The services required by smart cities, such as autonomous vehicle driving and
unmanned aerial vehicles, require the support of high-precision navigation and positioning services.
The existing navigation and positioning technology mainly improves the accuracy of navigation and
positioning by improving the signal quality of satellite navigation systems [1], enhancing navigation
signal strength [2], map matching [3], ground station assistance [4], and so on. These techniques can
significantly improve positioning accuracy in sparsely populated areas. In urban environments, it is
difficult to substantially improve the positioning accuracy in ill-conditioned wireless environments
due to the multipath effect and the high-rise effect of the building. However, it is theoretically feasible
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to improve positioning accuracy through cooperative locations among multi-user terminals due to
the large number of terminals. A simple cooperative positioning method based on a wireless sensor
network was proposed by Ziming et al. [5], where nodes broadcast their position and the user terminal
calculates the centroid of the reference point of the received broadcast signal and then takes this as
the estimation of the terminal position. A semi-definite programming (SDP) method for collaborative
positioning and achieved high robustness in different topological networks was proposed by Monir
and Michael [6]. However, they did not consider the sensor user’s own positioning ambiguity problem.
A Second-Order Cone Programming (SOCP) model is proposed by Slavisa et al. [7], which can sacrifice
a certain positioning accuracy in exchange for a faster calculation speed. However, it did not consider
the impact of ranging error on the positioning results. The positioning accuracy decreases rapidly when
the ranging error is larger. Fabian studied co-location based on measurement selection sequences and
proposed a series of methods to solve the ranging error in co-location but also ignored the positioning
error of cooperative nodes [8]. A co-location model approaching the lower limit of positioning error
in a non-line-of-sight environment and designed a series of algorithms to solve it [9]. However, this
method cannot obtain the global optimal solution, which leads to an increase in the positioning error
of the cooperative nodes. A quasi-linear optimization co-location model is proposed by Jiang et al. [10].
The model also considers the effect of coordination and non-line-of-sight errors between cooperative
nodes; however, the performance improvement of the algorithm is very limited. Positioning based
on factor graphs was proposed by Christian and Simon [11]. It introduced a factor-graph-based
positioning algorithm in wireless cellular networks by the base stations and set the base stations as
precise nodes, The factor graph was used to obtained the position of mobile nodes. However, it did
not consider the effect of the position error and ranging error of base stations and mobile nodes on
the cooperative position system. The position error and ranging error are the main limitations of
cooperative node localization accuracy. To solve the problem of location ambiguity in distributed
cooperative positioning, we propose a cooperative positioning algorithm in this paper under the
influence of positioning error and ranging error. The cooperative nodes can measure the distance
information and interactive self position information to improve the accuracy of position, which takes
into account both the ranging error of cooperative nodes and the fuzzy positioning error of cooperative
nodes. We take advantage of factor graph theory to realize the reliability estimation of ranging error
and positioning error and integrate the overall least squares theory to achieve a high-accuracy position
cooperative position.

In distributed cooperative positioning, because of the large ranging error, the introduction of
cooperative positioning creates more positioning errors [12]. Therefore, the distributed cooperative
positioning method is proposed in this paper to achieve positioning through the visual distance of the
coordinated nodes. The network topology of distributed cooperative positioning G is set as

G = (V, E) (1)

where V represents all cooperative nodes in a distributed cooperative positioning network, and E
represents a set of range values between cooperative nodes. The total number of cooperative nodes is
K, and the position of cooperative node k can be expressed as

pk = [xk, yk, zk]
T (2)

xk, yk and zk represent the position of the x-axis, y-axis, and z-axis of cooperative node k. Then,
the vector of the position of all cooperative nodes U is represented as

U = [pT
1 , pT

2 , · · · , pT
K]. (3)
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The network topology of distributed cooperative positioning G can be expressed as the product
of K sets of subgraphs of some cooperative nodes due to factor graph theory [13]. The distributed
network topology Gk of the cooperative node k is set as

Gk = (Vk, Ek) (4)

where Ek represents a set of range values between the cooperative node k with the other cooperative
nodes that have a communication link with cooperative node k. The range value between cooperative
node k and cooperative node i can be expressed as

rik =
√
(xi − xk)2 + (yi − yk)2 + (zi − xk)2. (5)

The position of a cooperative node can be obtained by more than three groups of distance
equations in a cooperative positioning network [14]. However, the ranging error of distances between
cooperating nodes and the position ambiguity of cooperative nodes affects the accuracy of cooperative
positioning [15]. To address the ranging error between different cooperative nodes, the paper utilized
the range difference function instead of the distance function to abate the ranging error. The range
difference dij

k between cooperative node k and any other two cooperative nodes i, j is expressed as

dij
k = rik − rjk. (6)

Combining Equations (3) and (4), Equation (6) can be rewritten as follows:

(xi − xj)xk + (yi − yj)yk + (zi − zj)zk (7)

= 1/2[(x2
i + y2

i + z2
i )− (x2

j + y2
j + z2

j ) + (r2
i − r2

j )].

The belief information is constructed and is transferred between cooperating nodes to obtain the
optimal position information of a cooperative node. Belief information is the information describing
the mean and standard deviation of the range value between the cooperating nodes and the positioning
error of a cooperative node. If cooperative node i adjacent to cooperative node k has the highest belief
information among all cooperative nodes, the belief information of cooperative node i is set as the
standard belief information for cooperative node k; then, the index of cooperative node i is set as st.
The belief information is computed by factor graph theory in the next part. The range value between
cooperative node st and k is the standard distance. Then, the distance difference between cooperative
node j and k and cooperative node st and k is as follows:

(xj − xst)xk + (yj − yst)yk + (zj − zst)zk (8)

= 1/2[(x2
j + y2

j + z2
j )− (x2

st + y2
st + z2

st) + (r2
j − r2

st)].

To obtain the position of the cooperative nodes, the aim function can be constructed by multiple
sets of Equation (7), and the form of the aim function can be expressed as AX = B. The ith line of
matrix X is [xi, yi, zi]; the ith line of matrix A is [xi − xst, yi − yst, zi − zst], and the ith line of matrix B is
1/2[(x2

i + y2
i + z2

i )− (x2
st + y2

st + z2
st) + (r2

i − r2
st)]. The matrix can be defined as D = [A, B], and the

aim function can be rewritten as

D ·
[

X
−I

]
= 0. (9)

The elements of matrix D are independent with the same distribution. Therefore, the position of
cooperative nodes can be obtained by the least minimum square method. However, any cooperative
nodes that have a large position error or ranging error will degrade the performance of all the
cooperative nodes, so the factor graphs is adopted to abate the effect of the position error and
ranging error.
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2. Factor-Graph-Assisted Distributed Coordination Position Algorithm

Due to the positioning information accuracy variation of cooperative nodes, it is difficult to obtain
the optimal position by fixed cooperative nodes [16]. To solve this problem, the factor-graph-assisted
element weighting total least squares algorithm is proposed based on parameter estimation theory.
The overall optimization position of cooperative nodes is utilized to replace the existing independent
optimization of the distributed position cooperative node. First, the cost function of cooperative node i
is constructed as follows:

Si =
K

∑
k=1

ωki(‖pk − pi‖−lki)
2 (10)

where ||.||means the norm function, K represents the total cooperative node, ωki represents the weight
factor of belief information between cooperative node k and i, pk and pi represents the position
of cooperative node k and i, and rki represents the range value between cooperative node k and i.
The overall positioning optimal cost function S can be expressed as the sum of cooperative node cost
function Si.

S =
K

∑
i=1

Si (11)

=
K

∑
i=1

K

∑
k=1

ωki(‖pk − pi‖−rki)
2.

Factor graph theory has two types of nodes: variable nodes and function nodes. Each edge is
connected with a variable node and a function node. In our proposed distributed cooperative position
algorithm, the variable node represents the cooperative node, and the function node represents a factor
graph local function and achieves nonlinear fusion of belief information in every computation cycle,
so there is no link between different variable nodes. The factor graphs method can split a complex
multivariate global function into the product of several simple local functions, so the optimal position
is obtained by the local function instead of the optimal position of the global function. In product
theory of the factor graph, the belief information is transferred between variable nodes and function
nodes to obtain the optimal position information of a cooperative node. The structure of distributed
cooperative position based on factor graph is shown in Figure 1.
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Figure 1. The structure of factor-graph-assisted distributed cooperative positioning.
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The belief information passed from the cooperative node to the function node is the product
of the belief information of all the other neighbor function nodes arriving at the cooperative node.
For example, the belief information based on the transfer from the cooperative node T3 to the function
node g2 can be described as

BI(T3, g2) = BI(g3, T3)BI(g4, T3) (12)

where BI(g3, T3) represents belief information that transfers from function node g3 to cooperative node
T3, and BI(g4, T3) represents belief information that transfers from function node g4 to cooperative
node T3. The belief information passed from the function node to the cooperative node is the product
of all belief information of the other neighbor cooperative nodes connected to the function node and is
then multiplied by a local function of the function node. For example, the belief information passed
from function node g2 to T3 can be expressed as

BI(g2, T3) = BI(T1, g2)BI(T4, g2)g2(T1, T4) (13)

where BI(T1, g2) and BI(T4, g2) represent belief information that transfers from cooperative nodes
T1 and T4 to function node g2. g2(T1, T4) represents the local function of the function node. In this
paper, the local function is modeled by a signal propagation decay model and obeys a Gaussian
distribution. Then, the belief information of cooperative node T3 can be expressed as the product of all
belief information connected with cooperative node T3, expressed as

BI(T3) = BI(g2, T3)BI(g3, T3)BI(g4, T3). (14)

The belief information passed from cooperative node T2 to T3 with the shortest path principle is
then expressed as

BI(T2, T3) (15)

= BI(T2)BI(T2, g1)BI(g1, T1)BI(T1, g2)BI(g2, T3).

Because the maximum value of the belief information in the factor graph is 1, if the number of
cooperative nodes is larger, the actual value of the belief information is different by triangulation and
leads to larger calculation errors. The normalized weight factor is adopted in our proposed algorithm
to abate calculation error and is expressed as

wki =
BI(Tk, Ti)

max(BI(Tk, Ti))
. (16)

wki represents the normalized weight factor of belief information BI(Tk, Ti). The optimal position can
be obtained by minimizing cost subfunction Si instead of the cost function S.

min S = min
K

∑
i=1
‖Φ−1/2

i ∆di‖2
2. (17)

Combining Equations (9) and (10), the cost function can be rewritten as follows:

(D + ∆D)

[
X
−I

]
= 0 (18)
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where ∆D represents the error of matrix D with zero mean, ∆d represents the ith line of matrix ∆D, di
represents the ith row vector of D and mutual independence, and the covariance matrix Φi of di is
expressed as

Φi = cov(di)

=

[
var(ai) cov(ai, bi)

cov(bi, ai) var(bi)

]

=

[
Φai Φai ,bi

Φbi ,ai Φbi

]
(19)

where ai and bi represent the ith line of matrix A and matrix B. Optimization can be obtained by
minimizing the cost function of matrix ∆di, and the new cost function f (∆D) is expressed as

f (∆D) = min
∆d1,··· ,∆dm

m

∑
i=1
‖Φ−1/2

i ∆di‖2
2. (20)

To obtain the optimal position of cooperative nodes, Equation (20) can be rewritten as follows:

DXest + ∆DXest = 0

γi + ∆dT
i Xest = 0 (21)

where Xest = [X,−I]T , DXest represents the residual matrix and is expressed as DXest = AX− B.
γT

i represents the ith row of the residual matrix. The optimal position of cooperative node i can be
expressed as follows by decomposing Equation (21):

f (∆di) = min
∆di

m

∑
i=1
‖Φ−1/2

i ∆di‖2
2

∆dT
i Xest = −γi. (22)

The optimization problem of Equation (22) is a minimum two-norm problem, so the optimal
solution of Equation (22) is

f (∆di) = γT
i (X

T
estΦiXest)

−1γi. (23)

Therefore, the optimization problem required by Equation (23) can be expressed as an
unconstrained optimization problem. Suppose Qi(X) = XT

estΦiXest; Equation (23) can be rewritten as

min S(X) = min
m

∑
i=1

f (∆D)

= min
m

∑
i=1

γT
i Q−1

i (X)γi. (24)

The partial derivative of function S(X) with respect to X is

S′(X) = 2
m

∑
i=1

S′i(X) (25)

S′i(X) =

(
aT

i (aiX(n+1) − bi)Q−1
i (X)− (Φai X

(n+1) −Φbi )

Q−1
i (X(n))γi(X(n))γT

i (X
(n))Q−1

i (X(n))

)
.
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By expanding Equation (19), the following standard linear equation can be obtained:

m

∑
i=1

(
aT

i ai

Qi(X(n))
−Φai

γ2
i (X

(n))

Q2
i (X

(n))

)
X(n+1) (26)

=
m

∑
i=1

(
aT

i bi

Qi(X(n))
−Φbi

γ2
i (X

(n))

Q2
i (X

(n))

)
.

The optimal position of cooperative nodes X(n+1) can then be computed by the iterated operation
in Equation (26). When ‖X(n+1) − X(n)‖/‖X(n)‖< θ, the position results are stable and X(n+1) is
the global optimal position of the cooperative nodes estimated from the global conditions. θ is the
judgment threshold and is determined by the error fluctuation.

3. Simulation Results and Analysis

3.1. Ranging Error Performance Analysis

In the cooperative position system, positioning accuracy is mainly affected by the positioning
error of the cooperative node and the ranging error, which is measured between cooperative nodes.
In the first part, the ranging error is simulated with the ideal position condition, where the standard
deviation of the positioning errors of cooperative nodes is 0 m. Our proposed algorithm is compared
with the cooperative position method based on distance measurement assistance in [5], semi-definite
collaborative positioning method in [6], the second-order cone optimized co-location method in [7],
and the quasi-linear programming co-location method in [9]; the radius of the network topology is
5 km; the range value between cooperative nodes is independent and is obtained via Wifi; the position
of cooperative nodes is obtained by GPS and the data frequency of ranging and position are both
100 Hz. In each calculation, the cooperative node is stable in network topology. The framework of the
cooperative network topology is shown in Figure 1. The standard deviation (STD) of the ranging error
is from 0 to 70 m, and the simulation result of 1000 Monte Carlo is shown in Figure 2.
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Figure 2. Relationship cooperative position error and ranging error with ideal position condition.

From Figure 2, we can see that the RSME (Root Mean Square Error) of all cooperative position
methods becomes larger with the increase in standard deviation of the ranging error. However, the
methods in [5,6] exhibit faster performance degradation than the other methods; when the STD of the
ranging error is 40 m, the RSME of the cooperative position is 90 and 80 m, respectively. However,
the methods in [7] and [9] as well as our proposed algorithm can effectively prevent degradation of
the RSME; when the STD of the ranging error is 40 m, the RSME of the cooperative position is 45, 50,
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and 40 m, respectively. This shows that our proposed algorithm can effectively reduce the impact of
the ranging error on the cooperative position. Because it is difficult for a real cooperative position
environment to maintain a standard deviation of cooperative node position error of 0 m, the STD of the
positioning errors of the cooperative nodes is set to 10 m, which depends on the positioning accuracy
of the GNSS system, and the other condition is the same; the simulation result of 1000 Monte Carlo is
shown in Figure 3.
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Figure 3. Relationship cooperative position error and ranging error with STD of positioning errors of
cooperative nodes of 10 m.

From Figure 3, we can see that, because the cooperative nodes have a position error, the RSME
of the methods in [5,6] degrade quickly, and it is difficult to achieve performance improvement with
respect to the cooperative position. Compared with the result in Figure 2, the RSME of the methods
in [7,9] also have larger degradation; when the STD of the ranging error is 40 m, the RSME of the
cooperative position is 84 and 63 m, respectively. This means the position error of the cooperative
nodes have a larger effect and the methods in [7,9] ignore the position error with difficulty. However,
the RSME of our proposed algorithm is only 55 m, and this is better than those of the other algorithms.
The factor map theory is utilized to estimate the belief information; then, combining the overall least
squares method to abate the effect of cooperative node position error helps to improve the performance
of the cooperative position system.

3.2. Cooperative Node Positioning Error Performance Analysis

In the cooperative position system, in addition to the ranging error, the position error of
cooperative nodes will have a significant impact on the accuracy of the cooperative position system.
In the second part, the positioning errors of cooperative nodes are simulated with the ideal range
condition, where the standard deviation of the ranging error is 0 m; our proposed algorithm is
compared with the cooperative position method based on distance measurement assistance in [5],
the semidefinite collaborative positioning method in [6], the second-order cone optimized co-location
method in [7], and the quasi-linear programming co-location method in [9]; the other simulation
condition is the same as that in Section 3.1, and the simulation result of 1000 Monte Carlo is shown in
Figure 4.

In Figure 4, we can see that the RSME of all cooperative position methods will become larger
with an increasing standard deviation of the node positioning error. However, the methods in [5,7]
exhibit faster degradation than do other methods; when the STD of the node positioning error is
30 m, the RSME of the cooperative position is 75 and 45 m, respectively. Our proposed algorithm
and the methods proposed by [6,9] can remove the effect of node position error and improve the
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performance of the cooperative position; when the STD of the node position error is 30 m, the RSME of
the cooperative position is 22, 22, and 18 m, respectively. As with the analysis of the ranging error, it is
difficult for the real cooperative position environment to maintain a standard deviation of the ranging
error of 0 m, so we set the STD of the ranging error to be 10 m and repeat the simulation again; the
other condition is the same as in Figure 4, and the simulation result of 1000 Monte Carlo is shown in
Figure 5.
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Figure 4. Relationship cooperative position error and node positioning error with ideal position condition.
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Figure 5. Relationship cooperative position error and node positioning error, wherethe STD of ranging
error is 10 m.

In Figure 5, we can see that, due to the effect of the ranging error, the RSME of the proposed
algorithms in [5,6] degrade quickly and are unable to meet the requirements of the cooperative
position system. Compared with the results in Figure 4, due to the effect of ranging error, the RSME
of the proposed algorithms in [5,6] degrade quickly and are unable to meet the requirements of
the cooperative position system. Compared with the results in Figure 4, the proposed algorithms
in [7,9] are unable to completely eliminate the ranging error, so the RSME is worse; when the STD
of the node position error is 30 m, the RSME of the cooperative position is 60 and 50 m, respectively.
However, the RSME of our proposed algorithm is only 28 m when the STD of the node position error
is 30 m and exhibits great improvement over the other cooperative position algorithms; our algorithm
utilized the factor graph to establish cooperative node belief information, and data fusion was then
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performed, whereby the cooperative position system adopts the cooperative node that has a high
value of belief information. The global cost function is thus constructed to obtain the global optimum
of all cooperative nodes, and the effect of the positioning error and ranging error on the accuracy of
the cooperative position can be effectively reduced.

3.3. Comparison of Convergence Rates

In the cooperative position system, nodes have both moving and static states, so the convergence
speed of the algorithm will affect the actual performance of the algorithm; a faster convergence rate will
bring better positioning performance. Therefore, the STD of the ranging error and nodes positioning
error is 1 m, a value that depends on the existing GNSS position accuracy of cooperative nodes.
Our proposed algorithm is compared with the cooperative position algorithms proposed in [5–7,9];
the simulation result of 1000 Monte Carlo is shown in Figure 6.
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Figure 6. Convergence rates.

In Figure 6, we can see that the convergence speed of [5] is the slowest, requiring 12 iterations to
complete the convergence, and the cooperative position error reaches 7 m due to the large influence of
the cooperative node positioning error and ranging error. The algorithms in [6,7] require 11 iterations
to complete the convergence, and the cooperative position error reaches 5 m and 4.6 m; the algorithms
in [6,7] ignore the effect of the ranging error and node positioning error. Our proposed algorithm
and the proposed algorithm in [9] take into account both the ranging error and position error of the
cooperative node, so the cooperative position errors reach 1 m and 3 m, respectively. The convergence
speed of our proposed algorithm is the fastest among all the algorithms; the algorithm of this paper
utilized the adaptive belief information function of cooperative nodes based on factor graph theory to
select the nodes that have better node position accuracy and smaller ranging error, so our proposed
algorithm can remove the impact of positioning error and ranging error quickly and improve the
convergence rate.

3.4. Effect of Cooperative Nodes Mutation Error

In the cooperative position system, the GNSS position result of the cooperative nodes depends on
the quality of the GNSS signal. Satellite signal interference, signal scattering and deceptive signals will
affect the GNSS signal and lead to mutation error, which will degrade the the position performance
of cooperative nodes, so the cooperative position algorithm should reduce the influence of mutation
error on the cooperative positioning system. Under a standard deviation of the ranging error and
node positioning error of 1 m, three nodes in the cooperative position network are added to the
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mutation positioning error in the third moment after the cooperative positioning network is stable;
the simulation result of 1000 Monte Carlo is shown in Figure 7.
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Figure 7. Cooperative position performance with mutation error.

In Figure 7, we can see that the algorithm proposed in [5] requires eight iterations to achieve
the re-convergence of the cooperative position system, and the cooperative position error exhibits
a drop of about 2 m. The algorithms from [6,7,9] require 8, 7, and 10 iterations, respectively, to achieve
re-convergence, and it is difficult for all of the cooperative position algorithms to adapt to moving
nodes. Our proposed algorithm just requires three iterations to achieve re-convergence, and the
accuracy position of the cooperative node is stable. This is mainly because the decomposition of the
factor graph is utilized to directly obtain the optimal positioning result of the cooperative node in the
whole cooperative network, and the belief information of the cooperative node can avoid cooperative
nodes that have a mutation error selected by the cooperative position. Thus, our proposed algorithm
can eliminate the influence of mutation error on the cooperative node.

4. Conclusions

In response to the bottleneck in improvements to positioning accuracy in the existing navigation
and positioning technology, the cooperative position algorithm can further improve positioning
accuracy based on the interactive position information of the cooperative node. However, the
ranging error and node positioning error have a greater impact on the accuracy of a cooperative
positioning network and even reduce positioning accuracy. Our proposed factor-graph-assisted
distributed cooperative position algorithm establishes the corresponding belief information model
of the cooperative node by the ranging error and node position error and combines the total least
squares method to obtain the optimal position of the cooperative position network. It can effectively
restrain the influence of ranging error and node positioning error on the whole cooperative positioning
system. This paper compares our proposed algorithm with the existing algorithms in terms of ranging
error, cooperative node positioning error, convergence rate, and mutation error; the simulation results
show that the positioning accuracy of our proposed algorithm is improved by 30–60%. In terms of
convergence rate, our proposed algorithm utilizes the sum-product principle of the factor graph to
achieve faster convergence than the other cooperative position algorithms. Importantly, when the
cooperative node itself has a mutation error, our algorithm can quickly eliminate the effect of the
mutation error on the entire coordinated positioning network. Our method has good application value
in the field of navigation and positioning.
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