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abstract

Big data for health care is one of the potential solutions to deal with the numerous challenges of health care, such
as rising cost, aging population, precision medicine, universal health coverage, and the increase of non-
communicable diseases. However, data centralization for big data raises privacy and regulatory concerns.

Covered topics include (1) an introduction to privacy of patient data and distributed learning as a poten-
tial solution to preserving these data, a description of the legal context for patient data research, and
a definition of machine/deep learning concepts; (2) a presentation of the adopted review protocol; (3)
a presentation of the search results; and (4) a discussion of the findings, limitations of the review, and future
perspectives.

Distributed learning from federated databases makes data centralization unnecessary. Distributed algorithms
iteratively analyze separate databases, essentially sharing research questions and answers between databases
instead of sharing the data. In other words, one can learn from separate and isolated datasets without patient
data ever leaving the individual clinical institutes.

Distributed learning promises great potential to facilitate big data for medical application, in particular for
international consortiums. Our purpose is to review the major implementations of distributed learning in health
care.
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INTRODUCTION

Law and ethics seek to produce a governance
framework for the processing of patient data that
produces a solution to the issues that arise between
the competing desires of individuals in society for
privacy and advances in health care. Traditional safe-
guards to achieve this governance have come from,
for example, the anonymization of data or informed
consent. These are not adequate safeguards for the
new big data and artificial intelligence methodologies in
research; it is increasingly difficult to create anonymous
data (rather than pseudonymized/coded data) or to
maintain it against re-identification (through linking of
datasets causing accidental or deliberate re-identifi-
cation). The technology of big data and artificial in-
telligence, however, itself increasingly offers safeguards
to solve the governance problem. In this article we
explore how privacy-preserving distributed machine
learning from federated databases might assist gover-
nance in health care. The article first outlines the basic
parameters of the law and ethics issues and then dis-
cusses machine learning and deep learning. Thereafter,
the results of the review are presented and discussed.

The methodology for this research is that distributed
machine learning is an evolving field in computing,
with 665 articles published between 2001 and 2018;
the study is based on a literature search, focuses
on the medical applications of distributed machine
learning, and provides an up-to-date summary of
the field.

THE LEGAL CONTEXT FOR PATIENT DATA RESEARCH

The challenges in law and ethics in relation to big data
and artificial intelligence are well documented and
discussed1-16. The issue is one of balance: privacy of
health data and access to data for research. This issue
is likely to become more pronounced with the fore-
seeable developments in health care, notably in re-
lation to rising cost, aging population, precision
medicine, universal health coverage, and the increase
of noncommunicable diseases. However, recent
developments in law, for example, in the European
Union’s General Data Protection Regulation (GDPR),
appear to maintain the traditional approach that seems
to favor individualism above solidarity. Individualism
is strengthened in the new legislation. There is
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a narrowing of the definition of informed consent in Article
4.11 of the GDPR, with the unclear inclusion of the ne-
cessity for broad consent in scientific research included in
Recital 33.

In relation to the continuing ambiguity of the unclear legal
landscape for research using and reusing large datasets
and linking between datasets, the GDPR is not clear in the
area of re-identification of individuals. For the GDPR, part of
the problem is clear—when data have the potential when
added to other data to identify an individual, then those data
are personal data and subject to regulation. The question is,
is this absolute (any possibility, regardless of remoteness),
or is there a reasonableness test? Recital 26 includes such
a reasonable test: “To ascertain whether means are rea-
sonably likely to be used to identify the natural person,
account should be taken of all objective factors, such as
the costs of and the amount of time required for iden-
tification, taking into consideration the available tech-
nology at the time of the processing and technological
developments.”16a

From this overview of legal difficulties, it is clear that there
are obstacles to processing data in big data, machine
learning, and artificial intelligence methodologies and en-
vironments. It must be stressed that the object is not to
circumvent the rights of patients or to suggest that privacy
should be ignored. The difficulty is that where the law is
unclear, there is a tendency toward restrictive readings of
the law to avoid liability, and, in the case of the method-
ologies and applications of data science discussed here,
the effect of unclear law and restrictive interpretations of the
law will be to block potentially important medical and
scientific developments and research. Each of the un-
certainties will require regulators to take a position on the
best interpretation of the meaning of the law according to
the available safeguards. The question for the data science
community is, how far can that community itself address
concerns about privacy, about re-identification, and about
safeguarding autonomy of individuals and their legiti-
mate expectations to dignity in their treatment through the
proper treatment of their personal data? How far distributed
learning might contribute a suitable safeguard is the
question addressed in the remainder of this paper.

MACHINE LEARNING

Machine learning comes from the possibility to apply al-
gorithms on raw data to acquire knowledge.1 These algo-
rithms are implemented to support decision making in
different domains, including health care, manufacturing,
education, financial modeling, andmarketing.2,3 In medical
disciplines, machine learning has contributed to improving
the efficiency of clinical trials and decision-making pro-
cesses. Some examples of machine learning applications in
medicine are the localization of thoracic diseases,4 early
diagnosis of Alzheimer disease,5 personalized treatment,6

outcome prediction,7,8 and automated radiology reports.9

There are three main categories of machine learning al-
gorithms. First, in supervised learning, the algorithm gen-
erates a function for mapping input variables to output
variables. In unsupervised learning, the applied algorithms
do not have any outcome variable to estimate, and the
algorithms generate a function mapping for the structure of
the data. The third type is referred to as reinforcement
learning, whereby in the absence of a training dataset the
algorithm trains itself by learning from experiences to make
increasingly improved decisions. A reinforcement agent
decides what action to perform to accomplish a given
task.10,11 Table 1 provides a brief description of selected
popular machine learning algorithms across the three
categories.

DEEP LEARNING

Deep learning is a subset of machine learning, which, in
turn, is a subset of artificial intelligence,12 as represented in
Figure 1. The learning process of a deep neural network
architecture cascades through multiple nodes in multiple
layers, where nodes and layers use the output of the
previous nodes and layers as input.13 The output of a node
is calculated by applying an activation function to the
weighted average of this node’s input. As described by
Andrew Ng14, “The analogy to deep learning is that the
rocket engine is the deep learning models and the fuel is
the huge amounts of data that we can feed in to these
algorithms,” meaning that the more data are fed into the
model the better the performance. Yet, this continuous
improvement of the performance in concordance with the

CONTEXT

Key Objective
Review the contribution of distributed learning to preserve data privacy in health care.
Knowledge Generated
Data in health care are greatly protected; therefore, accessing medical data is restricted by law and ethics. This restriction has

led to a change in research practice to adapt to new regulations. Distributed learningmakes it possible to learn frommedical
data without these data ever leaving the medical institutions.
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amount of the data are not correct for traditional machine
learning algorithms reaching a steady performance level
that does not improve with the increase of the amount of the
training data.15

METHODS AND MATERIAL SELECTION

A PubMed search was performed to collect relevant studies
concerning the utilization of distributedmachine learning in
medicine. We used the search strings: “distributed learn-
ing,” “distributed machine learning,” and “privacy pre-
serving data mining.” The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) state-
ment was adopted to select and compare distributed
learning literature.16 The PRISMA flowdiagram and checklist
are slightly modified and presented in Appendix Figure A1
and Appendix Table A1, respectively. The last search for
distributed machine learning articles was performed on
February 28, 2019.

SEARCH RESULTS

A total of 127 articles were identified in PubMed using the
search query: (“distributed learning” OR “distributed ma-
chine learning” OR “privacy preserving data mining”). Six
papers were screened; a brief summary of each article is
presented in Table 2.

DISTRIBUTED LEARNING

Distributed learning ensures data safety by only sharing
mathematical parameters (or metadata) and not the actual
data or in any instance data that might enable tracking back
the patient information (such as patient ID, name, or date
of birth). In other words, distributed algorithms iteratively
analyze separate databases and return the same solution
as if data were centralized, essentially sharing research
questions and answers between databases instead of
data.17 Also, before processing with the learning process,
researchers must make sure all data have been success-
fully anonymized and secured by means of hashing al-
gorithms and semantic web techniques, respectively, as
can be seen in Figure 2, in addition to post-processing
methods to address the multicenter variabilities.19

Distributed Machine Learning

A large quantity of training data is required for machine
learning to be applied, especially in outcome modeling,
where multiple factors influence learning. Provided there
are sufficient and appropriate data, machine learning
typically results in accurate and generalizable models.20,21

However, the sensitivity of the personal data greatly hinders
the conventional centralized approach to machine learn-
ing, whereby all data are gathered in a single data store.
Distributed machine learning resolves legal and ethical
privacy concerns by learning without the personal data ever
leaving the firewall of the medical centers.22

The euroCAT23 and ukCAT24 projects are a proof of dis-
tributed learning being successfully implemented into
clinical settings to overcome data access restrictions. The
purpose of the euroCAT project was to predict patient
outcomes (eg, post-radiotherapy dyspnea for patients with
lung cancer) by learning from data stored within clinics
without sharing any of the medical data.

Distributed Deep Learning

Training a deep learning model typically requires thou-
sands to millions of data points and is therefore compu-
tationally expensive as well as time consuming. These
challenges can be mitigated with different approaches.
First, because it is possible to train deep learning models
in a parallelized fashion,25 using dedicated hardware
(graphics processing units, tensor processing units)26 re-
duces the computational time. Second, as the memory of
this dedicated hardware is often limited, it is possible to
divide the training data into subsets called batches. In this
situation, the training process iterates over the batches,
only considering the data of one batch at each iteration.27

On top of easing the computing burden, using small
batches during training improves the model’s ability to
generalize.28

These approaches address computation challenges but do
not necessarily preserve data privacy. As for machine
learning, deep learning can be distributed to protect patient
data.29,30 Moreover, distributed deep learning also im-
proves computing performance, as in the case of wireless
sensor networks, where centralized learning is inefficient in
terms of both communication and energy.31,32

An example of distributed deep learning in the medical
domain is that of Chang et al,33 who deployed a deep
learning model across four medical institutions for image
classification purposes using three distinct datasets: retinal
fundus, mammography, and ImageNet. The results were
compared with the same deep learning model trained on
centrally hosted data. The comparison showed that the
distributed model accuracy is similar to the centrally hosted
model.33 In a different study, McClure et al34 developed
a distributed deep neural network model to reproduce
FreeSurfer brain segmentation. FreeSurfer is an open
source tool for preprocessing and analyzing (segmentation,

Artificial intelligence

Machine learning

Deep learning

Machine programs able
to imitate human
intelligence

Algorithms able to learn
from examples

Set of learning techniques
inspired from biological
neural networks

FIG 1. Relationship between artificial intelligence, machine learning,
and deep learning.

Zerka et al
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thickness estimation, and so on) of human brain magnetic
resonance images.35 The results demonstrated perfor-
mance improvement on the test datasets. Similar to the
previous study, a brain tumor segmentation was suc-
cessfully performed using distributed deep learning across
10 institutions (BraTS distribution).36

In the matter of distributed deep learning, the training
weights are combined to train a final model, and the raw
data are never exposed.35,37 In the case of sharing the
locale gradients,25 it might be possible to retrieve estima-
tions of the original data from these gradients. Training the
local models on batches may prevent retrieving all the data
from the gradients, as these gradients correspond to single
batches rather than all the local data.38 However, setting an
optimal batch size needs to be considered25 to assure data
safety and the model’s ability to generalize.28,39,40

PRIVACY AND INTEGRATION OF DISTRIBUTED
LEARNING NETWORKS

Privacy in a distributed learning network addresses three
main areas: data privacy, the implementedmodel’s privacy,
and the model’s output privacy. Data privacy is achieved by
means of data anonymization and data never leaving the
medical institutions. The distributed learning model can be
secured by applying differential privacy techniques,41

preventing leakage of weights during the training, and
cryptographic techniques.42 These cryptographic tech-
niques provide a set of multiparty protocols that ensure
security of the computations and communication. Once the

model is ready, not only can the network participants use it
to learn from their data, but this learning should be able to
be performed locally and under highly private and secure
conditions to protect the model’s output.23

The users of a machine/deep learning model are not
necessarily the model’s developers. Hence, documentation
and the integration of automated data eligibility tests have
two important assets:

• The documentation ensures providing a clear view of
what the model is designed for, a technical description of
the model, and its use.

• The eligibility tests are important to ensure that correct
input data are extracted and provided before executing
the model. In euroCAT,23 a distributed learning expert
installed quality control via data extraction pipelines at
every participant point in the network. The pipeline
automatically allowed data records fulfilling the model
training eligibility criteria to be used in the training. The
experts also test the extraction pipeline thoroughly in
addition to the machine learning testing. However, there
were post-processing compensation methods to cor-
rect for the variations caused by using different local
protocols.19

DISCUSSION

If one examines oncology, for instance, cancer is clearly
one of the greatest challenges facing health care. More than
16million new cancer cases were reported in 2017 alone.43

This number climbed to 18.1 million cases in 2018.44 This
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increasing number of cancer incidences45 means that
there are undoubtedly sufficient data worldwide to put
machine/deep learning to meaningful work. However, as
highlighted earlier, this requires access to the data and, as
also highlighted earlier, distributed learning enables this in
a manner that resolves legal and ethical concerns. None-
theless, integration of distributed learning into health care is
much slower compared with other fields, which raises the
question of why this should be. Here, we summarize a set
of methodologies to facilitate the adoption of distributed
learning and provide future directions.

CURRENT STATE OF MEDICAL DATA STORAGE
AND PREPROCESSING

Information Communication Technology

Every hospital has its own storagedevices and architecture.38,39

In this case, the information communication technology
preparation for distributed learning requires significant
energy, time, and manpower, which can be costly. This
same process (data acquisition and preprocessing) needs
to be repeated for each participating hospital,46-48 and
subsequently development and adoption of medical data
standardization protocols need to be developed for this
implementation process.

Make the Data Readable: Findable, Accessible,

Interoperable, Reusable Data Principles

One way to enable a virtuous circle network effect is to
embrace another community engaged in synergistic ac-
tivities (joining a distributed learning network is worthwhile
if it links to another large network). The Findable, Acces-
sible, Interoperable, Reusable (FAIR) Guiding Principles for
data management and stewardship have gained sub-
stantial interest, but delivering scientific protocols and
workflows that are aligned with these principles is
significant.49 A description of FAIR principles is repre-
sented in Figure 3. Technological solutions are urgently
needed that will enable researchers to explore, consume,
and produce FAIR data in a reliable and efficient manner,

to publish and reuse computational workflows, and to
define and share scientific protocols as workflow templates.50

Such solutions will address emerging concerns about the
nonreproducibility of scientific research, particularly in data
science (eg, poorly published data, incomplete workflow
descriptions, limited ability to perform meta-analyses, and an
overall lack of reproducibility).51,52 Because workflows are
fundamental to research activities, FAIR has broad applica-
bility, which is vital in the context of distributed learning with
medical data.

WHY NOT PUBLICLY SHARE MEDICAL DATA?

Some studies were conducted trying to facilitate and secure
data-sharing procedures to encourage related researchers
and organizations to publicly share their data and embrace
transparency,53 by proposing data-sharing procedures and
protocols aiming to harmonize regulatory frameworks and
research governance.54,55 Despite the efforts made toward
data-sharing globalization, the sociocultural issues sur-
rounding data sharing remain pertinent.56 Large clinical
trials also face limitations in the data collection capabilities
because of limited data storage capacities and manpower.
To retrospectively perform additional analysis, all the par-
ticipating centers need to be contacted again, which is time
consuming and delays research.57

Furthermore, medical institutions prefer not to share patient
data to ensure privacy protection.58 This is, of course, in no
small part about ensuring the trust and confidence of
patients who display a wide range of sensitivities toward the
use of their personal data.

ORGANIZATIONAL CHANGE MANAGEMENT

The adoption of distributed learning will require a change in
organizational management (such as making use of newest
data standardization techniques and adapting the roles of
employees to more technically oriented tasks, such as data
retrieval). Provided knowledge and understanding of
proper change management concepts, health care pro-
viders can implement the latter successfully.59 Change
management principles, such as defining a global vision,
networking, and continuous communicating, could facili-
tate the integration of new technologies and bring up
the clinical capabilities. However, this process of change
management can be complicated, because it requires the
involvement of multiple health care centers from different
countries and continents. This diversity can trigger a fear of
loss (one of the major factors of financial decision making),
which stems from differences of opinion and regulation,60

and the absence of data standardization, making the
processes of data acquisition and preprocessing harder.
In addition, the lack of knowledge about the new tech-
nology leads to resistance to accept the change and
innovation.60,61 Therefore, it is important to help health care
organizations understand the need for distributed learn-
ing by explaining the context of the change in terms of
traditional ways of learning to distributed learning and
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(FAIR) principles.
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a long-term vision of the improvements that it can bring,
including time and money savings for both hospitals and
patients. This could in turn improve patient lives, in ad-
dition to conducting more studies on research databases
to consolidate proof of safety and quality of distributed
models.

As can be seen in Table 2, distributed learning has been
applied to train different models that can predict different
outcomes for a variety of pathologies, including lung
cancer,23,62,63,63a thyroid cancer,64 heart cardiac events,65

and schizophrenia,66 in addition to the continuous devel-
opment of tools and algorithms facilitating the adoption of
distributed learning, such as the variant learning portal, the
alternating direction method of multipliers algorithm,2 as
well as the application of FAIR data principles. The cited
studies provide a proof that distributed learning can ensure
patient data privacy and guarantee that accurate models
are built that are the equivalent of centralized models.

LIMITATIONS OF THE EXISTING DISTRIBUTED
LEARNING IMPLEMENTATIONS

A shared limitation of the studies presented in Table 2 is
that the number of institutes involved in the distributed
network is rather small. The size of the network varies from
four to 10 institutions. With few medical institutes involved,
the models were trained using the data of only a few
hundred patients. By promoting the use of distributed
learning, it should instead be possible to train the models
using data from thousands or even millions of patients.

FUTURE PERSPECTIVES

An automated monitoring system accessible by the part-
ners or medical centers participating in the distributed
learning network can promote transparency, traceability,
and trust.67 Recent advances of information technology,
such as blockchain, can be integrated into a distributed
learning network.68 Blockchain allows trusted partners to
visualize the history of the transactions and actions taken
in the distributed network. This integration of blockchain
should help in easing the resistance to the new distributed
technology among health care workers as it provides both
provenance and enforceable governance.

In 2008, Satoshi Nakamoto69 introduced the concept of
a peer-to-peer electronic cash system known as Bitcoin.
Blockchain was made famous as the public transaction
ledger of this cryptocurrency.69,70 It ensures security by
using cryptography in a decentralized, immutable distrib-
uted ledger technology.71 It is easy to manage as it can be
made public, whereby any individual can participate, or it
can be made private, where all participants are known to
each other.72 It is an efficient monitoring system, as records
cannot be deleted from the chain. By these means,
blockchain exceeds its application as a cryptocurrency to
a permanent trustful tracing system. Figure 4 illustrates
a visual representation of blockchain.

Boulos et al71 demonstrated how blockchain could be used
to contribute in health care: securing patient information
and provider identities, managing health supply chains,
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FIG 4. Visual representation of blockchain. Adapted from Rennock et al.18
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monetizing clinical research and data (giving patients the
choice to share), processing claims, detecting fraud, and
managing prescriptions (replace incorrect and outdated
data). In addition to the above-mentioned uses of block-
chain, it has been also used to maintain security and
scalability of clinical data sharing,73 secure medical record
sharing,74 prevent drug counterfeiting,75 and secure a pa-
tient’s location.76

It is essential that the use of distributed machine/deep
learning and blockchain be harmonized with the available
security-preserving technologies (ie, continues devel-
opment and cybersecurity), which begins at the user levels
(use strong passwords, connect using only trusted net-
works, and so on) and ends with more complex information
technology infrastructures (such as data anonymization
and user ID encryption).77 Cybersecurity is a key aspect in
preserving privacy and ensuring safety and trust among
patients and health care systems.78 The continuous de-
velopment or postmarketing surveillance can be seen as
the set of checks and integrations that should occur when
a distributed learning network is launched. This practice
should make it possible to identify any weak security
measures in the network or non-up-to-date features that
may require re-implementation.79,80

The distributed learning and blockchain technologies
presented here show that there are emerging data science
solutions that begin to meet the concerns and shortcom-
ings of the law. The problems of re-identification are greatly
reduced and managed through the technologies. Clearly,
there are conceptual issues of understanding the impact of

these technologies on privacy, and the relationship be-
tween privacy and confidentiality, but there are significant
technical developments for the regulators to consider that
could answer a number of their concerns.

SUMMARY

Currently, a combination of regulations and ethics makes it
difficult to share data even for scientific research purposes.
The issues relate to the legal basis for processing and
anonymization. Specifically, there has been reluctance to
move away from informed consent as the legal basis for
processing toward processing in the public interest, and
there are concerns about the re-identification of individuals
where data are de-identified and then shared in aggregated
environments. A solution could be to allow researchers to
train their machine learning programs without the data ever
having to leave the clinics, which in this paper we have
established as distributed learning. This safe practice
makes it possible to learn from medical data and can be
applied across variousmedical disciplines. A limitation to its
application, however, is that medical centers need to be
convinced to participate in such practice, and regulators
also need to know suitable safeguards have been estab-
lished. Moreover, as can be seen in Table 2, even with the
use of distributed learning, the size of the data pool learned
from remains rather small. In the future, the integration of
blockchain technology to distributed learning networks
could be considered, as it ensures transparency and
traceability while following FAIR data principles and can
facilitate the implementation of distributed learning.
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FIG A1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 flow diagram.
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TABLE A2. PRISMA 2009 Checklist

Section/Topic No. Checklist Item
Reported on
Page No.

Title

Title 1 Identify the report as a systematic review, meta-analysis, or both. 1

Abstract

Structured summary 2 Provide a structured summary including, as applicable: background;
objectives; data sources; study eligibility criteria, participants, and
interventions; study appraisal and synthesis methods; results;
limitations; conclusions and implications of key findings; systematic
review registration number.

1

Introduction

Rationale 3 Describe the rationale for the review in the context of what is already
known.

1-5

Objectives 4 Provide an explicit statement of questions being addressed with reference
to PICOS.

2

Methods

Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (eg,
Web address), and, if available, provide registration information
including registration number.

5

Eligibility criteria 6 Specify study characteristics (eg, PICOS, length of follow-up) and report
characteristics (eg, years considered, language, publication status)
used as criteria for eligibility, giving rationale.

5

Information sources 7 Describe all information sources (eg, databases with dates of coverage,
contact with study authors to identify additional studies) in the search
and date last searched.

5

Search 8 Present full electronic search strategy for at least one database, including
any limits used, such that it could be repeated.

5

Study selection 9 State the process for selecting studies (ie, screening, eligibility, included
in systematic review, and, if applicable, included in the meta-analysis).

5
(and Fig A1)

Data collection process 10 Describe method of data extraction from reports (eg, piloted forms,
independently, in duplicate) and any processes for obtaining and
confirming data from investigators.

5

Data items 11 List and define all variables for which data were sought (eg, PICOS,
funding sources) and any assumptions and simplifications made.

N/A

Risk of bias in individual studies 12 Describe methods used for assessing risk of bias of individual studies
(including specification of whether this was done at the study or
outcome level) and how this information is to be used in any data
synthesis.

N/A

Summary measures 13 State the principal summary measures (eg, risk ratio, difference in
means).

N/A

Synthesis of results 14 Describe the methods of handling data and combining results of studies,
if done, including measures of consistency (eg, I2) for each
meta-analysis.

5

Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative
evidence (eg, publication bias, selective reporting within studies).

N/A

Additional analyses 16 Describe methods of additional analyses (eg, sensitivity or subgroup
analyses, meta-regression), if done, indicating which were
prespecified.

N/A

Results

Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in
the review, with reasons for exclusions at each stage, ideally with a flow
diagram.

5
(and Fig A1)

Study characteristics 18 For each study, present characteristics for which data were extracted (eg,
study size, PICOS, follow-up period) and provide the citations.

5-8

(Continued on following page)
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TABLE A2. PRISMA 2009 Checklist (Continued)

Section/Topic No. Checklist Item
Reported on
Page No.

Risk of bias within studies 19 Present data on risk of bias of each study and, if available, any
outcome-level assessment (see item 12).

N/A

Results of individual studies 20 For all outcomes considered (benefits or harms), present, for each study:
(a) simple summary data for each intervention group, and (b) effect
estimates and confidence intervals, ideally with a forest plot.

5-8

Synthesis of results 21 Present results of each meta-analysis done, including confidence
intervals and measures of consistency.

5-8

Risk of bias across studies 22 Present results of any assessment of risk of bias across studies (see Item
15).

N/A

Additional analysis 23 Give results of additional analyses, if done (eg, sensitivity or subgroup
analyses, meta-regression [see Item 16]).

N/A

Discussion

Summary of evidence 24 Summarize the main findings, including the strength of evidence for each
main outcome; consider their relevance to key groups (eg, health care
providers, users, and policy makers).

8

Limitations 25 Discuss limitations at study and outcome level (eg, risk of bias), and at
review level (eg, incomplete retrieval of identified research, reporting
bias).

10

Conclusions 26 Provide a general interpretation of the results in the context of other
evidence, and implications for future research.

11

Funding

Funding 27 Describe sources of funding for the systematic review and other support
(eg, supply of data); role of funders for the systematic review.

11

Abbreviations: N/A, not applicable; PICOS, participants, interventions, comparisons, outcomes, and study design; PRISMA, Preferred
Reporting Items for Systematic Reviews and Meta-Analyses.
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