
Research Article
Bayesian Estimation of Different Scale Parameters Using a LINEX
Loss Function

M. A. Mohammed ,1,2 Sundus N. Al-Aziz ,3 Eateraf M. A. Al Sumati ,4

and Emad E. Mahmoud 5

1Department of Mathematics, Al-Lith University College, Umm Al-Qura University, Mecca, Saudi Arabia
2Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt
3Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia
4Department of Statistics & Informatics, Faculty of Administrative Sciences, University of Aden, Aden, Yemen
5Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Eateraf M. A. Al Sumati; eaterafa3@gmail.com

Received 17 December 2021; Accepted 7 April 2022; Published 30 April 2022

Academic Editor: Ahmed Mostafa Khalil

Copyright © 2022 M. A. Mohammed et al. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

'e LINEX loss function, which climbs exponentially with one-half of zero and virtually linearly on either side of zero, is employed
to analyze parameter analysis and prediction problems. It can be used to solve both underestimation and overestimation issues.
'is paper explained the Bayesian estimation of mean, Gamma distribution, and Poisson process. First, an improved estimator for
μ2 is provided (which employs a variation coefficient). Under the LINEX loss function, a better estimator for the square root of the
median is also derived, and an enhanced estimation for the average mean in such a negatively exponential function. Second, giving
a gamma distribution as a prior and a likelihood function as posterior yields a gamma distribution. 'e LINEX method can be
used to estimate an estimator 􏽣λBL using posterior distribution. After obtaining 􏽣λBL, the hazard function 􏽣hBL and 􏽤DBL the function of
survival estimators are used. 'ird, the challenge of sequentially predicting the intensity variable of a uniform Poisson process
with a linear exponentially (LINEX) loss function and a constant cost of production time is investigated using a Bayesian model.
'e APO rule is offered as an approximation pointwise optimal rule. LINEX is the loss function used. A variety of prior
distributions have already been studied, and Bayesian estimation methods have been evaluated against squared error loss function
estimation methods. Finally, compare the results of Maximum Likelihood Estimation (MLE) and LINEX estimation to determine
which technique is appropriate for such information by identifying the lowestMean Square Error (MSE).'e displaced estimation
method under the LINEX loss function was also examined in this research, and an improved estimation was proposed.

1. Introduction

'e LINEX loss function is a nonlinear function that climbs
exponentially with one end of 0 and virtually exponentially
on another [1]. For values approaching zero, this error
function reduces to squared error loss. For calculating the
binomial variable, the LINEX loss function is used. 'is loss
function was used to estimate the median of a normally
distributed [2]. Consider the prediction error in the per-
spective of exponential distribution reliability analysis.'en,

using the LINEX loss function, Bayesian mean and square
mean estimations of a normally distributed were investi-
gated. Under the LINEX loss function, the MMSE criterion
is unacceptable. 'e uniformly minimum risk unbiased
(UMRU) estimator under the LINEX loss function can be
found using information and facts if there is underesti-
mation and overestimation in real-life situations [3]. 'e
exponential distribution is a well-known distribution that
may be used in a variety of fields, including science,
economy, and demographics [4]. It is a well-known one-
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parameter distribution that is frequently utilized in model
studies [5].

A linear exponential loss function (LINEX) is developed
to estimate the scale parameter and reliability function of the
inverse Weibull distribution (IWD) based on lower record
values [6]. 'e Bayesian technique is also necessary for this
study, in addition to employing Maximum Likelihood to
estimate the parameters. It creates a posterior probability by
combining an exponential distribution’s likelihood value
with a prior [7]. Because altering the value to 1 and having an
Exponential distribution, the Gamma distribution is an
appropriate prior for it. In statistics, there are a few esti-
mating approaches. One of them is Bayesian, which finds the
posterior distribution using the likelihood function and
prior distribution [8]. 'e data is exponentially distributed,
and the posterior distribution will be constructed using a
Gamma distribution as its prior. Let F be sometimes referred
to as the failure time random variable because it is defined as
the time of failure of the object known to exist at time t � 0.
If F is the time to failure, the likelihood of still operating at
time t is like the probability that the failure will occur later
(mathematical model higher) than t. 'e following equation
is the definition of the survival density function (SDF),
probability density function (PDF), and hazard rate function
(HRF).

D(t) � e
− λt

, t≥ 0. λ≥ 0,

p(t) � −
d

dt
D(t) � λe

− λt
,

λ(t) �
p(t)

D(t)
� λ.

(1)

'e task of establishing appropriate halting rules is
frequently and analytically intractable. Because determining
explicit optimum ending times is challenging, numerous
approaches were proposed to obtain “asymptotically” op-
timal regulations [9]. For example, it offered simple but
appealing large enough sample approximations to optimal
timings, dubbed asymptotically pointwise optimal (APO)
rules, and demonstrated that APO rules were asymptotically
optimal (AO) under a second scenario. Many publications
have examined the APO rule and how it might be used to
address those other challenges [10]. Discrete-time events are
the focus of the studies in these publications. 'ey discussed
how the LINEX error function operated, but still, no spe-
cifics or practical solutions were provided on how the LINEX
loss function changes the shape variable and error value [11].
Considering the LINEX loss method’s versatility in esti-
mating a location parameter, it does not seem to be useful for
estimating scale variables and other values. For two vari-
ables, Bayes and probability estimators are used [12]. Under
hazard and survival variables used in experiments and
analysis methods, Weibull using unfiltered observations is
examined.

In continuous-time processes, the idea of the asymptotic
element-wise optimization problem is expanded from dis-
crete-time processes [11]. Additionally, with a squared error

loss, the APO procedures for predicting the intensities of a
homogeneity Poisson process are AO for random priors and
asymptotically nondeficient for conjugation priors [13].
Later, it generalized a conclusion for continuous-time
processes and demonstrated that under a linear exponential
(LINEX) loss function, the APO rules for such a Poisson
distribution are AO for such corresponding priors [14]. 'e
LINEX loss function was officially created, and its properties
were investigated further. It is a handy asymmetrical non-
linear function that increases dramatically on one end of
zero and gradually on the other [15]. Much research has
looked into estimating issues with LINEX loss function [16].
After analyzing the data, it assigns relative weights to each
given value. Approximations to Bayesian inference exist,
such as the Specific Noninformative Prior [17]. Linear Ex-
ponential Loss Function, Lindley Approximation, General
Entropy Loss Function, and Squared Error Loss Function are
all examples of linear, exponential loss functions.

2. Related Work

'e Weibull distribution is commonly used in lifespan data
modeling and analysis [14]. 'e considered wide range of a
two-parameter Weibull distribution having given shape is
estimated in this study. How to use estimated parameters is
discussed. Under the LINEX loss function, the Bayes esti-
mator is produced utilizing Jeffreys’ prior. Using generated
data sets, the overall performance of the estimation tech-
niques is calculated in small and large sampling for over-
estimation and underestimation. It has been discovered that
the Bayes estimator performed best in observational studies
and then when overstatement is much more important than
underestimating.

In technology, science, and other fields, the Weibull
distribution has been identified as among the most effective
distributions for predicting and evaluating lifetime data [18].
To find the most effective approach for calculating its
characteristics, the Bayesian estimate strategy for estimation
methods, which competes with other estimation approaches,
has suddenly received a lot of attention. For assessing the 2
different Weibull failure time distributions, the achievement
of the maximum likelihood method and Bayes estimator
using expansions of Jeffreys prior knowledge with three
wavelet coefficients, namely, the sequential exponential loss,
general electron density loss, and square error linear
function. 'rough a simulation analysis with varied sample
sizes, these approaches are evaluated using mean square
error. 'e findings demonstrate that for certain values of
extensions of Jeffreys’ prior, the Bayesian estimator utilizing
extensions of Jeffreys’ prior with linear exponentially error
function has the minimum mean square error and actual
bias both for weighting factor and the significant impact.

Dey introduced Bayes’ estimation technique for such an
Inverse Rayleigh distribution’s unknown quantity (IRD)
[19]. Utilizing noninformative prior, Bayes estimation
techniques are derived for symmetrical (squared error (SE)
loss) and asymmetrical linear exponential loss functions.'e
estimators’ system is assessed based on its relative hazard
under two wavelet coefficients. 'ey also construct the
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reliability method’s Bayesian estimation method using
symmetrical and asymmetrical loss functions and compare
their efficiency that used a Monte Carlo simulation analysis.
Lastly, to highlight the findings, a numerical investigation is
offered.

Gupta presented a new method for predicting the var-
iable of the Rayleigh distribution, Bayesian and E–Bayesian
estimate methods are provided in this study [20]. 'e pa-
rameter’s Bayes estimation is calculated using the LINEX
loss function and the concept that the prior probability is
relevant, i.e., gamma distribution. Furthermore, a simulation
study utilizing MATLAB software was used to compare the
E-Bayes estimation method with related Bayes estimators.

'e work of Lee and Hwang looks at the challenge of
progressively predicting the average of a Poisson process in a
Bayesian network using a LINEX (linear exponential) loss
function and a fixed price per experience [21]. For arbitrary
priors, an approximation pointwise optimum rule with such
a distribution function is developed and proven to be ex-
ponential optimal. An actual data set is used to demonstrate
the suggested monotonically elementwise optimum rule.

3. Proposed Methodology

Let us consider a1, a2, . . . . . . an an n-person representative
sample from such an average distribution with median μ and
variance σ2. Assume that compared to the population me-
dian with minimum error a � (􏽐

​
ai/n), the sample mean

(σ2/n) is an adequate and accurate estimator. 'e standard
approach of comparing estimation methods for the signif-
icant feature using mean square error (MSE) may not
provide a clear favorite for scale parameters [22]. Limiting
the class of estimators is one technique to make the task of
finding the “best estimator” more tractable. Consider im-
partial and partially invariant estimation techniques as a
popular approach to limiting the category of estimation
techniques.

'e improvement of the estimator E′ � (na/n + v2)is in
the estimator class E′ � sa and it shows theMSE represented
in the equation:

MSE E′( 􏼁 �
σ2

n
1 +

σ2

n
􏼠 􏼡

− 1

<MSE(a) �
σ2

n
. (2)

U(a) � θ, R(a) � θ2 and v � 1 in the negative expo-
nential distribution (NED).'e scale parameter is θ, and the
improved estimator is E1 � (na/n + 1) with an MSE E1 �

(θ2/n + 1) lower than (θ2/n). In a normal distribution with
mean μ and variance σ2, where σ2 acts as a standard de-
viation and the maximum likelihood estimate are
M2 � (1/n)􏽐

​
(a1 − a)2 (MLE), the estimators for σ2 (the

unbiased estimator).
'us, MSE (M2) � (2σ4/n) and then MSE. (M2) �

(2σ4/n − 1)

'e LINEX loss equation is given below:

L(Δ, x) � y e
xΔ

− xΔ − 1􏽨 􏽩, Δ � 􏽢μ − μ, x≠ 0, (3)

where x and y are the shapes and a scale parameter.
If |x|⟶ 0, Square inaccuracy is the result of the LINEX

loss.
Mean Estimation using a LINEX loss function.
L(x,Δ) � y(exΔ − zΔ − 1), Δ � 􏽢μ − μ, x≠ 0, and if the

bc � x, Later, this procedure would equal y(exΔ − zΔ − 1)

'e loss function of LINEX minimizes the squared error
if |x|⟶ 0.

For calculating, the constant form of LINEX loss was
used. LINEX loss in its symmetric form is given in the
equation:

L x,Δ∗( 􏼁 � y e
xΔ∗

− zΔ∗ − 1􏼐 􏼑,Δ∗ �
􏽢μ
μ

− 1, x≠ 0,

Q x,Δ∗( 􏼁 � W L x,Δ∗( 􏼁􏼂 􏼃

�
x
2

2
W

za

μ
− 1􏼡

2
⎛⎝ +

x

3
W

za

μ
− 1􏼡

3

+ . . .⎛⎝⎡⎢⎢⎣ ⎤⎥⎥⎦,

(4)

where 􏽢μ � za

(2/x2)Q(x,Δ∗) � W[(a/μ − 1)2]+ (x/3)W[(za/μ − 1)3]

+ . . .

Consider the estimator Y� xc 1 in the case of a normally
distributed with variance and mean both equal to two.
LINEX loss in its invariant form is given in the following
equation:

L x,Δ∗( 􏼁 � e
x((za/μ)− 1)

− x
za

μ
− 1􏼠 􏼡 − 1,

Q x,Δ∗( 􏼁 � e
x2z2v2/2n

e
− x(1− z)

− xz + x − 1,

2
x
2 Q x,Δ∗( 􏼁 �

xz
3

3
1 +

3v
2

n
􏼠 􏼡e

− x
+

z
2

2
1 +

v
2

n
􏼠 􏼡e

− x

− 2 − x +
x
2

3
−

x
3

12
􏼠 􏼡 + 1 −

x

3
+

x
2

12
.

(5)

In a negative exponential distribution,

E e
xza/θ

􏽨 􏽩 � 1 −
xz

n
􏼓

− n

􏼒 ,

Q x,Δ∗( 􏼁 �
e

− x

1 − (xz/n))
n

(
− xz + x − 1.

(6)

From equation (8), then the value of minimum z could
be shown in the following equation:
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zmin �
n

x
1 − e

− (x/(n+1))
􏼐 􏼑. (7)

'e proposed estimation is E1 � (n/x)(1 − e(− x/n+1))a

with a. MinQ(x,Δ∗) � x − (n + 1)(x − e(− x/n+1))

As a result, under the LINEX loss function, the mini-
mum mean squared error is unacceptable [7]. 'is can get
the minimum if the differentiate equation (5) is about c and
equal to zero:

zmin �

(x − 1) 1 + v
2/n􏼐 􏼑􏼐 􏼑 +

�����������������������������������������

(1 − x)
2 1 + v

2/n􏼐 􏼑􏼑
2

+ 4 x − x
2/2􏼐 􏼑􏼐 􏼑 1 + 3v

2/n􏼐 􏼑􏼐 􏼑􏼒

􏽲

a 1 + 3v
2/n􏼐 􏼑􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

'e values of z can be calculated given the values of
n, v≥ 1 and 0≤x≤ 0.6. 'en, get the lowest risk by
plugging the cmin into equation (5) [23]. Figures 1–3 show
the relative effectiveness of the estimator E1 in compar-
ison to E′ for v � 2.00(2.25)2.50, x � 0.2(0.4)0.6 and
n � 5(5)20. 'e figure illustrates that if v≥ 1 is greater
than 1, the estimator outperforms with smaller n values
and a level up to 2.00.

Also, under the LINEX loss function, the Bayesian es-
timator for median and square of group means of normally
distributed was investigated. In the case of a negative ex-
ponential function, the answer for the scale parameter by
using an invariant form of the LINEX error function is
E1 � (n/x)(1 − e(− x/n+1))a

E1 �
na

n + 1
−

xna

2(n + 1)
2 +

xna

6(n + 1)
3 . . . (9)

(2na/θ) (Gamma (1, n)) adopts a chi-square distribution
with 2n degrees of freedom. It established a modified Bessel
formula as follows:

Bn(2nxa) � 1 +
2nxa

1!n
+

4x
2
n
2
a
2

2!n(n + 1)

+
8x

3
n
3
a
3

2!n(n + 1)(n + 2)
+ . . .

� 1 + 2xa +
4x

2
na

2

2(n + 1)
+ . . .

E En(2nxa)􏼂 􏼃 � 1 + 2xθ +
x
2

2!
4θ2 + . . . � e

2xθ

log E En(2nxa)􏼂 􏼃 � 2xθ⟶
1
2x

log E En(2nxa)􏼂 􏼃 � θ.

(10)

'e estimator MVRU for θ is as follows:

􏽢θ � a −
xa

2

(n + 1)
+ . . . (11)
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Figure 1: Estimator relative efficiency E1 E′ for v � 2.00.
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Figure 2: Estimator relative efficiency E1 for E′ for v � 2.25.
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'is demonstrates that in the LINEX loss function,
adequate statistics x can also be used to determine the
UMRU estimation.

3.1.MaximumLikelihoodEstimation. Censoring is a method
of dealing with incomplete data that occurs as a result of
events such as death, loss, or removal from observation.
Variables V1, . . . Vn denote n individual lifespan, as per [24].
A lifetime or a counting time is denoted by the letter vi. 'e
censoring or state indication for t1 is the variable δi � 1 if
Vi � ti and 0 if Vi > ti. 'e value t1 is calculated using
min(Vi, Zi), i � 1, 2, 3, ..., n, where Vi is the length of their
remission assessed from the beginning of the course and Zi is
the period between the beginning of the study and the end of
the study. It is possible to construct the likelihood function of
censored data for observations (ti, δi)i � 1, 2, ..., n.

K ti; δ, λ( 􏼁 � 􏽙
n

i�1
f t1; λ( 􏼁􏼂 􏼃

δi R ti; λ( 􏼁􏼂 􏼃
1− δi . (12)

'e exponential distribution likelihood function for the
observation (ti, δi) i � 1, 2, 3, . . . , n is calculated as follows:

K ti; δ, λ( 􏼁 � 􏽙
n

i�1
λe

− λti􏽨 􏽩
δi Re− λti􏽨 􏽩

1− δi

� λδ1 , λδ2 , . . . , λδn􏼐 􏼑 e
− λt1 , e

− λt2 , . . . , e
− λtn􏼐 􏼑

� λ
􏽐

n

i�1 δi

e
− λ 􏽐

n

i�1
ti􏼐 􏼑

(13)

'en, as shown above, discover a natural logarithm of
the likelihood function.

k � ln K ti; λ, δ( 􏼁 � 􏽘
n

i�1
δi

⎛⎝ ⎞⎠ln λ − 􏽘
n

i�1
ti

⎛⎝ ⎞⎠λ. (14)

By deriving k to the parameter λ, , obtain the following:

dk

dλ
� 0,

d

dλ
􏽘

n

i�1
δi

⎛⎝ ⎞⎠ln λ − 􏽘
n

i�1
ti

⎛⎝ ⎞⎠λ⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0,

􏽐
n
i�1 δi

λ
− 􏽘

n

i�1
ti � 0,

λ �
􏽐

n
i�1 δi

􏽐
n
i�1 ti

.

(15)

A Maximum Likelihood Estimated is obtained. Subse-
quently, both the equation of survival and the rate of hazard
are composed.

􏽤DML ti;
􏽢λ􏼐 􏼑 � e

− 􏽢λti � e
− 􏽐

n

i�1 δi/􏽐
n

i�1 ti( 􏼁ti ,

􏽤EML ti;
􏽢λ􏼐 􏼑 � 􏽢λ �

􏽐
n
i�1 δi

􏽐
n
i�1 ti

.

(16)

􏽤DML(ti;
􏽢λ) and 􏽤EML(ti;

􏽢λ) are based on Maximum
Probability [2]. 'e ratio of hazard and survival model is
estimated.

3.2. =e Poisson Process Rules of APO and AO. Let
N(f): f≥ 0􏼈 􏼉 be a Poisson process that is homogeneous but
has an undetermined amplitude parameter. It is desired to
predict θ by 􏽥θf � 􏽥θf(N(s): 0≤ s≤f), a specific topic to the
LINEX loss and the sampling cost after observing the process
during the time interval [0, f].

K 􏽥θf, θ􏼐 􏼑 + zf, (17)

where K(θ, 􏽥θf) � exp[x( 􏽥θf − θ)] − x( 􏽥θf − θ) − 1, x≠ 0, is
the price per unit time, c is the LINEX loss. As can be seen, c
can also be thought of as a proportional weight to the LINEX
loss. Across all stopping periods and estimation methods,
the goal is to minimize the Bayes hazard. Concerning the
defect 􏽥θf − θ, the LINEX loss is a positive and asymmetrical
function [25]. It is beneficial in estimating difficulties when
underestimation or overestimation is deemed more dan-
gerous than the other. 'e shape of the object is determined
by the variable a. When the x> 0, it means that overesti-
mation is more expensive than underestimation.When x< 0
is present, the inverse is true.

Assume, which has a θ constant density Ψ concerning
the Lebesgue measurement, with L(θ)<∞ and
L(e− xθ)<∞, respectively. For F’ � σ(N(u): 0≤ u≤f) for
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Figure 3: Estimator relative efficiency E1 for E′ for v � 2.50.
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f≥ 0 and F∞ be the smallest -field comprising all of F’
events for all f≥ 0. 'e Bayesian estimation is very well
recognized as the best estimation with a stop time of P.

􏽥θp � −
1
x
log L e

− xθ
|Fp􏼐 􏼑, (18)

where Fp � X ∈ F∞|X|∩ ​ N≤f􏼈 􏼉 ∈ Ff forallf≥ 0􏽮 􏽯.
'e Bayes hazard of a Bayesian sequential approach (N, 􏽦θN)

is therefore equal to the following:
E xE θ|FN( 􏼁 + log E e

− xθ
|FN􏼐 􏼑 + zN􏽨 􏽩 , (19)

'is suggests an APO condition in a Poisson distribution
as in Section 3.2.

τ∗z � inf f≥ 0: xE(θ|F1)􏼈 + log E(e− xθ|F1)≤ zf}, z> 0.

In 'eorem 1, the halting rule τ∗z and the Bayesian se-
quential process (τ∗z , 􏽦θτ∗z ) are proven to be APO and AO,
respectively. To establish 'eorem 1, first establish some
representations, followed by the development of some
supplementary results. Let 􏽢θf � (W(f)/f) be the maximum
likelihood estimation θ of based on W(i): 0≤ i≤f􏼈 􏼉, and
define Ψ∗(a|Ff) as the posterior probability of

��
f

􏽰
(θ − 􏽢θf)

given Ff for simplicity. 'us,

Ψ∗ a|Ff􏼐 􏼑 �

􏽢θf + a/
��

f

􏽱

􏼒 􏼓
W(f)

e
− 􏽢θf+(a/

�
f

√
)( 􏼁fΨ 􏽢θf +(a/

��

f

􏽱

)􏼒 􏼓

��
f

􏽰
􏽒
∞
0 N

W(f)
e

− NfΨ(N)dn
, a> − 􏽢θf

��

f

􏽱

. (20)

Define the random numbers

Rt(a) � exp W(f)ln 􏽢θf +
a
��
f

􏽰􏼠 􏼡 − 􏽢θf +
a
��
f

􏽰􏼠 􏼡f􏼢 􏼣 − W(f)ln 􏽢θf − 􏽢θff􏽨 􏽩􏼨 􏼩. (21)

For a> − 􏽢θf

��
f

􏽰
and Bf(a) � 0 otherwise, then

Qt(b) �
1
f

W(t)ln 􏽢θf + tb􏼐 􏼑 − 􏽢θf + b􏼐 􏼑f􏽨 􏽩 − W(f)ln 􏽢θf − 􏽢θff􏽨 􏽩􏽮 􏽯.

(22)

For b> − 􏽢θf and Qt(b) � − 1.

3.3. =e LINEX Loss Function of Bayesian. In statistical
methods studies, the Bayesian Process is the well-estimating
method [26]. 'e Bayesian estimate has three different loss
functions. In Bayesian estimation, another of the loss

functions is LINEX. As per Zellner, the LINEX loss method’s
posterior prediction [27]. One of the Bayesian techniques is
the LINEX loss function. 'e variable estimation of λ is
represented by 􏽢λlin that under LINEX error function is
constructed while using Zellner’s method.

􏽢λlin � −
1
z
ln E e

− zλ
􏼐 􏼑􏽨 􏽩. (23)

To expose the posterior equation which can be utilized to
find a parameter estimate BL under the Bayesian LINEX loss
function.

E e
− zλ

􏼐 􏼑 � 􏽚
∞

0
e

− zλ
p λ|ti( 􏼁dλ ,

� 􏽚
∞

0
e

− zλ
􏽐

n
i�1 ti + β􏼁

􏽐
n
i�1 δi + αλ􏽐

n
i�1 δi + α − 1

e
− λ 􏽐

n
i�1 ti + β( 􏼁

􏼒

Γ 􏽐
n
i�1 δi + α( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dλ,

�
􏽐

n
i�1 ti + β( 􏼁

􏽐
n
i�1 δi + αΓ 􏽐

n
i�1 δi + α( 􏼁

􏽐
n
i�1 ti + β + z( 􏼁

􏽐
n
i�1 δi + αΓ 􏽐

n
i�1 δi + α( 􏼁

,

�
􏽐

n
i�1 ti + β

􏽐
n
i�1 ti + β + z

􏽘
n

i�1

δi+α⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(24)
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As a result of (24) get the appropriate estimation method
under the LINEX loss function:

􏽢λBL � −
1
z
ln E e

− zλ
􏼐 􏼑􏽨 􏽩,

� −
1
z
ln

􏽐
n
i�1 ti + β

􏽐
n
i�1 ti + β + z

􏼡

􏽘

n

i�1
δi + α⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(25)

Furthermore, equation (26) describes the survival and
hazard functions [16] that under a LINEX loss function,

􏽤DML ti;
􏽢λ􏼐 􏼑 � e

− 􏽢λti ,

� e

−
1
z
ln

􏽐
n
i�1 ti + β

􏽐
n
i�1 ti + β + z

􏼡

􏽘

n

i�1
δi + α⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ti

,

􏽤EML ti;
􏽢λ􏼐 􏼑 � 􏽢λ,

� −
1
z
ln

􏽐
n
i�1 ti + β

􏽐
n
i�1 ti + β + z

􏼡

􏽘

n

i�1
δi + α⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

3.4. SquareEstimationofMeanbyUsingLINEXLossFunction.
In the normal distribution, thus known as follows:

N(a) �
σ2

n
. (27)

'at implies the following:

􏽢μ2 �
a
2

1 + v
2/n􏼐 􏼑

, (28)

Let us consider the minimum value of t2

U2 � t2a
2
,

t2min �
1 + v

2/n􏼐 􏼑

1 + v
2/n􏼐 􏼑􏼑

2
+ v

2/n 4 + v
2/n􏼐 􏼑v

2
􏼐 􏼑􏼒

≤ 1.
(29)

'en the estimator proposed is represented as follows:

U2 �
a
2

1 + v
2/n􏼐 􏼑 1 + 4 + v

2/n􏼐 􏼑/1 + v
2/n􏼐 􏼑􏼐 􏼑􏽮 􏽯

. (30)

If v is known (30); if v is unknown; then MVUE for μ2 is
as follows:

N � a
2

−
d
2

n
. (31)

N could be negative for smaller values of n, hence
proposed a biassed estimator for μ2 as S � (1+

(d2/nu2))− 1a2 and looked at its huge sample features [28].
To generate an estimator with a certain mean square error as
S but a reduced bias than S for huge sample sizes n,

K �
a
2

1 + d
2/nu

2
􏼐 􏼑 1 + d

2/nu
2

􏼐 􏼑􏽨 􏽩
. (32)

For the estimator, the invariant expression of the LINEX
loss function

U4 � t4a
2

L x,Δ∗( 􏼁 � e
− x

e
xa

2
t4/μ2 − x

xa
2
t4

μ2
− 1􏼠 􏼡 − 1,

Q x,Δ∗( 􏼁 � e
− x

W e
xa

2
t4/μ2􏼔 􏼕 − xW

xa
2
t4

μ2
− 1􏼢 􏼣 − 1,

2
x
2 Q x,Δ∗( 􏼁 �

xt
3
4

3
W

a
6

μ6
􏼠 􏼡e

− x
+

t
2
4
2

W
a
4

μ4
􏼠 􏼡e

− x

− 2 − x +
x
2

3
−

x
3

12
􏼠 􏼡 1 +

v
2

n
􏼠 􏼡t4

+ 1 −
x

3
+

x
2

12
.

(33)

'is gets to t4 and equal to zero by simplifying this
solution.

t4m �
− W a

4/μ4􏼐 􏼑 +
���������
W

2
a
4/μ4􏼐 􏼑

􏽱
+ e

x 2 − x + x
2/3􏼐 􏼑 − x

3/12􏼐 􏼑􏼐 􏼑 1 + v
2/n􏼐 􏼑􏼐 􏼑W a

4/μ4􏼐 􏼑

2xW a
6/μ6􏼐 􏼑

. (34)
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Mostly in the case of a negative exponential function
[29], the enhanced estimator U5 � z5a

2, 0≤ z5 ≤ 1 is used.
W(a2) � (n + 1/n)θ2

In the case of N.E.D. with E (θ, θ), and

W a
2

􏼐 􏼑 �
(n + 3)(n + 2)(n + 1)

n
3 θ4. (35)

'e Function of LINEX loss on the invariant form is as
follows:

Q x,Δ∗( 􏼁 � e

xz5a
2

θ2 e
− x

− x
z5a

2

θ2
− 1􏼢 􏼣 − 1. (36)

'is has the following:

2
x
2 Q x,Δ∗( 􏼁 �

xz
3
5(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)

3n
5

+
(1 − x)z

2
5(n + 3)(n + 2)(n + 1)

n
3

+
2z5(n + 1)((x/2) − 1)

n
+ 1 −

x

3
.

(37)

When this formula is differentiated about z5 and equated
to zero, obtain the following:

xz
3
5(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)

n
5

+
2(1 − x)z

2
5(n + 3)(n + 2)(n + 1)

n
3

+
2(n + 1)(x/2 − 1)

n
� 0.

(38)

When again differentiating equation (37) about z5,

z5 ≥
(x − 1)n

2

x(n + 5)(n + 4)
. (39)

And z5 lies among

(x − 1)n
2

x(n + 5)(n + 4)
≤ z5 ≤ 1. (40)

Equating to zero and differentiating solution (37)
concerning z5

z5min �
(2(x − 1)(n + 3)(n + 2)(n + 1))/n3

􏼐 􏼑 +
����������������������������������������������������������������������������������
4(1 − x)

2
(n + 3)

2
+(n + 2)

2
+(n + 1)

2
􏼐 􏼑/n6

􏼐 􏼑 8(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)
2
((x/2) − 1)􏼐 􏼑/n6􏼐 􏼑

􏽱

2(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)/n5
.

(41)

3.5. Nondeficiency of Asymptotic. In this part, develop a
better understanding of when the strength parameter’s
previous distributions have the following density of gamma:

Ψ(θ; α, β) �
1
Γ(α)βα

θα− 1
e

− θ/β
, θ> 0, (42)

where α> 0 and β> 0 are both true. 'ere is a formulation
of the posterior density of a particular Ft of the type
Ψ(θ; α + R(t), β/(tβ + 1)) for t≥ 0 fixed. It is simple to
prove that the posterior densities of a given FS have a version
of Ψ(θ; α + R(d), β/(dβ + 1)) for an unspecified stopping
time D [30]. 'e homogeneous Poisson process of intensity
even during the period [0, t] then the Bayesian estimator is
provided by Assuming αβ + 1> 0, if analyze the homoge-
neous Poisson process in intensity θ even during the time-
period [0, t] then the Bayesian estimator of θ is provided by
the following:

􏽥θt �
α + R(t)

a
log 1 +

αβ
tβ + 1

􏼠 􏼡, (43)

and the risk it represents in the future is from the sort

Ut � (α + R(t))
αβ

tβ + 1
+ log

tβ + 1
(α + t)β + 1

􏼠 􏼡􏼢 􏼣. (44)

Let

Ct � tUt � (α + R(t))Xt, (45)

where

Xt � t
αβ

tβ + 1
+ log

tβ + 1
(α + t)β + 1

􏼠 􏼡􏼢 􏼣, t≥ 0. (46)

As a result of Taylor’s theorem,

Xt �
x
2

2t
+
1
t
2 −

x
2

β
−

x
3

3
􏼠 􏼡 + 0

1
t
2􏼠 􏼡as t⟶∞. (47)

'us,

ct⟶
1
2
x
2θas t⟶∞. (48)

In the gamma prior example, the form of τ∗z provided
can be reorganized as follows:

τ∗z � inf t≥ 0: Ut ≤ zt􏼈 􏼉, z> 0. (49)
For any c > 0, τ∗z > 0, Uτ∗z � zτ∗z and Cτ∗z � zτ∗z , it can be

seen that c > 0.'eorem 1 states that in the gamma previous
also with requirements α> 0, β> 0, and αβ + 1> 0, the
halting rule τ∗z and the Bayesian sequential method (τ∗z , θτ∗z )

are APO and AO, accordingly (Mahmoudi 2012). In addi-
tion, 'eorem 2 in this statement demonstrates that the
Bayes sequential process (τ∗z , θτ∗z ) is asymptotically quasi in
this instance.

Let
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At � W θ|Ft( 􏼁 � α +
R(t)β
tβ + 1

􏼠 􏼡,

Ft � W

����

θ|Ft

􏽱

􏼒 􏼓 � Γ
(α + R(t) +(1/2))

Γ(α + R(t))
􏼠 􏼡

�������
β

(tβ + 1)

􏽳

.

(50)

Mt � At − F
2
t forall t≥ 0,

(51)

Establish several auxiliary results before and use them to
establish the major theorem.

4. Numerical Study and Discussion

4.1. Estimation Error LINEX Loss Function. Consider the
estimation error as Δ � (􏽢θ − θ). Figure 4 shows how a
negative value of c gives more importance to underesti-
mation, whose quantity describes the level of asymmetry.
Figure 5 shows that a positive value of c will not provide an
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additional load to overestimation, whose quantity represents
the extent of asymmetry. 'e LINEX loss function is es-
sentially symmetric for small values of |z| but not that far
from the mean square error loss function in Figure 6. 'e
LINEX loss function is essentially asymmetric for large
values of |z| in Figure 7. When the prediction error is Δ �

[􏽢θ/θ − 1]> 0 in Figure 8, it climbs almost continuously z> 0,
and when the prediction error is Δ � [􏽢θ/θ − 1]< 0 in Fig-
ure 9, it rises practically exponentially.

'is offers the APO rules and the Bayesian estimate
under gamma prior supplied and evaluates the APO rule’s
Bayesian hazard to the second element of the Bayesian risk of
an optimum halting rule (or APO rule). Let 􏽢Lt∗z

(z) be the
estimation for such Bayes risk W(Lt∗z

(z)) of the APO rule t∗z ,
and ρ∗0(z) � Γ0

�
z

√
+ Γ1z; that is, the second level of the

Bayesian hazard of the optimum halting rule, depending on
'eorem 1.

'e estimates of the APO principle t∗z , the Bayesian
estimator 􏽥θt∗z

, the calculated Bayes risk 􏽢Lt∗z
(z), the second-

order ρ∗0(z), and the adjusted mean inaccuracy of Bayes risk
Δz � (􏽣Lt∗z

(z) − ρ∗0(z))/ρ∗0(z) for various values of x, α, β, and
z. Because the requirements are different for a< 0, the
variables of () are selected as (1.5, 0.2), (2.5, 0.1), and
(2.5, 0.1). of 'eorem 1 can be expressed as α> 1 and
0< β< − 1/a. Table 1 shows that when z drops, the estimates
t∗z increase and 􏽢Lt∗z

(z) and ρ∗0(z) almost decrease. Fur-
thermore, when z gets smaller, the estimations of absolute
errors of Bayesian hazard Δz approach to zero.

'e survival likelihood of patients after therapy using the
MLE and Bayesian LINEX Loss functions: Both findings
show that the estimated value is bigger than that of the real
value, but the Bayesian LINEX estimated value is closer to a
survival value than that of the MLEs. 'e outcome reveals
that all variables are inversely proportional to time. Patients’
chances of survival are decreasing and converging to zero in
less than three years. It signifies that the treatment’s effects
will fade with time. In around 10 days of varying ranges, the
decreasing level of survival chance is around 10%. 'e

survival report’s hazard function is linked to the degener-
ation rate. Table 2 shows the hazard values estimation using
both the MLE and Bayesian LINEX Loss functions.

'e hazard value is used to calculate the dependability
rate of failure. 'e rate of failure of the true value utilizing
MLE and Bayesian LINEX is 0.8231808%, 0.7564323%, and
0.76543276%, respectively, according to Table 2. It means
that the Bayesian estimate is closer to the real number than
that of the MLE estimate. By looking at the lowest MSE of
both outcomes, one technique to discover the optimal
method would be to calculate Mean Squared Error (MSE).
Table 3 depicts them.

Table 1: 'e data for gamma (α, β) with a variety of (α, β) and z values.

(α, β) � (2.5, 0.4) (α, β) � (3.5, 0.2)

z t∗z
􏽥θt∗z

􏽢Lt∗z
(z) ρ∗0(z) Δz t∗z

􏽥θt∗z
􏽢Lt∗z

(z) ρ∗0(z) Δz

10 0.4324 0.2347 0.7632 0.7352 − 0.4567 0.0876 0.5293 0.2734 − 3.8752 − 1.3747
0.01 1.2346 0.2765 0.2763 0.3678 − 0.3456 0.7653 0.2636 0.2863 − 0.1254 − 2.3752
0.05 1.2487 0.3248 0.6427 0.9782 − 0.3657 1.4321 0.3826 0.2737 0.0274 2.7358
0.001 2.4567 0.2654 0.2753 0.7643 0.1236 8.6537 0.3362 0.3823 0.2735 0.2837
0.005 10.9876 0.3875 0.3875 0.8752 0.1432 11.7526 0.2763 0.2836 0.2934 0.2863
0.0001 13.9769 0.2873 0.2643 0.9826 0.0123 23.9875 0.3826 0.2733 0.2647 0.3754
0.0005 23.8765 0.3864 0.3625 0.2764 − 0.0154 35.7521 0.2863 0.3826 0.2735 0.2647

Table 2: MLE hazard values and estimation of the Bayes LINEX loss function.

Hazard Hazard value estimation using MLE Hazard value estimation using Bayesian LINEX
0.008231808 0.0075643263 0.0076543276

Table 3: Survival and hazard MSE values for MLE and Bayes
LINEX loss functions.

Mean square error Survival Hazard
Bayesian LINEX loss function 2.7872E − 08 0.000303142
MLE 2.91727E − 06 0.000245904
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Figure 10: 'e real survival probability and using MLE com-
parison plot.
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'e Value of MSE of Hazard and survival with Bayes
LINEX Loss Function would be less than MSE values of
hazard and survival over MLE, as shown in Figures 10 and 11.

Although both graphs 1 and 2 indicate a varying value
well with the actual cost of survival chances, graph 2’s curve
does have a faster distance between an actual and Bayesian
value.

5. Conclusion

'e LINEX loss function, when using comparative esti-
mation error, gives preference to overestimation in dis-
playing that the allocation is irregular for negative numbers
of the scaling factor, while it also gives weight to overesti-
mation in displaying that the transfer is asymmetric for
positive values. It lends more importance towards overes-
timation, which indicates the degree of imbalance, for
positive attributes of c. 'e criterion of the LINEX loss
function is achieved for positive attributes of the scaling
factor. However, this is more widely disseminated than the
initial random sample. In this example, it is also clear that
prediction error, rather than estimation of comparative
error, performs better when the LINEX loss function is used.
As a result, if the LINEX loss function performs better, the
estimated error should be utilized rather than the estimation
of relative error. Second, the rate of hazard and period of
article observation plays an important influence in deter-
mining survival value. 'ese are approximately equal to the
chances of survival. Finally, the MSE demonstrates that the
Bayes LINEX Loss function outperforms the MLE. For
future studies, the derivation of the posterior distribution for
the distribution estimation under squared error could be
explained using informative and noninformative priors.
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