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The majority of microsatellite instable (MSI) colorectal cancers are sporadic, but a subset belongs to the syndrome hereditary
nonpolyposis colorectal cancer (HNPCC). Microsatellite instability is caused by dysfunction of the mismatch repair (MMR) system
that leads to a mutator phenotype, and MSI is correlated to prognosis and response to chemotherapy. Gene expression signatures as
predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of
interest both clinically and biologically. To address this issue, we profiled the gene expression of 101 stage II and III colorectal cancers
(34 MSI, 67 microsatellite stable (MSS)) using high-density oligonucleotide microarrays. From these data, we constructed a nine-gene
signature capable of separating the mismatch repair proficient and deficient tumours. Subsequently, we demonstrated the robustness
of the signature by transferring it to a real-time RT-PCR platform. Using this platform, the signature was validated on an independent
test set consisting of 47 tumours (10 MSI, 37 MSS), of which 45 were correctly classified. In a second step, we constructed a signature
capable of separating MMR-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-
validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits
further gene expression studies to identify prognostic signatures.
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Colorectal cancer is a major public health problem as it accounts
for about 13% of all cancers and is the second most common cause
of cancer death in the western world (Greenlee et al, 2001|Parkin,
2001). Tumour stage is the main determinant of outcome for these
cancer patients as it is for most cancer patients. About 15% of
colorectal cancers exhibit microsatellite instability (MSI) and these
are reported to have a good prognosis relative to microsatellite
stable (MSS) patients (Lothe et al, 1993|Bubb et al, 1996).

Microsatellite instability was first identified in hereditary
nonpolyposis colorectal cancer (HNPCC) families and found to
be caused by mutations in the MLH1 or MSH2 genes, leading to
failures in the mismatch repair (MMR) system. In sporadic MSI
cases, the main cause of MMR failure was later found to be
silencing of the MLH 1 promoter by methylation of CpG islands
(Herman et al, 1998). The MMR-deficient tumours have char-
acteristic features like being poorer differentiated, having more
inflammation, and a more proximal location (Kane et al, 1997;
Ropponen et al, 1997; Cunningham et al, 1998b). At many

hospitals tumours are screened for MMR deficiency using
microsatellites and/or immunohistochemistry and those that are
MSI are evaluated for germline mutations in the MMR genes.

A new diagnostic approach is molecular classification of
tumours based on DNA microarrays, that has shown the ability
to produce gene expression signatures with predictive power for a
variety of tumour types (reviewed by Dyrskjot, 2003). In a disease
like bladder cancer, several classifiers have been published
predicting upstaging, recurrence, and surrounding field disease
(Dyrskjot, 2003).

A few reports have analysed global gene expression patterns in
colorectal tumours with focus on microsatellite status. Mori et al
(2003) found that MSI had a great impact on the global phenotype
and Banerjea et al (2004) identified a gene expression cluster in
MSI tumours that correlated with an activated immune response.
The aim of the present study was to generate expression profiles
from a broad spectrum of colorectal tumours in order to identify a
robust gene signature that could separate between MSI and MSS.
This could be the first step towards a stricter definition of
molecular subgroups of colon cancer that may be necessary in the
effort to construct clinically useful signatures for prognosis and
response to chemotherapy. We built a maximum likelihood MSI
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classifier using 101 tumour expression profiles and evaluated it
using a leave-one-out cross-validation scheme. The classifier was
then validated using RT-PCR on an independent test set of 47
tumours. In the second step, we investigated the microsatellite
unstable tumours separately, and identified two genes that
separated sporadic MSI from inherited cases.

MATERIALS AND METHODS

Patients and biopsy specimens

The tumours included in this study were resected at 15 different
clinics in Denmark and Finland. The study was approved by the
local ethic committees of all clinics, and all patients gave informed
consent prior to surgery. Colorectal cancer tissue from a total of
151 patients was collected and embedded in either Tissue Tek Oct-
compound or a SDS/guadinium thiocyanate solution and frozen
immediately after surgery. On occasions normal mucosa biopsies
were also collected and 17 of these were included in the study. In a
few instances biopsies were frozen directly without any prior
embedding.

A sample set consisting of 101 stages II and III cancers (34 MSI
and 67 MSS) and 17 normal mucosa samples were used for gene
expression profiling. To enable the construction of a general MMR
gene expression signature, caution was paid to avoid over-
representation of a particular subtype of MSI tumour. Thus, MSI
tumours of both sporadic and HNPCC origin were selected. The
histology subtypes of the MSI tumours were selected to cover both
ordinary and mucinous adenocarcinomas. Special attention was
also paid to select cancers of the right and left colons as well as the
rectum. Similarly, the normal samples were both from MSI and
MSS patients (three MSI, four MSS, 10 not determined) and
represented both the right and left colons. A brief summary of the
sample set used for gene expression profiling can be found in
Table 1.

An independent sample set consisting of 47 stage II cancers (10
MSI and 37 MSS) was used for real-time RT-PCR (Table 2), and
served as independent test set.

The analysis of MSI origin (sporadic or HNPCC) was performed
on a sample set consisting of 37 MSI cancers (34 from the gene
expression profiling sample set plus an additional three new stage I
and IV MSI cancers). All HNPCC cases included in this study carry
MLH1 (n¼ 16) or MSH2 (n¼ 2) mutations identified by sequencing.

Microsatellite analysis Tumour DNA was extracted from gross
dissected cancer tissue. Control DNA was extracted from blood
samples when available and normal epithelium, from the oral
resection edge, otherwise. Microsatellite instability was determined
using a pentaplex polymerase chain reaction with five quasimo-
nomorphic mononucleotide repeats, as previously described
(Suraweera et al, 2002). Tumours with low-frequency MSI have

similar clinical features as MSS tumours and were considered as
such in this study.

RNA purification Total RNA was isolated using Trizol (Invitro-
gen) or GenElute Kits (Sigma) according to the manufacturers’
instructions. RNA integrity was evaluated on a 2100 Bioanalyzer
using the RNA 6000 Nano LabChip kit (Agilent). Only samples
with intact RNA were used for gene expression analysis.

Gene expression analysis Labelling of RNA, hybridisation and
scanning was performed as described elsewhere (Dyrskjot et al,
2003). Biotin-labelled cRNA was prepared from 10mg of total RNA
and hybridised to the Human Genome U133A GeneChip array
(Affymetrix). This array contains 22 289 probesets representing
approximately 15 000 genes. The readings from the quantitative
scanning were analysed by the Affymetrix Software MAS 5.0 and
normalized using the quantile normalization procedure imple-
mented in robust multiarray analysis (RMA) (Boistad et al, 2003;
Irizarry et al, 2003).

Hierarchical clustering and statistical testing of clusters

For hierarchical cluster analysis, 1239 genes with a variation across
all 118 samples greater than 0.5 were median-centred to a
magnitude of 1. Samples and genes were then clustered using
average linkage clustering with a modified Person correlation as
similarity metric. The cluster dendrogram was visualised with Tree
View (Eisen et al, 1998).

Clusters formed based on correlations do not provide any
information concerning statistical significance. The significance of
the tumour clusters generated and of each gene separately was
performed as described in Supplementary data 1.

Microsatellite status classifier

We build a maximum likelihood MSI classifier with a ‘leave-one-
out’ cross-validation scheme basically as described (Dyrskjot et al,

Table 1 Summary of clinicopathological and microsatellite features of colorectal cancer samples used for construction of the classifier (training set)

Localisation in colon
Tumour stage

N (Danish, Finnish)

Patient group
N

(Danish, Finnish)
Median

age (range)
Right

(Danish, Finnish)
Left

(Danish, Finnish) II III

All samples 118 (44,75) 62.0 (32–87) 44 (7,37) 74 (36,38) 36 (14,22) 65 (23,42)
Normala 17 (6,11) 57.7 (34–80) 10 (3,7) 7 (3,4) NA NA
Sporadic microsatellite unstable tumoursb 19 (4,15) 66.8 (44–87) 11 (3,8) 8 (1,7) 8 (2,6) 11 (2,9)
Hereditary microsatellite unstable tumoursb,c,d 15 (3,12) 49.6 (32–75) 6 (1,5) 9 (2,7) 10 (2,8) 5 (1,4)
Microsatellite stable tumoursb 67 (30,37) 61.0 (36–85) 12 (0,12) 55 (30,25) 18 (10,8) 49 (20,29)

NA¼ not applicable. aNormal biopsy taken from the resection edge of a tumour. bAccording to microsatellite analysis. cAccording to Amsterdam Criteria 1. dWith known
germline mutations.

Table 2 Summary of 47 Danish stage II colon cancer samples used as
independent test set for the microsatellite classifier

Localisation in colon

Patient group N
Median age

(range) Right Left

All cases 4769.0 (36–84) 11 36
Sporadic microsatellite unstable tumoursa3769.0 (36–84) 7 30
Microsatellite stable tumoursa 1069.5 (39–81) 4 6

aAccording to microsatellite analysis.
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2003). Only those 5082 genes with a variance across all 118 samples
above 0.2 were included. We used a normal distribution with the
mean dependent on the gene and the group. For each gene, we
calculated the variation between the groups and the variation
within the groups to select genes with a high ratio between these.
To classify a sample, we calculated the sum over the genes of the
squared distance from the sample value to the group mean,
standardised by the variance, and assigned the sample to the
nearest group. The sample to be classified was excluded when
calculating group means and variances. For the final classifier we
selected genes that were among those that performed best in the
cross-validation test, and that represented both up- and down-
regulated genes.

Quantitative PCR The web-based assay design software from
(Exiqont) (www.probelibrary.com) was used to design intron-
spanning primer pairs and to select appropriate hybridisation
probes from the Human Probe Library (Exiqont). The hybridisa-
tion probes of the Probe Library uses a unique nucleotide
chemistry called locked nucleic acid (LNA). In practice the LNA
probes function as classical TaqMan probes, but because of the
LNA properties they are much shorter, only 8– 9 bases. A
description of primers and probes can be found in Supplementary
data 2. The PCR procedures were performed as described
previously (Birkenkamp-Demtroder et al, 2002). All samples were
normalised to GAPDH as this gene shows minimal expression
variation in colorectal cancer samples (Andersen et al, 2004).

Classification of new independent test samples based on
real-time PCR

For this test, we used an independent test set comprising 47 stage
II tumours of unknown MS status at the time of testing. The
microarray-defined signature was translated to a PCR platform by
analysing the nine-gene signature by quantitative PCR on a subset
of 18 of the 101 tumour samples. The average for each gene and
group of the microarray data was multiplied with a constant so
that the total average was equal to the average of the corresponding
log2 transformed PCR values. This translation can be made
because the normalised PCR values are expected to be propor-
tional to the normalised array values, and on a log scale this
becomes an additive difference. The difference is gene specific and
is therefore estimated for each gene separately. Thus, the variation
obtained from the microarray data, and used for classification, can
be used directly on the PCR platform.

RESULTS

Hierarchical clustering

We examined the gene expression profiles of 101 primary
colorectal carcinomas (67 MSS, 34 MSI) and 17 normal biopsies
using high-density oligonucleotide arrays representing E15 000
genes. Redundant probesets and probesets with a variation across
all samples smaller than 0.5 were removed, resulting in 1239 genes
for further analysis. The clustering algorithm essentially separated
the samples into three tumour clusters and a cluster with normal

biopsies (Figure 1). Two of the tumour clusters contained mainly
MSS tumours (37 out of 37 and 21 out of 25) and one cluster was
dominated by MSI tumours (30 out of 36). In the MSI cluster, there

Normal biopsies (14 out of 20)

MSS (21 out of 25)

Danish (19 out of 25)

MSI (30 out of 36)

MSS (37 out of 37)

Finnish (26 out of 37)
Figure 1 Unsupervised hierarchical clustering of 101 colorectal tumours.
The phylogenetic tree shows the spontaneous clustering of 101 tumour
and 17 normal biopsies into four clusters mainly consisting of normal
biopsies, MSI or MSS tumours, respectively. In the left column, the
microsatellite status is indicated as MSS (S) or MSI (I). Hereditary
nonpolyposis colorectal cancer tumours are indicated by (H) and normal
biopsies by (N). In the second column the tumour location is indicated as
right-sided (R) or left-sided (L) colon, or rectum (Rt).
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was no sign of separation between sporadic and HNPCC samples
and right-sided and left-sided tumours were interspersed among
each other.

The MSI cluster contained three morphologically normal tissue
specimens and six tumours were found in the cluster dominated by
normal biopsies. This may be because of an atypical tissue
composition in those samples, as described previously by Alon
et al (1999) by introducing a muscle index. We adapted this
method and found that the two outlying normal biopsies had an
untypical low muscle index and that the tumour sample in the tight
normal cluster had an untypical high muscle index (Supplemen-
tary data 3). The five tumours flanking the normal cluster had a
muscle index comparable to other tumours. None of the tumours
were excluded for further analysis as variation in tumour tissue
composition would allow the construction of a more robust
classifier.

Another observation was that the two MSS clusters were either
dominated by Danish samples (19 out of 25) or by Finnish samples
(26 out of 37), indicating a systematic difference between the two
countries. Based on these observations, we performed a series of
statistical tests that showed that the observed separation of
tumours into MSS and MSI groups, as well as into Danish and
Finnish groups, was highly significant even at highly strict criteria
(Supplementary Table 1).

Construction of a signature for microsatellite status

To define a signature for microsatellite status, we used state-of-
the-art supervised classification methods. We built a maximum-
likelihood classifier using the 101 tumour samples and evaluated
the classifier using a ‘leave-one-out’ cross-validation scheme. For
classification, we selected those predictive genes that performed
best in cross-validation and showed the largest possible separation
of the two groups. Each tumour was classified according to its
proximity to the mean of the three groups. We tested the
classifier’s performance using 1–100 genes in cross-validation
loops, and obtained the best correlation to microsatellite status by
using a 15-gene cross-validation scheme. For the final signature,
we selected nine genes that were used in at least 70% of the cross-
validations, and that represented both up- and downregulated
genes (Table 3). With these nine genes, a correct classification was
obtained in 98 tumours (97%) out of the 101 (Figure 2).

By including samples from both Finland and Denmark, we
identified genes that could discriminate between MSS and MSI,
independent of the geographical origin of the two groups. The
genes we used for the classifier were a subset of the highest scoring
genes for MSS/MSI difference for both the Finnish and the Danish
samples, and they have no separating power between Finnish and
Danish samples.

Cross-platform validation

We next measured the gene expression level of the nine classifying
genes using real-time RT-PCR. We randomly chose seven MSS and
11 MSI samples from the training set, and compared the PCR data

Table 3 Genes used for the classification of microsatellite status

Array signala

Genechip probe ID Gene name Gene symbol Microsatellite stable tumours Microsatellite unstable tumours

202072 Heterogeneous nuclear ribonucleoprotein L HNRPL 208773 7767340
203444 Metastasis-associated 1-like 1 MTAILI 45713 104736
206108 Splicing factor, arginine/serine-rich 6 SFRS6 74756 4787242
204533 Chemokine (C-X-C motif) ligand 10 CXCLIO 111780 3157535
212062 ATPase. class II, type 9a ATP9a 5887222 2087114
218345 Hepatocellular carcinoma-associated antigen 112 HCAI 12 12617603 4467271
224444 Hypothetical protein FLJ20618 FLJ20618 7767193 3387168
213047 SET translocation (myeloid leukaemia-associated) SET 13517298 4787201
209048 Protein kinase C-binding protein 1 PRKCBPI 2947113 158779

aArray signal are median signal intensity values7standard deviation.

1

8

15

22

29

36

43

50

57

64

71

78

85

92

99

−6 −4 −2 0 2 4 6

Relative distance

MSS

MSI

+

+

+

+

*

*
*

Figure 2 Performance of the MI classifier in the training set. The bars
indicate the relative distance of every single tumour to the centres of the
microsatellite unstable and microsatellite stable groups. The distances are
log2 and defined through the cross-validation steps. A value of þ 2
indicates that the distance of a tumour to the microsatellite unstable group
is four times the distance to the microsatellite stable group. The upper 34
tumours (open bars) are MSI tumours and the solid bars are MSS tumours.
(*) Indicate samples that are always misclassified, and (þ ) indicate samples
that are almost equally close to both groups.
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with microarray data using clustering. Median-centred and scaled
PCR data gave the same overall picture as clustered array data
from the 18 samples (Figure 3A). As the genes SET and ATP9a did
not work well in the PCR reaction, we used only seven of the nine
classifier genes (HNRPL, MTA1LI, SFR6, CXCL1O, HCA112,
FLJ20618 and PRKCBP1) in our final RT-PCR-based classifier.
We quantified the transcripts from these seven genes by real-time
RT-PCR in a new independent test set consisting of 47 tumours, 35
MSS and 12 MSI tumours. Using this approach, the classification
of 45 of 47 tumours was consistent with MS analysis. The two
misclassified tumours were almost equally spaced between the
groups of MSI and MSS tumours (marked * in Figure 3B).

Relation between microsatellite status, stage and survival

Recent data have shown a relation between MSI classification and a
good prognosis in stage II patients.

To examine if our tumour material was consistent with this, as
well as to demonstrate a possible use of MSI classification (be it
based on gene expression or microsatellites) in a clinical setting,
we correlated our classification to the overall survival of the
patients. We used the MSI classification data we generated on the
training set with the nine-gene classifier, and Kaplan– Meier plots
were constructed for stage II and III tumours separately (Figure 4).
The overall survival was highly significantly related to the
classification in 36 stage II patients, as 10 out of 11 patients that
died within five years belonged to the MSS group (P¼ 0.0014)
(Figure 4A). Thus, in accordance with other recent publications,
the classifier clearly proved to be a strong predictor of survival in
stage II disease.

Among 65 patients with Stage III tumours receiving adjuvant
chemotherapy, 16 were classified as MSI tumours and 49 as MSS
tumours. As six MSI and 30 MSS patients died within five years of
follow-up, there was no significant difference in overall survival
between these groups (P¼ 0.55) (Figure 4B).

Construction of a classifier for sporadic MSI vs HNPCC

The group of patients with MSI tumours includes both sporadic
and inherited (HNPCC) cancers. As the inherited cases need an
extensive clinical genetic examination of the family, a signature for
this group of patients would be clinically relevant. We therefore
sought for genes whose expression would identify such inherited
cases. We subjected the 18 sporadic MSI samples and 16 HNPCC
samples plus additional three samples (one MSI (stage I) and two
HNPCC (stage I and IV)) to supervised classification as described
above. The smallest number of errors in cross-validation was one
error obtained when using two genes only (Figure 5A, B). In 36 of
the 37 cross-validation steps, the two genes used were MLH1 and
PIWIL1. These two genes are also the two genes having the largest
positive (4.21) and negative (�4.89) values of the t-statistics for
difference between the two groups. As the number of MSI tumours
available was limited, we could not analyse an independent test set.
We therefore made an extensive mathematical testing. To evaluate
the significance of the two genes, we randomly permuted the group
labels MSI and HNPCC 500 times and for each permutation
calculated the 22.215 t-values for difference between the two

pseudo groups, and recorded the maximum of the absolute values.
The largest absolute value among these 500 maxima was 4.37,
showing that the t-value -4.89 for PIWIL1 was highly significant.
Only two of the following maxima were larger than 4.2, which
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Figure 3 Classification of MI status based on real-time PCR. Panel A
shows a cluster analysis of a subset (18 samples) of the 101 tumour
samples using the nine signature genes, based on either the microarray data
or the real-time PCR data. Blue colours indicate relative low expression and
yellow colour high expression. Panel B shows the classification result of 47
new independent samples based on PCR data using seven of the nine
genes. Relative distances are explained in the legend to Figure 2. The two
misclassified tumours are indicated with an asterisk. For PCR primers and
hybridisation probes, see supplementary data 2.
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showed that the MLH 1 t-test value of 4.21 had a P-value of less
than 1%. Thus, the confidence was better than 99% in case of
MLH1, and even much higher in case of PIWIL1. The mismatch
repair gene MLH1 showed a general downregulation in sporadic
disease, whereas PIWIL1 was lower expressed in hereditary cases
(Figure 5C).

DISCUSSION

The main objective of this study was to build a robust gene
expression classifier for MSI reflecting MMR deficiency in
colorectal cancer. Our first step was to perform an unsupervised
cluster analysis of tumour samples and normal biopsies. Normal
samples readily separated from tumour samples, and the tumour
samples spontaneously separated into MSS and MSI. This
demonstrates that MSI has a profound effect on the gene
expression pattern of colon cancer.

Surprisingly, the geographic origin of the patients also had an
influence on the transcriptional pattern in the tumours. This was
reflected in two MSS clusters, each dominated by either Danish or
Finnish tumours. As the samples were labelled in mixed batches,
we could exclude that the country difference was due to a labelling
effect. The gene expression data in this study were derived from
macroscopically removed pieces of resected tumours. The tissue
used for RNA isolation was subsequently inspected by a trained
pathologist and was estimated to contain from 50% tumour cells
and up to more than 95%. A difference in the composition of cell
types in the Danish and Finnish samples seemed unlikely, as we

found no difference in muscle index (Alon et al, 1999). Thus, we
did not find any explanation for the country effect, but speculate
that it could be due to differences in tissue sampling (e.g.
ischaemic time), or less likely, genetic difference or nutritional
differences between Denmark and Finland. However, the main
observation was that unsupervised clustering gave a clear
separation between MMR-proficient and -deficient tumours.

By use of a supervised classification method, we found that
using only nine genes the MSI/MSS classification was extremely
robust, reaching a sensitivity and specificity that was comparable
to microsatellite analysis. On a subset of the 101 tumours, we
demonstrated that the signature could be transferred to a real-time
RT-PCR platform. We therefore used this platform to classify an
independent set consisting of 47 tumours of unknown micro-
satellite status. Forty-five (B96%) were classified in consistence
with subsequent microsatellite analysis; one of the misclassified
tumours was clearly inconsistent, whereas the other was classified
with low confidence. Tumours that are problematic to allocate to
either MSS or MSI may display intratumour heterogeneity
(Jimenez et al, 2003) or they may follow alternative genetic
pathways (Smith et al, 2002; Tang et al, 2004). However, the clear
separation of the tumours into the MSI/MSS classes in the vast
majority of cases indicated that the assay was robust and that
technical demanding and time-consuming microdissection was not
necessary.

In the present study, only one case of the hereditary MSI
tumours was caused by a MSH2 mutation. However, this tumour
was classified correctly as microsatellite unstable. It is not known
how many sporadic MSI tumours are that caused by MLH1
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hypermethylation, but based on the expression levels of MLH1
and reports from the literature a realistic estimate would be
80–90% (Kane et al, 1997; Cunningham et al, 1998b; Herman et al,
1998; Kuismanen et al, 2000). The high concordance of 97%

between microsatellite analysis and the gene expression classifier
indicated that microsatellite unstable tumours were classified
correctly, regardless of which mismatch repair genes that was
inactivated.
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We were able to classify MSI tumours into sporadic and
hereditary cases based on the expression of only two genes, MLH1
and PIWIL1. The classification resulted in only one misclassifica-
tion out of 37. Analysis of this case for mutations in MLH1 and
MSH2 and for the Finnish founder deletion in exon 16 of MLH 1
was negative, but were have not explored for deletions in MSH2,
which is an important cause for HNPCC (Wijnen et al, 1998). The
patient did not have any family history of colorectal cancer, but the
family was very small and the patient’s young age of 32 speaks for
the possibility of a missed HNPCC case. A majority of sporadic and
about half of hereditary microsatellite unstable colorectal cancers
are caused by inactivation of MLH1 (Herman et al, 1998; Wheeler
et al, 1999). In sporadic tumours this is mostly caused by biallelic
promotor hypermethylation, whereas somatic mutations or loss of
heterozygosity of the wild-type allele are significant mechanisms in
hereditary tumours. As a result, the MLH1 expression level in
sporadic cases is strongly compromised, whereas one or two alleles
of MLH1 in HNPCC cases are transcribed, although encoding a
mutated protein. In HNPCC cases with inactivation of MSH2 or
MSH6 genes a correct classification would be expected because
MLH1 is normally transcribed in these tumours. The second
classifier gene PIWIL1 is a member of the human Argonaute family
that contain a conserved RNA-binding PAZ domain and may be
involved in the development and maintenance of stem cells
through the RNA-mediated gene-quelling mechanisms associated
with DICER (Sasaki et al, 2003; Yuan et al, 2003). The association
of this gene with hereditary MSI tumours is novel, as no biological
differences between sporadic and hereditary MSI tumours have
been reported. As the number of samples with MSI was limited, we
only attempted mathematical validation of the two genes as
predictors of hereditary MSI. It is important that other researchers
repeat our finding on independent materials. If consistency is
found across several materials this could be of great practical
importance, as clinical genetic examination of large families is very
costly. By using a classifier of heredity, efforts could be focused to
those with a very high likelihood of being HNPCC cases. Recent
publications indicate that classification of MMR-deficient tumours
could be of use when selecting chemotherapy in stage II patients
(Ribic et al, 2003). However, there are conflicting reports on the
relation between MSI status and outcome of fluorouracil-based
adjuvant chemotherapy. Some authors report that stage III MSI
cancers derive the greatest benefit (Elsaleh et al, 2000), others that
MSI status is not predicting response (de Vos tot Nederveen
Cappel et al, 2004). These studies have recently been challenged by
a large study showing that only MSS patients derived a benefit
from the treatment (Brezden-Masley et al, 2003). In a study where
5-fluorouracil treatment failed, antitumour activity of irinotecan
could be documented in 15–30% of the patients (Cunningham
et al, 1998a; Rougier et al, 1998), and MSI has recently been shown
to be a predictive factor for response to irinotecan in patients with
advanced colorectal cancer (Fallik et al, 2003). The survival of the

patient in this study shows the same clear trend reported by Ribic
et al (2003). MSI in stage II patients receiving no chemotherapy is
a beneficial prognostic marker, whereas MS status in stage III
patients receiving chemotherapy has no prognostic values. Our
gene expression signature of only nine genes thus identified a
group of stage II patients that were MSI and had a very good
prognosis, and a group that were MSS and had 50% mortality.

The approach described here, to detect MSI in a first step and to
identify HNPCC in a second step, if confirmed in other studies, is
an improvement compared to previous strategies. In the near
future, molecular classification of CRC into MSI and MSS subtypes
may become a routine procedure because of the emerging different
treatment strategies (Gryfe et al, 2000; Fallik et al, 2003). This will
introduce the problem of HNPCC detection; MSI cases detected
with previous methods need careful and laborious evaluation to
correctly assess the possible risk of hereditary cancer. Our
approach is unique in correctly separating MSI and MSS cancers,
and in addition separating hereditary MSI from sporadic cases.

The present gene expression signatures may, supplemented with
future signatures, form the basis for developing a universal colon
cancer diagnostic microarray capable of classifying tumour origin,
type, stage and propensity to metastasise, as well as predicting
their response to chemotherapy and likelihood of recurrence. We
have demonstrated that such microarray-based assays may also be
transferred to alternative platforms such as real-time RT-PCR.
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