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Abstract Descriptive statistical models of neural responses generally aim to characterize the

mapping from stimuli to spike responses while ignoring biophysical details of the encoding

process. Here, we introduce an alternative approach, the conductance-based encoding model

(CBEM), which describes a mapping from stimuli to excitatory and inhibitory synaptic conductances

governing the dynamics of sub-threshold membrane potential. Remarkably, we show that the

CBEM can be fit to extracellular spike train data and then used to predict excitatory and inhibitory

synaptic currents. We validate these predictions with intracellular recordings from macaque retinal

ganglion cells. Moreover, we offer a novel quasi-biophysical interpretation of the Poisson

generalized linear model (GLM) as a special case of the CBEM in which excitation and inhibition are

perfectly balanced. This work forges a new link between statistical and biophysical models of

neural encoding and sheds new light on the biophysical variables that underlie spiking in the early

visual pathway.

Introduction
Studies of neural coding seek to reveal how sensory information is encoded in neural spike

responses. A complete understanding this code requires knowledge of the statistical relationship

between stimuli and spike trains, as well as the biophysical mechanisms by which this transformation

is carried out. A popular approach to the neural coding problem involves ‘cascade’ models, such as

the linear-nonlinear-Poisson (LNP) or generalized linear model (GLM), to characterize how external

stimuli are converted to spike trains. These descriptive statistical models describe the encoding pro-

cess in terms of a series of stages: linear filtering, nonlinear transformation, and ending with noisy or

conditionally Poisson spiking (Chichilnisky, 2001; Paninski, 2004; Vintch et al., 2012; Park et al.,

2013; Theis et al., 2013; Vintch et al., 2015). These models have found broad application to neural

data, and the Poisson GLM in particular has provided a powerful tool for characterizing neural

encoding in a variety of sensory, cognitive, and motor brain areas (Harris et al., 2003;

Truccolo et al., 2005; Pillow et al., 2008; Gerwinn, 2010; Stevenson et al., 2012; Weber et al.,

2012; Park et al., 2014; Hardcastle et al., 2015; Yates et al., 2017).

However, there is a substantial gap between cascade-style descriptive statistical models and

mechanistic or biophysically interpretable models. In real neurons, stimulus integration is nonlinear,

arising from an interplay between excitatory and inhibitory synaptic inputs that depend nonlinearly

on the stimulus; these inputs in turn drive conductance changes that alter the nonlinear dynamics

governing membrane potential. In retina and other sensory areas, the tuning of excitatory and inhibi-

tory inputs can differ substantially (Roska et al., 2006; Trong and Rieke, 2008; Poo and Isaacson,

2009; Cafaro and Rieke, 2013), meaning that a single linear filter is not sufficient to describe stimu-

lus integration in single neurons. Determining how stimuli influence neural conductance changes,
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and thus the computations that neurons perform, therefore remains an important challenge. This

challenge is exacerbated by the fact that most studies of neural coding rely on extracellular record-

ings, which detect only spikes and not synaptic conductance changes that drive them.

Here, we aim to narrow the gap between descriptive statistical models and biophysically inter-

pretable models, while remaining within the domain of models that can be estimated from extracel-

lular spike train data (Meng et al., 2011; Meng et al., 2014; Volgushev et al., 2015;

Lankarany, 2017). We first introduce a quasi-biophysical interpretation of the standard Poisson

GLM, which reveals its equivalence to a constrained conductance-based model with equal and oppo-

site excitatory and inhibitory tuning. We then relax these constraints in order to obtain a more flexi-

ble and more realistic conductance-based model with independent tuning of excitatory and

inhibitory inputs. The resulting model, which we refer to as the conductance-based encoding model

(CBEM), can capture key features of real neurons such as shunting inhibition and time-varying

changes in gain and membrane time constant. We show that the CBEM can predict excitatory and

inhibitory synaptic conductances from stimuli and extracellular spike trains alone, which we validate

by comparing model predictions to conductances measured with intracellular recordings in macaque

parasol and midget retinal ganglion cells (RGCs). This work differs from previous cascade modeling

approaches for separating excitatory and inhibitory inputs (e.g., Butts et al., 2011; Ozuysal et al.,

2018; McFarland et al., 2013; Maheswaranathan et al., 2018) by explicitly defining the model

components in a biophysical framework and directly comparing model predictions to measured exci-

tation and inhibition tuning in individual cells. We also show that the CBEM outperforms the stan-

dard GLM at predicting retinal spike responses to novel stimuli. These differences highlight the

CBEM’s ability to shed light on the computations performed by sensory neurons in naturalistic

settings.

Results

Background: Poisson GLM with spike history
The Poisson GLM provides a simple yet powerful description of the encoding relationship between

stimuli and neural responses (Truccolo et al., 2005). A recurrent Poisson GLM, often referred to in

the neuroscience literature simply as ‘the GLM’, describes neural encoding in terms of a cascade of

linear, nonlinear, and probabilistic spiking stages (Figure 1a). The GLM parameters consist of a stim-

ulus filter k, which describes how the neuron integrates an external stimulus, a post-spike filter h,

which captures dependencies on spike history, and a baseline b that determines baseline firing rate

in the absence of input. The outputs of these filters are summed and passed through a nonlinear

function fr to obtain the conditional intensity for an inhomogeneous Poisson spiking process. The

model can be written concisely in discrete time as:

lt ¼ frðk � xt þ h � yhistt þ bÞ ðspikerateÞ (1)

yt j lt ~PoissðDltÞ ðprobabilistic spikingÞ (2)

where lt � 0 is the spike rate (or conditional intensity) at time t, xt is the spatio-temporal stimulus

vector at time t, yhistt is a vector of relevant spike history at time t, and yt is the spike count in bin of

size D. Although spike generation is conditionally Poisson, the model can capture complex history-

dependent response properties such as refractoriness, bursting, bistability, and adaptation

(Weber and Pillow, 2016). Additional filters can be added to the model in order to incorporate

dependencies on covariates of the response such as spiking in other neurons or local field potential

recorded on nearby electrodes (Truccolo et al., 2005; Pillow et al., 2008; Kelly et al., 2010). A

common choice for the nonlinearity is exponential, f ðzÞ ¼ expðzÞ, which corresponds to the ‘canonical’

inverse link function for Poisson GLMs.

Previous literature has offered a quasi-biological interpretation of the GLM known as ‘soft thresh-

old’ integrate-and-fire (IF) model (Plesser and Gerstner, 2000; Gerstner, 2001; Paninski et al.,

2007; Mensi et al., 2011). This interpretation views the summed filter outputs as the neuron’s mem-

brane potential. This is similar to the standard IF model in which membrane potential is a linearly fil-

tered version of input current (as opposed to conductance-based input). The nonlinear function fr

can be interpreted as a ‘soft threshold’ function that governs a smooth increase in the instantaneous
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spike probability as a function of membrane depolarization. Lastly, the post-spike current h deter-

mines how membrane potential is reset following a spike.

We can rewrite the standard GLM to emphasize this biological interpretation explicitly:

Vt ¼ k � xt þ h � yhistt þ b ðmembranepotentialÞ (3)

lt ¼ frðVtÞ ðinstantaneousspikerateÞ (4)

yt j lt ~PoissðDltÞ: ðprobabilistic spikingÞ (5)

Note that in this ‘soft’ version of the IF model, the only noise source is the conditionally Poisson

spiking mechanism; this differs from other noisy extensions of the IF model with linear current-based

input and ‘hard’ spike thresholds, which require more elaborate methods for computing likelihoods

(Paninski, 2004; Pillow et al., 2005; Paninski et al., 2008). To convert this model to a classic leaky

integrate-and-fire model, we could replace fr with a ‘hard’ threshold function that jumps from zero

to infinity at some threshold value of the membrane potential, set the stimulus filter k to an expo-

nential decay filter, and set the post-spike filter h to a delta function that causes instantaneous reset

of the membrane potential following a spike. The GLM membrane potential is a linear function of

the input, just as in the classic leaky IF model, and thus both models fail to capture the nonlinearities

apparent in the synaptic inputs to most real neurons (Schwartz and Rieke, 2011).

Interpreting the GLM as a conductance-based model
Here, we propose a novel biophysically realistic interpretation of the classic Poisson GLM as a

dynamical model with conductance-based input. In brief, this involves writing the GLM as a conduc-

tance-based model with excitatory and inhibitory conductances governed by affine functions of the

stimulus, but constrained so that total conductance is fixed. This removes voltage-dependence of

the membrane currents, making the membrane potential itself an affine function of the stimulus. The

remainder of this section lays out the mathematical details of this interpretation explicitly.

Consider a neuron with membrane potential Vt governed by the ordinary differential equation:

dVt

dt
¼�glðVt �ElÞ� geðtÞðVt �EeÞ� giðtÞðVt �EiÞ (6)

A

stimulus spikes

nonlinearity
Poisson

noise

post-spike filter

B conductance-based encoding model (CBEM)

response
nonlinearity

inhibitory filter

excitatory filter

Poisson
noise

post-spike filter

stimulus spikes

biophysical interpretation of GLM

stimulus filter

+

Figure 1. Model diagrams. (A) Diagram illustrating novel biophysical interpretation of the generalized linear model (GLM). The stimulus xt is convolved

with a conductance filter k weighted by D ¼ ðEe � EiÞ, the difference between excitatory and inhibitory current reversal potentials, resulting in total

synaptic current ItotðtÞ. This current is injected into the linear RC circuit governing the membrane potential Vt , which is subject to a leak current with

conductance gtot and reversal potential V0. The instantaneous probability of spiking is governed by a the conditional intensity lt ¼ f ðVtÞ, where f is a

nonlinear function with non-negative output. Spiking is conditionally Poisson with rate lt , and spikes gives rise to a post-spike current or filter h that

affects the subsequent membrane potential. (B) Conductance-based encoding model (CBEM). The stimulus xt is convolved with filters ke and ki, whose

outputs are transformed by rectifying nonlinearity fg to produce excitatory and inhibitory synaptic conductances geðtÞ and giðtÞ. These time-varying

conductances and the static leak conductance gl drive synaptic currents with reversal potentials Ee, Ei, and El, respectively. The resulting membrane

potential Vt is added to a linear spike-history term, given by h � yhistt , and then transformed via rectifying nonlinearity fr to obtain the conditional intensity

lt , which governs conditionally Poisson spiking as in the GLM. Figure 1—figure supplement 1 shows that the CBEM parameters can be recovered

from simulated data.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Convergence of model parameter fits.
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where gl is leak conductance, geðtÞ and giðtÞ are time-varying excitatory and inhibitory synaptic con-

ductances, and El, Ee and Ei are the leak, excitatory and inhibitory reversal potentials.

A natural question to ask is: under what conditions, if any, is this model a GLM? Answering this

question aims to reveal what biophysical assumptions the GLM implicitly enforces when modeling

spike trains. Here, we provide a set of sufficient conditions for an equivalence between the two. The

definition of a GLM requires the membrane potential Vt to be an affine (linear plus constant) function

of the stimulus, which holds if the two following conditions are met:

1. Total conductance gtotðtÞ is constant, so the membrane equation is a linear ODE.
2. The input current ItotðtÞ is an affine function of the stimulus xt.

The first condition implies geðtÞ þ giðtÞ ¼ c, for some constant c, and the second implies that

geðtÞEe þ giðtÞEi is a linear function of the stimulus.

We can satisfy these two conditions simultaneously by modeling the excitatory and inhibitory con-

ductances as affine functions of the stimulus, driven by linear filters of opposite sign:

geðtÞ ¼ kc � xt þ be ðGLMexcitatoryconductanceÞ

giðtÞ ¼�kc � xt þ bi; ðGLMinhibitoryconductanceÞ
(7)

where kc denotes the linear ‘conductance’ filter, and be and bi are arbitrary constants. Under this set-

ting, excitatory and inhibitory conductances are driven by equal and opposite linear projections of

the stimulus, with total conductance fixed at gtot ¼ glþ be þ bi.

We can therefore rewrite the membrane equation (Equation 6) as:

dVt

dt
¼�gtotVt þ ðEe�EiÞkc � xt þ btot ; ðGLMmembraneequationÞ (8)

where btot ¼ beEeþ biEi. Setting the initial voltage to the steady-state value V0 ¼ btot=gtot, the instanta-

neous membrane potential is then given by

Vt ¼ k � xt þ V0; (9)

where the equivalent standard GLM filter k is equal to the linear convolution of kc with an exponen-

tial decay filter, that is: k¼
R t

0
ðEe�EiÞkcðtÞe�gtot �ðt�t0Þ dt0: This shows that membrane potential Vt is an

affine function of the stimulus, so by adding a monotonic nonlinearity and conditionally Poisson spik-

ing, the model is clearly a GLM.

Thus, to summarize, the GLM can be interpreted as a conductance-based model in which a linear

filter drives equal and opposite fluctuations in excitatory and inhibitory synaptic conductances. The

GLM filter k is equal to the convolution of this conductance filter with an exponential decay filter

whose time constant is the inverse of the (constant) total conductance.

The conductance-based encoding model (CBEM)
From this novel interpretation of the GLM, it is straightforward to formulate a more realistic conduc-

tance-based statistical spike train model. Namely, we can remove the constraint needed to construct

a GLM: that excitatory and inhibitory conductance sum to a constant. Relaxing this constraint, so

that total conductance can vary, results in a new model that we refer to as the conductance-based

encoding model (CBEM). The CBEM represents an extension of GLM to allow for differential tuning

of excitation and inhibition and adds rectifying nonlinearities governing the relationship between the

stimulus and synaptic conductances. (See model diagram, Figure 1b). The CBEM model is no longer

a GLM because the filtering it performs on the stimulus is nonlinear.

Formally, the CBEM is driven by excitatory and inhibitory synaptic conductances that are each lin-

ear-nonlinear functions of the stimulus:

geðtÞ ¼ fgðke � xt þ beÞ ðCBEMexcitatoryconductanceÞ

giðtÞ ¼ fgðki � xt þ biÞ ðCBEMinhibitoryconductanceÞ; (10)

where ke and ki are linear filters driving excitatory and inhibitory conductance, respectively, fg is a

soft-rectifying nonlinearity that ensures that conductances are non-negative (see
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Materials and methods, Equation 14), and be and bi determine the baseline excitatory and inhibitory

conductances in the absence of input. The CBEM membrane potential Vt then evolves according to

the ordinary differential equation (Equation 6) under the influence of the two time-varying conduc-

tances geðtÞ and giðtÞ.

To incorporate spike-history effects, we add a linear autoregressive term to the membrane poten-

tial. This results in an ‘effective’ membrane potential ~Vt given by:

~Vt ¼ Vt þ h � yhistt ; ðeffectivemembranepotentialÞ (11)

where yhistt is a vector of binned spike history at time t. We convert membrane potential to spike rate

using a biophysically motivated output nonlinearity proposed by Mensi et al. (2011):

lðtÞ ¼ frð~VtÞ ¼ a log 1þ exp
~Vt ��

b

� �� �

; ðoutputnonlinearityÞ (12)

where � is a ‘soft’ spike threshold, and a and b jointly determine slope and sharpness of the nonline-

arity, respectively (see Materials and methods). Spiking is then a conditionally Poisson process given

the rate, as in the Poisson GLM (Equation 5).

The CBEM is similar to the Poisson GLM in that the only source of stochasticity is the conditionally

Poisson spiking mechanism: we assume no additional noise in the conductances or the voltage. This

simplifying assumption, although not biophysically accurate, makes log-likelihood simple to com-

pute, allowing for efficient maximum likelihood inference using standard ascent methods (see

Materials and methods).

Validating the CBEM modeling assumptions with intracellular data
To validate the modeling assumptions of the CBEM, we use intracellular recordings from RGCs. First,

we establish that an LN model can capture the relationship between stimuli and synaptic conductan-

ces measured intracellularly (Figure 2). An LN model for RGC conductances is plausible because the

bipolar cells that drive RGCs are known to be well-characterized by LN models (Rieke, 2001;

Demb et al., 2001; Beaudoin et al., 2008; Gollisch and Meister, 2010; Liu et al., 2017;

Real et al., 2017). To test the assumption in detail, we analyzed voltage clamp recordings from ON

parasol RGCs in response to a full-field noise stimulus (Trong and Rieke, 2008). We fit the measured

conductances with a linear-nonlinear model with a soft-rectified nonlinearity to account for synaptic

thresholding at the bipolar-to-ganglion cell synapse (and at the amacrine cell synapses for the inhibi-

tory inputs): fgð�Þ ¼ logð1þ expð�ÞÞ. The model accurately captured the relationship between pro-

jected stimuli and observed conductances on test data, accounting for 79 ± 4% (mean ± SEM) and

63 ± 3% of the variance of mean excitatory and inhibitory conductances, respectively.

Second, we establish that the output nonlinearity fr, which maps membrane potential to instanta-

neous firing rate (Equation 12), provides an accurate description of the empirical relationship

between membrane potential and spiking (Figure 3). To validate this model component, we exam-

ined dynamic current clamp recordings from two ON parasol RGCs. The dynamic clamp recordings

drove RGCs with currents determined by previously measured excitatory and inhibitory conductan-

ces. To reduce noise, we computed average membrane potential over repeated presentations of

the same measured conductance traces. We then computed nonparametric estimates of the nonline-

arity (see Materials and methods). We found that the parametric function we assumed (Equation 12)

closely approximated a non-parametric estimate of the nonlinearity (Figure 3c black; see

Materials and methods for details).

Note that although previous analyses of RGC responses using Poisson GLMs have shown that an

exponential nonlinearity captures the mapping from stimuli to spike rates more accurately than a

rectified-linear nonlinearity (Pillow et al., 2008), we found the opposite here: the nonlinearity was

better described with a soft-rectification function. This discrepancy may result from the fact that the

GLM has a single nonlinearity, whereas the CBEM has a cascade of two nonlinearities: one mapping

filter output to conductance, and a second mapping membrane potential to spike rate.
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Predicting conductances from spikes with CBEM
We now turn to a key application of the CBEM: the inferring of excitatory and inhibitory synaptic

conductances from extracellular spike train data. To test the model’s ability to make such predic-

tions, we fit the model parameters to a dataset consisting of stimuli and observed spike times. We

then used the inferred filters to predict the excitatory and inhibitory conductances elicited in

response to novel stimuli recorded in the same cells.
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Figure 2. Validating the LN conductance model. The CBEM describes the relationship between stimulus and each synaptic conductance with a linear-

nonlinear (LN) cascade, consisting of a linear filter followed by a fixed rectifying nonlinearity. (A) LN conductance model schematic. (B) The percent

variance explained (R2) for excitatory and inhibitory conductances from 6 ON parasol RGCs, computed using cross-validation with a 6 s test stimulus.

Error bars indicate standard deviation across all test stimuli. (C) The excitatory conductance as a function of the filtered stimulus values for the example

cell indicated in green in B. The gray region shows the middle 50-percentile of the distribution of observed excitatory conductance given the filtered

stimulus value. The soft-rectifying nonlinearity (dark blue) closely matched the average conductance given the filtered stimulus value (light blue points).

(D) Measured excitatory conductances in the same cell (black) and predictions from the LN model (blue) in response to a test stimulus. (E) The inhibitory

conductance nonlinearity for the same neuron. The soft-rectifying nonlinearity (dark red) closely approximated the average inhibitory conductance as a

function of the filtered stimulus value (light red). (F) Measured excitatory conductances (black) and the predictions of the LN model (red) on a test

stimulus for the same cell.
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The training data consisted of spike trains from six macaque ON-parasol RGCs obtained in cell-

attached recordings with full-field white noise stimuli. Each cell was stimulated with ten unique 6 s

stimulus segments, repeated three or four times each, resulting in a total of thirty to forty 6 s trials

per neuron (Trong and Rieke, 2008). We fit the CBEM parameters (conductance filters and spike

history filter) to a single cell’s responses to 9 of the stimulus segments and evaluated performance

using the remaining held-out segment (10-fold cross validation). Thus, the model was fit using spike

trains elicited by three or four repeats of a 54 s full-field noise stimulus (see Materials and methods).

For comparison, we also fit the conductance filters directly to measured excitatory and inhibitory

conductances from intracellular recordings using the same stimuli and the same cross-validation

procedure.

Figure 4 shows the conductance filters estimated from intracellular data (fit to conductances) and

extracellular data (fit to spike trains only) for two example cells, along with the predicted excitatory

and inhibitory conductances elicited by a novel test stimulus. The filters fit to spikes were similar to

those fit to conductances, and the conductance predictions from both models were highly correlated

with the measured traces. Figure 5 shows a summary statistics comparing the two models’ perfor-

mance for all six neurons for which we had both spike train and conductance recordings. For both

models, predicted conductances traces were highly correlated with the measured conductances for

all six cells. Using only a few minutes of spiking data, the conductances predicted by the extracellular

model had an average correlation of r = 0.73 ± 0.01 (mean ± SEM) for the excitatory conductance

and r = 0.69 ± 0.03 for the inhibitory conductance, compared to averages of r = 0.89 ± 0.02 (excita-

tion) and r = 0.82 ± 0.01 (inhibition) for the LN model fit directly to conductances (Figure 5a–b).

Although the extracellular model predicted the basic timecourse of the observed conductances

with high fidelity, there were small systematic discrepancies between model-predicted and mea-

sured conductances. For example, measured conductances had nearly zero lag in their cross-correla-

tion (0.0 ± 2.4 ms; see also Cafaro and Rieke, 2013), whereas the predicted excitatory conductance

slightly preceded the inferred inhibition for all six cells (r = 12.6 ± 1.0 ms, Student’s t-test p <

0.0001; Figure 5e–f). The predicted excitation preceded the average measured excitation by

5.6 ± 0.7 ms (p = 0.0005), while the predicted inhibition showed only a slight and statistically insignif-

icant delay compared to the measured inhibition (r = 2.5 ± 1.3 ms, p = 0.11; Figure 5g–h).

Positively correlated excitation and inhibition in ON-midget cells
We also applied the CBEM to spike trains recorded from 5 ON-midget cells in response to the same

type of full-field noise used for the parasol cells. In contrast to the parasol cells, ON-midget cells

have positively correlated excitation and inhibition with excitation preceding inhibition (Cafaro and

Rieke, 2013). This breaks the GLM assumption of equal and opposite tuning of the two conductan-

ces. A set of unique 6 s stimuli were used to the the model (33–35 trials for spike recordings and 5–
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20 trials for the LN conductance model). The models were compared to the average conductances

recorded in response to a repeated novel 6 s stimulus (5–10 repeats).

The CBEM captured the tuning of the synaptic conductances received by the midget cells. An

example cell is shown in Figure 6—figure supplement 1. The CBEM predicted the excitatory con-

ductance with an average correlation of r = 0.85 ± 0.03 compared to the intracellular LN model with

a correlation of r = 0.95 ± 0.003 (Figure 6a). The inhibitory conductance showed more nonlinear

behavior than can be captured by a single LN unit: the CBEM predicted inhibition with

r = 0.33 ± 0.06 and the LN fit to the conductance had a correlation coefficient of only r = 0.54 ± 0.07

(Figure 6b). The CBEM captured the fact that the inhibitory input had ON tuning, but delayed com-

pared to excitation (Figure 6c–d). This was also seen in the cross-correlation between excitation and

inhibition (Figure 6e). The data showed a cross-correlation peak with excitation preceding inhibition

by 10.1 ± 0.52 ms, and the CBEM showed a similar timing difference of 8.2 ± 0.8 ms (paired Stu-

dent’s t-test, p = 0.06; Figure 6f). However, midget cells receive OFF inhibitory input in addition to
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Figure 4. Predicting conductances from spikes with CBEM. Model parameters and conductance predictions for two example ON parasol RGCs. Left:

Linear kernels for the excitatory (blue) and inhibitory (red) conductances estimated from spike train data (light red, light blue) alongside filters from an

LN model fit directly to measured conductances (dark red, dark blue). The filters represent a combination of events that occur in the retinal circuitry in

response to a visual stimulus, and are primarily shaped by the cone transduction process. Right: Measured conductances elicited by a test stimulus

(black), along with predictions from the CBEM (fit to spikes) and LN model (fit to conductance data), indicating that the CBEM can predict synaptic

conductances nearly as well as a model fit to intracellular conductance measurements. Estimated conductances and conductance filters are scaled for

ease of visualization due to the presence of an unidentifiable scale factor relating to membrane capacitance. Inhibition and excitation were scaled

equally.
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the larger ON inhibitory input (Cafaro and Rieke, 2013), and therefore a single LN unit could not

completely capture inhibition in these cells. The true excitation was faster than the predicted excita-

tion by r = 3.8 ± 0.8 ms (Student’s t-test p = 0.008), and the measured inhibition was similarly timed

with the model estimate (1.56 ± 0.6 ms, p = 0.06; Figure 6g–h). In summary, the CBEM can discover

positive correlations between excitation and inhibition despite being initialized using a GLM with

oppositely tuned excitation and inhibition (see Materials and methods).

Characterizing spike responses with CBEM
Given the CBEM’s ability to infer intracellular conductances from spike train data, we sought to

examine how well it predicts spike responses to novel stimuli. Most encoding models are only tested

with data from extracellular recordings, which are far easier to obtain and to sustain over longer

periods. It therefore seems natural to ask: does the CBEM’s increased degree of biophysical realism

confer advantages for predicting spikes?

To answer this question, we fit the CBEM and classic Poisson GLM to a population of 9 extracellu-

larly recorded macaque RGCs stimulated with full-field binary white noise (Uzzell and Chichilnisky,

2004; Pillow et al., 2005). We evaluated spike rate prediction by comparing the peri-stimulus time
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Figure 5. Summary of the CBEM fits to 6 ON parasol RGCs for which we had both spike train and conductance recordings. (A) The correlation

coefficient (r) between the mean observed excitatory synaptic input to a novel 6 s stimulus and the conductance predicted by the LN cascade fit to the

excitatory conductance (y-axis) compared to the CBEM prediction from spikes (x-axis) for each cell. Error bars indicate the minimum and maximum

values observed across all cross-validated stimuli (B) Same as C for the inhibitory conductance. (C) The excitatory (blue) and inhibitory (red) filters

estimated from voltage-clamp recordings. The thick traces show the mean filters. (D) The excitatory (blue) and inhibitory (red) filters estimated by the

CBEM from spike trains. (E) The cross-correlation of the excitatory and inhibitory conductances for an example cell measured from the data (black trace;

region shows standard deviation across the 10 stimuli) compared to the cross-correlation in the CBEM fit to that cell (red trace). Arrows indicate the

peaks of the cross-correlations. In the data, excitation and inhibition are anti-correlated and show similar timing. However, excitation precedes

inhibition in the model. (F) The cross-correlation peak times between excitation and inhibition measured from data (y-axis) compared to the

conductances predicted by the CBEM (x-axis) for all 6 cells. Negative values on the x-axis indicate that excitation leads inhibition in the CBEM fits to

these cells. (G) Comparing the timing of excitatory and inhibitory conductances from the data and the CBEM for the example cell in E. The cross-

correlation between the measured excitatory conductance and the CBEM’s excitatory conductance (blue) and the cross-correlation between data and

model for the inhibitory conductances (red). (H) Cross-correlation peak times between measured and CBEM predicted inhibition (y-axis) and excitation

(x-axis).
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histogram (PSTH) of the simulated models to the PSTH of real neurons using a 5 s test stimulus (Fig-

ure 7). The CBEM had higher prediction accuracy than the GLM for all nine cells, 86% of the variance

of the PSTH on average vs. 77% for the GLM. We then evaluated spike train prediction by compar-

ing log-likelihood on a 5 min test dataset. The CBEM again outperformed the GLM on all cells, offer-

ing an improvement of 0.34 ± 0.11 bits/spike on average over the GLM.

To gain insight into the CBEM’s superior performance, we examined the average firing rate pre-

dictions of the GLM along with the average conductance predictions of the CBEM (Figure 7c). We

found that GLM rate prediction errors (relative to the PSTH of the real neuron) were anti-correlated

with the magnitude of the CBEM inhibitory conductance; the CBEM inhibitory conductance at times

when the GLM spike rate exceeded the true spike rate was significantly higher than the CBEM inhibi-

tory conductance at times when the GLM spike rate underestimated the true spike rate (t-test,

p < 0.0001; Figure 7—figure supplement 1b). This suggests that the CBEM inhibitory conductance

helped CBEM predictions by reducing the firing at times when the GLM over-predicted the firing

rate. In contrast, the distribution of excitatory conductances did not depend on the sign of the rate

prediction error (t-test, p = 0.19; Figure 7—figure supplement 1a), and the predicted excitatory

conductance was positively correlated with the magnitude of the error (r = 0.33, p < 0.0001).
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Figure 6. Summary of the CBEM fits to 5 ON midget RGCs. The plot follows the same conventions as the parasol results in Figure 5. (A,B) The

correlation coefficient (r) between the mean observed excitatory and inhibitory synaptic input to a novel 6 s stimulus and the conductance predicted by

the LN cascade fit to the excitatory conductance (y-axis) compared to the CBEM prediction from spikes (x-axis) for each cell. Conductance predictions

for a single example cell are shown in Figure 6—figure supplement 1. The excitatory (blue) and inhibitory (red) filters estimated from voltage-clamp

recordings (C) and by the CBEM from spike trains (D). (E) The cross-correlation of the excitatory and inhibitory conductances for an example cell

measured from the test stimulus (data) compared to the cross-correlation predicted by the CBEM fit to that cell (red trace). (F) The cross-correlation

peak times between excitation and inhibition measured from data compared to the conductances predicted by the CBEM for all five cells. (G)

Comparing the timing of excitatory and inhibitory conductances from the data and the CBEM for the example cell in E. The cross-correlation between

the measured excitatory conductance and the CBEM’s excitatory conductance (blue) and the cross-correlation between data and model for the

inhibitory conductances (red). (H) Cross-correlation peak times between measured and CBEM predicted inhibition and excitation.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. CBEM fit for an example ON-midget cell with a comparison the LN models fit directly to the conductances.
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Previous experiments have indicated that inhibition only weakly modulates parasol cell responses

to full-field Gaussian noise stimuli (Cafaro and Rieke, 2013). To test the effect of inhibition in the

model, we also refit the CBEM without any inhibitory synaptic input (CBEMexc). We compared the

excitatory filters estimated by the CBEMexc with the GLM filters and found that the filters are nearly

identical (Figure 8e). This indicates that the GLM stimulus filter accounts only for the excitatory input

received by the cell. The CBEMexc still provided a superior prediction of the PSTH than the GLM

(81% of the variance explained) and an increased cross-validated log-likelihood (mean improvement

of 0.14 ± 0.10 bits/sp over the GLM; Figure 8). The CBEMexc can exhibit changes in total conduc-

tance through a second, spike history independent nonlinearity (so it is not technically a GLM, as dis-

cussed in Section 3), and it predicts RGC responses better than the GLM, but not as well as the full

CBEM. Thus, the full CBEM achieves superior model performance over the GLM both by including

an inhibitory input, and by treating the excitatory input as a conductance-based input in a simple

biophysical model.

Figure 7. CBEM spike train predictions. (A) Spike rate prediction performance for the population of nine cells for 5 s test stimulus. The true rate (black)

was estimated using 167 repeat trials. The red circle indicates the cell shown in C. (B) Log-likelihood of the CBEM compared to the GLM computed on

a 5 min test stimulus. (C) (top) Raster of responses of an example OFF parasol RGC to repeats of a novel stimulus (black) and simulated responses from

the GLM (blue) and the CBEM (red). (middle) Spike rate (PSTH) of the RGC and the GLM (blue) and CBEM (red). The PSTHs were smoothed with a

Gaussian kernel with a 2 ms standard deviation. (bottom) The CBEM predicted excitatory (blue) and inhibitory (orange) conductances. The

conductances are given in arbitrary units because the model does not include membrane capacitance. Figure 7—figure supplement 1 CBEM

conductance predictions.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Relation of inferred conductances to GLM prediction error.
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Capturing spike responses across contrasts
Retinal ganglion cells adapt to stimulus statistics such as contrast or variance; increases in stimulus

contrast lead to decreases in gain of the neural response, allowing the dynamic range of the

response to adapt to the range of contrast values present in the stimulus (Chander and Chichilnisky,

2001; Fairhall et al., 2001; Baccus and Meister, 2002; Beaudoin et al., 2008; Mante et al., 2005;

Garvert and Gollisch, 2013; Marava, 2013; Demb and Singer, 2015). Understanding this phenom-

enon is critical for understanding how the retina codes natural stimuli, because natural scenes vary

widely over contrast in both space and time. However, classic linear-nonlinear models with a single

linear component fail to capture such effects. This motivates the need for a biophysically plausible

modeling framework that can explain RGC responses across stimulus conditions (Ozuysal and Bac-

cus, 2012; Clark et al., 2013; Cui et al., 2016b).

Previous work has shown that changes in the balance of excitatory and inhibitory input can give

rise to multiplicative gain changes in neural responses (Chance et al., 2002; Murphy and Miller,

2003). This raises the possibility that the CBEM may be able account for contrast-dependent

changes in RGC responses with a single set of parameters. To test this hypothesis, we fit both the

CBEM and GLM to eight RGCs stimulated with full-field binary stimuli of 24%, 48%, and 96% con-

trast. We compared models fit simultaneously to all contrasts with models fit separately to data from

each contrast. Although the CBEM does not account for many aspects of adaptation, this modeling

framework allows us to test how well the LN conductance tuning alone can account for gain changes

across contrasts (Ozuysal et al., 2018; Latimer et al., 2019).

To quantify the CBEM’s ability to capture contrast-dependent gain changes in RGC responses,

we compared GLM filters fit to RGC responses at each contrast with GLM filters fit to data simulated

from the all-contrasts CBEM. (Figure 9a) shows GLM filters obtained at each contrast for an example

RGC, while Figure 9b shows comparable filters fit to spikes simulated from the CBEM fit to this neu-

ron. Both sets of filters exhibit large reductions in amplitude with increasing contrast, the key

Figure 8. Comparison of CBEM and GLM fits. (A) Spike rate prediction performance and (B) cross-validated log-likelihood for the population of nine

cells for 7 s test stimulus for the GLM and the CBEM with only an excitatory input term (CBEMexc). (C) The full CBEM with inhibition shows improved

spike rate predication and (D) cross-validated log-likelihood compared to the model without inhibition. (E) The GLM filters for nine parasol RGCs (black)

compared to the excitatory conductance filters estimated by the CBEM without an inhibitory input (blue). The GLM filters are shown scaled to match

the height of the CBEMexc filters.
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signature of contrast gain adaptation. Across all eight RGCs, we found high correlation in the filter

amplitude scaling for real RGC and simulated CBEM responses (r = 0.61, p < 0.05; Figure 9—figure

supplement 1).

We found that the CBEM maintained predictive performance across contrast levels more accu-

rately than the GLM (Figure 9c–d). At 24% contrast, the GLM fit to all contrasts lost an average

0.36 ± 0.41 bits/sp (normalized test log-likelihood) compared to GLM fit specifically to the 24% con-

trast stimulus, while the CBEM lost only 0.16 ± 0.2 bits/sp. At 48% contrast, the GLM lost 0.20 bits/

sp while CBEM only lost 0.07 ± 0.14 bits/sp. Finally, both models only lost 0.05 ± 0.08 bits/sp in the

96% contrast probe. The GLM’s partial ability to generalize across these particular conditions

despite having only one stimulus filter can be viewed as a consequence of our biophysical interpreta-

tion of the GLM; the GLM is equivalent to a biophysical model in which synaptic excitation and inhi-

bition are governed by equal filters of opposite sign; Figure 4 left shows that this assumption is

approximately correct for ON parasol RGCs. However, the flexibility conferred by the slight differen-

ces in these filters with separate nonlinearities gave the CBEM greater accuracy in predicting RGC

responses across a range of contrasts. We find that the correlation between excitation and inhibition

in the CBEM is not constant: the CBEM predicts that the magnitude of the correlation depends on

contrast Figure 9—figure supplement 2a-b. The CBEM predicted that, on average, excitation and

inhibition were most anticorrelated at 22% contrast for the ON cells and 34% contrast for the OFF

0.5 2.5

0.5

1.0

1.5

2.0

2.5

1.0 2.01.5 0.5 2.5

G
L
M

 f
o
r 

2
4

%

GLM all contrasts

G
L
M

 f
o
r 

4
8

%

GLM all contrasts

G
L
M

 f
o
r 

9
6

%

0.5 2.5

0.5

1.0

1.5

2.0

2.5

1.0 2.01.5

OFF cell

ON cell

C

D

0 50 100 150 200 250

w
e
ig

h
t

-0.05

0

0.05

0.1

time (ms)

0 50 100 150 200 250

w
e
ig

h
t

-0.05

0

0.05

0.1

96% contrast

GLM ts to dataA

B

48%
24%

GLM ts to CBEM simulation

0.5

1.0

1.5

2.0

2.5

1.0 2.01.5

CBEM all contrasts

C
B

E
M

 f
o
r 

2
4
%

CBEM all contrasts
C

B
E

M
 f
o
r 

4
8
%

CBEM all contrasts

C
B

E
M

 f
o
r 

9
6
%

0.5 2.5

0.5

1.0

1.5

2.0

2.5

1.0 2.01.5 0.5 2.5

0.5

1.0

1.5

2.0

2.5

1.0 2.01.5 0.5 2.5

0.5

1.0

1.5

2.0

2.5

1.0 2.01.5

GLM all contrasts

24% contrast

spike prediction (bits/sp)

48% contrast

spike prediction (bits/sp)

96% contrast

spike prediction (bits/sp)

Figure 9. Contrast gain control in the CBEM. (A) GLM filters for an example ON cell fit to responses recorded at 24%, 48%, and 96% contrast. (B) GLM

filters fit to spike trains simulated from the CBEM fit to the cell shown in A. The CBEM was fit to responses at all three contrast levels. Filter height

comparisons for CBEM fits to all cells are shown in Figure 9—figure supplement 1. Spike train prediction performance of the (C) GLM and (D) the

CBEM tested on a 4 min stimulus at 24% (left column), 48% (middle column), and 96% (right column) contrast. The model trained on all three contrast

levels (y-axis) is plotted against the same class of model trained only at the probe contrast level (x-axis). Figure 9—figure supplement 2 shows the

cross-correlation between the CBEM predicted excitation and inhibition over a range of contrasts.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. The filter heights (the absolute value of the peak of the filter) of the GLM fits to eight cells at all three contrast levels (one point

per contrast level per cell; lines connect all contrast points from a cell), compared to the GLM filters fit the CBEM simulations of those same cells.

Figure supplement 2. Correlation between the CBEM’s excitation and inhibition depends on contrast.
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cells Figure 9—figure supplement 2c. Additionally, the CBEM predicts that the mean and variance

of the total synaptic conductance increases with contrast Figure 9—figure supplement 2d-f.

Capturing spike responses to spatially varying stimuli
To analyze the CBEM’s ability to capture responses to spatially varying stimuli, we examined a data-

set of 27 parasol RGCs stimulated with spatio-temporal binary white noise stimuli (Pillow et al.,

2008). We fit spatio-temporal filters consisting of a 5 � 5 pixel field over the same temporal extent

as the models fit to full-field stimuli. The temporal profiles of excitatory and inhibitory CBEM filters

were qualitatively similar to those that we observed in the full-field stimulus condition (Figure 10a,

c). The filters were not constrained to be spatio-temporally separable (the filters were constrained to

be rank 2; Figure 10b), which allowed the synaptic inputs to have different temporal interactions

compared to the full-field stimulus.

We found that the CBEM predicted PSTHs more accurately than a Poisson GLM (83% vs. 79%

average R2; Figure 10e). The CBEM also predicted the single-trial responses with higher accuracy

than the standard Poisson GLM (average improvement of 0.07 ± 0.04 bits/sp; Figure 10f). Even the

CBEM with excitatory input only yielded more accurate PSTH prediction (81% R2) than the GLM, but

the single-trial spike train prediction fell to an average of 0.02 ± 0.04 bits/sp higher than the GLM

(Figure 10g–h). Thus, the GLM predicted RGC responses to full-field noise with similar accuracy to

the more complex CBEM, suggesting that the predictive performance given the training data was

nearing a ceiling. Therefore, we turned to simulations to explore what type of stimuli differentiate

the two models.

To gain insight into how the model’s excitatory and inhibitory inputs shape the CBEM’s responses

to spatio-temporal stimuli, we simulated the model with uncorrelated spatio-temporal noise and

with spatially correlated stimuli. The uncorrelated spatio-temporal noise was the same independent

Figure 10. CBEM fits to a population of 27 RGCs. (A) Temporal profile of the excitatory (blue) and inhibitory (red) at the center pixel of the receptive

field for 16 OFF parasol cells. The thick lines show the mean. (B) The mean spatial profiles of the excitatory (top) and inhibitory (bottom) linear filters at

four different time points for the OFF parasol cells. (C,D) same as A,B for 11 ON parasol cells. (E) Spike rate prediction performance of the CBEM

compared to the GLM for the population of 27 cells for 8 s test stimulus. The true rate (black) was estimated using 600 repeat trials. (F) Log-likelihood

of the CBEM compared to the GLM computed on a 5-min test stimulus. (G) Spike rate prediction performance of the CBEMexc compared to the GLM.

(H) Log-likelihood of the CBEMexc compared to the GLM.
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binary pixel noise used in the RGC recordings, and we used a full-field and a binary center-surround

stimuli for the spatially correlated noise (Figure 11a). Each frame of the spatially correlated center-

surround stimulus was constructed by setting the center pixel to the opposite sign of the pixels in

the surround, and the center pixel had equal probability of being black or white. We examined the

cross-correlation of the CBEM’s excitatory and inhibitory conductances in each stimulus regime and

found that they were similar for the full-field and uncorrelated spatio-temporal noise stimuli

(Figure 11b gray and black traces). In response to these two stimuli, the excitatory and inhibitory

conductances showed a strong negative correlation with excitation preceding inhibition (as we saw

in Figure 5e). The center-surround stimulus, however, produced a distinct cross-correlation pattern

with a larger positive peak at the positive lags (red traces).

Finally, we simulated GLM and CBEM responses to center-surround contrast steps. The stimulus

sequence started as a gray field stepping to a black center pixel with white surround for 500 ms,

stepping to a gray field for 500 ms, then stepping to a white center and black surround, finally

returning to a gray field (Figure 11c bottom). The CBEM and GLM showed similar onset responses,

but the sustained responses of the CBEM simulations showed inhibition-dependent suppression for

both ON and OFF cells (Figure 11c top and middle). The shape and sustained response of the CBE-

Mexc fit to the OFF cells to center-surround steps qualitatively differed to the full CBEM: the CBE-

Mexc response decayed and then rebounded slightly instead of showing only a decaying response.

Thus, full-field and independent spatio-temporal noise resulted in excitatory and inhibitory
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Figure 11. Predicted responses to spatially structured stimuli. (A) Example sequences of 5 � 5 pixel frames of three different types of spatiotemporal

noise stimuli used to probe the CBEM. The spatio-temporal stimulus was the same binary noise stimulus used to fit the cells. The full-field stimulus

consisted of binary noise at the same contrast and frame rate as the original spatio-temporal stimulus. In the opposing center-surround condition, the

center pixel was of opposite contrasts to the surround pixels and the sign of the center pixel was selected randomly on each frame. (B) The mean cross-

correlation of the CBEM predicted excitatory and inhibitory conductances for the OFF cells (top) and ON cells (bottom) in response to full-field noise

(black), spatio-temporal noise (grey), and opposing center-surround noise (red). The strong negative component showed that gi is delayed and

oppositely tuned compared to ge. (C) Average firing rate of the GLM (blue), CBEM (red), and CBEMexc (green) fits to 16 OFF cells (top) and 11 ON cells

(middle) in response to opposing center-surround contrasts steps (bottom).
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correlations that fit closely with the assumptions contained in the GLM. Spatial correlations, and in

particular negative correlations, in the stimulus break these assumptions by co-activating excitatory

and inhibitory inputs (Cafaro and Rieke, 2013) and therefore spatially correlated stimuli differentiate

the CBEM’s predictions from the GLM. These results indicate that, although the GLM captures much

of the RGC responses to full-field noise, capturing the inhibitory and excitatory synaptic inputs will

aid in understanding processing of naturalistic stimuli which contain spatial structure.

Discussion
The point process GLM has found widespread use for modeling the statistical relationship between

stimuli and spike trains. Here, we have offered a new biophysical interpretation of this model, show-

ing that it can written as a conductance-based model with oppositely tuned linear excitatory and

inhibitory conductances. This motivated us to introduce a more flexible and more biophysically plau-

sible model with independent excitatory and inhibitory conductances, each given by a rectified-linear

function of the sensory stimulus. This conductance-based encoding model (CBEM) is no longer tech-

nically a generalized linear model because the membrane potential is a nonlinear function of the

stimulus; however, the CBEM has a well behaved point-process likelihood, making it tractable for fit-

ting to extracellular data.

In contrast to purely statistical approaches to designing encoding models, we used intracellular

measurements to motivate the choice of the nonlinear functions in the CBEM. We demonstrated

that the CBEM accurately recovers the tuning of the excitatory and inhibitory synaptic inputs to

RGCs purely from measured spike times. As an added bonus, it achieves improved prediction per-

formance compared to the GLM, The interaction between excitatory and inhibitory conductances

allows the CBEM to change its gain and integration time constant as a function of stimulus statistics

(e.g. contrast), an effect that cannot be captured by a standard GLM. Thus, the CBEM can help

reveal circuit-level computations that support perception under naturalistic conditions.

The CBEM belongs to an extended family of neural encoding models that are not technically

GLMs because they do not depend on a single linear projection of the stimulus. These include multi-

filter LNP models with quadratic terms (Schwartz et al., 2002; Rust et al., 2005; Park and Pillow,

2011; Fitzgerald et al., 2011; Park et al., 2013; Rajan et al., 2013) or general nonparametric nonli-

nearities (Sharpee et al., 2004; Williamson et al., 2015); models with input nonlinearities

(Ahrens et al., 2008) and multilinear context effects (Williamson et al., 2016); models inspired by

deep learning methods (McIntosh et al., 2016; Maheswaranathan et al., 2018); and models with

biophysically inspired forms of nonlinear response modulation (Butts et al., 2011; Ozuysal and Bac-

cus, 2012; McFarland et al., 2013; Cui et al., 2016b; Real et al., 2017). The CBEM has most in

common with this last group of models. Although more flexible LNLN models may predict spike

trains with higher accuracy, the CBEM stands as the only model so far to have directly linked model

components fit to spikes alone to experimentally measured conductances.

Although the CBEM represents a step toward biophysical realism, it still lacks many properties of

real neurons. For instance, the CBEM’s linear-rectified conductance does not capture the non-mono-

tonic portions of the stimulus-conductance nonlinearities observed in the data (Figure 2c,e); this

non-monotonicity likely arises from the fact that amacrine cells can receive inputs from both ON and

OFF channels (Manookin et al., 2008; Cafaro and Rieke, 2013). Further developments to the

CBEM can include additional sets of nonlinear inputs (McFarland et al., 2013;

Maheswaranathan et al., 2018; Real et al., 2017). Such extensions could include multiple spatially

distinct inputs to account for input from different bipolar cells (Schwartz et al., 2012;

Freeman et al., 2015; Vintch et al., 2015; Turner and Rieke, 2016; Liu et al., 2017), and spatially

selective rectification of inhibitory inputs that helps determine RGC responses to spatial stimuli

(Brown and Masland, 2001; Cafaro and Rieke, 2013; Schwartz and Rieke, 2013). The model could

also be extended to study pre-synaptic inhibition of the excitatory conductance, which can shape

the spatial tuning of excitation (Turner et al., 2018) and contrast adaptation (Cui et al., 2016b).

Adaptation can occur in localized regions of a ganglion cell’s RF (Garvert and Gollisch, 2013), sug-

gesting that the linear-nonlinear synaptic input functions in the CBEM should be allowed to vary

over time. Additionally, future work could apply the CBEM to study the role of active conductances

that depend spike history, such as an after hyper-polarization current (Johnston et al., 1995;

Badel et al., 2008; Lundstrom et al., 2008), and recent work has shown that the parameters of
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Hodgkin-Huxley style biophysical models can in some instances be recovered from spike trains alone

(Meng et al., 2011). Spike-dependent conductances could also be examined in multi-neuron record-

ings; although the analyses presented here focused on the coding properties of single neurons,

many of the RGCs analyzed were recorded simultaneously (Pillow et al., 2008; Volgushev et al.,

2015).

Another aspect of the CBEM that departs from biophysical realism is that all stochasticity is con-

fined to the spike generation mechanism. The CBEM models conductances and membrane potential

as deterministic functions of the stimulus, which makes the likelihood tractable and allows for effi-

cient fitting with standard conjugate-gradient methods (Real et al., 2017). However, the reliability of

RGC spike trains depends on the stochasticity of synaptic conductances (Murphy and Rieke, 2006),

and noise correlations between excitatory and inhibitory conductances may also affect encoding in

RGCs (Cafaro and Rieke, 2010). A latent variable approach could be used to to incorporate sto-

chasticity in conductances and membrane potential (Meng et al., 2011; Paninski et al.,

2012; Lankarany et al., 2016).

We expect that the CBEM may also be useful for regions beyond the retina. Previous work on the

prediction of membrane potential in primary visual cortex suggests that the CBEM could apply to

neurons further along in the visual stream (Mohanty et al., 2012; Tan et al., 2011). The model could

also be applied to non-visual areas such as primary auditory cortex, where different tuning motifs of

excitation and inhibition are of interest (Scholl et al., 2010). Future work might extend the CBEM to

use deeper, nonlinear cascade models to predict conductances, as opposed to the simple LN cas-

cade we have assumed here. For example, one might use the LNLN models of the lateral geniculate

nucleus (e.g. Butts et al., 2011; McFarland et al., 2013) as providing the drive to synaptic conduc-

tances in V1 neurons. This principle can extend to higher sensory regions, such as the middle tempo-

ral cortex where cascade models can approximate the inputs received from V1 (Rust et al., 2006).

Applications in cortex may also incorporate additional inputs to the model such as local field poten-

tial, which is thought to reflect the total synaptic drive to a region (Einevoll et al., 2013;

Haider et al., 2016; Cui et al., 2016a).

Applications of the CBEM to new brain areas could involve testing the accuracy of conductance

predictions with a small number of intracellular recordings, and then applying the model to larger

set of extracellular recordings with a wider range of stimuli. Although the model’s simplifying

assumptions limit the ability to make strong conclusions about the conductances estimated from

spikes alone, the model may nevertheless guide experimental design and theories of sensory proc-

essing when intracellular recordings are unavailable.

Future work will require modeling the neural code using naturalistic stimuli, where the GLM has

been shown to fail (Carandini et al., 2005; van Hateren et al., 2002; Butts et al., 2007;

Heitman et al., 2016; Turner and Rieke, 2016). Modeling tools must also provide a link between

the neural code and computations performed by the neural circuit. As we move toward stimuli with

complex spatio-temporal statistics, the ability to connect distinct synaptic conductances to spiking

will provide an essential tool for deciphering the complex, nonlinear neural code in sensory systems.

Materials and methods

Electrophysiology
We analyzed four sets of parasol RGCs. All data were obtained from isolated, peripheral macaque

monkey, Macaca mulatta, retina.

Synaptic current recordings
We analyzed the responses of 6 ON parasol cells previously described in Trong and Rieke (2008).

Cell-attached and voltage clamp recordings were performed to measure spike trains and excitatory

and inhibitory currents in the same cells. The stimulus, delivered with an LED, consisted of a one

dimensional, full-field white noise signal, filtered with a low pass filter with a 60 Hz cutoff frequency,

and sampled at a 0.1ms resolution. Spike trains were recorded using 10 unique 6 s stimuli, and each

stimulus was repeated three or four times. After the spike trains were recorded, the excitatory and

inhibitory synaptic currents to the same stimuli were measured using voltage clamp recordings.

Active conductances intrinsic to the RGC were blocked during these recordings and the holding
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potential was set to isolate either the excitatory or inhibitory inputs received by the cell. For four of

the cells, two to four trials were recorded for each of the 10 stimuli for the excitatory and inhibitory

currents. For the two remaining cells, three to four excitatory current trials were recorded for all 10

stimuli and one to two trials for the inhibitory current were obtained for 8 of the stimuli. Conductan-

ces were estimated by dividing the current by the approximate driving force (�70 mV for the excit-

atory currents, and 70 mV for the inhibitory).

The 5 ON-midget cells were recorded as described previously (Dunn et al., 2006; Trong and

Rieke, 2008; Cafaro and Rieke, 2013). Retinas were obtained through the Tissue Distribution Pro-

gram of the Regional Primate Research Center at the University of Washington and procedures were

approved by the Institutional Animal Care and Use Committee. The same type of full-field noise

stimuli were used for the midget cells as with the parasol cells, and the recordings were again

divided into 6 s trials. Spike trains were obtained with cell attached recordings. For each cell, 33–35

trials of unique stimuli were recorded, and 10 (for 4 cells) or 20 (for 1 cell) trials were recorded in

response to a repeated stimulus. Excitatory and inhibitory currents were recorded for 5–20 trials

each for non-repeated stimuli, and 5–10 trials were recorded in response to the repeated validation

stimulus. Conductances were again estimated by dividing the current by the approximate driving

force (�70 mV for the excitatory currents, and 70 mV for the inhibitory).

Dynamic clamp recordings
The membrane potentials of 2 ON parasol retinal ganglion cells were recorded during dynamic

clamp experiments previously reported in Cafaro and Rieke (2013). The cells were current clamped

and current was injected into the cells according to the equation

IðtÞ ¼ geðtÞðVðt�DtÞ�EeÞþ giðtÞðVðt�DtÞ�EiÞ (13)

where ge and gi were conductances recorded in RGCs in response to a light stimulus. The injected

current at time t was computed using the previous measured voltage with offset Dt = 100 ms. The

reversal potentials were Ee ¼ 0 mV and Ei ¼�90 mV.

For the first cell, 18 repeat trials were recorded for a 19 s stimulation, and 24 repeat trials were

obtained from the second cell.

RGC population recordings: full-field stimulus
We analyzed data from two experiments previously reported in Uzzell and Chichilnisky (2004) and

Pillow et al. (2005). The first experiment included nine simultaneously recorded parasol RGCs (5

ON and 4 OFF). The stimulus consisted of a full-field binary noise stimulus (independent black and

white frames) with a root-mean-square contrast of 96%. The stimulus was displayed on a CRT moni-

tor at a 120 Hz refresh rate and the contrast of each frame was drawn independently. A 10 min stim-

ulus was obtained for characterizing the cell responses, and a 5-min segment was used to obtain a

cross-validated log-likelihood. Spike rates were obtained by recording 167 repeats of a 7.5 s

stimulus.

In a second experiment, eight cells (3 ON and 5 OFF parasol) were recorded in response to a full-

field binary noise stimulus (120 Hz) at 24%, 48%, and 96% contrast. An 8 min stimulus segment at

each contrast level was used for model fitting, and cross-validated log-likelihoods were obtained

using a novel 4 min segment at each contrast level.

RGC population recordings: spatio-temporal stimulus
We analyzed 11 ON and 16 OFF parasol RGCs which were previously reported in Pillow et al.

(2005). The stimulus consisted of a spatio-temporal binary white noise pattern (i.e. a field of inde-

pendent white and black pixels). The stimulus was 10 pixels by 10 pixels (pixel size of 120 mm �

120 mm on the retina), and the contrasts of each pixel was drawn independently on each frame (120

Hz refresh rate). The root-mean-square contrast of the stimulus was 96%.

A 10-min stimulus was obtained for characterizing the cell responses, and a 5-min segment was

used to obtain a cross-validated log-likelihood. Spike rates were obtained by recording 600 repeats

of a 10 s stimulus.
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Modeling methods
The conductance-based encoding model
The CBEM introduced above models the spike train response of a RGC to a visual stimulus as a Pois-

son process where the spike rate is a function of the membrane potential (Figure 1b). The mem-

brane potential is approximated by considering a single-compartment neuron with linear membrane

dynamics and conductance-based input (Equation 6). Note that we have ignored capacitance, which

would provide an (unobserved) scaling factor on dV=dt, but will not affect our results. The synaptic

inputs (Equation 10) take the form of linear-nonlinear functions of the stimulus, x, where fg is a non-

linear function ensuring positivity of the conductances. We will assume a ‘soft-rectification’ nonlinear-

ity given by

fgðzÞ ¼ logð1þ expðzÞÞ; (14)

which behaves like a smooth version of a linear half-rectification function.

Given the conductances, we could then obtained the membrane voltage. We use a first-order

exponential integrator method to solve this equation, which is exact under the assumption

that geðtÞ and giðtÞ

VðtþDÞ ¼ expð�DgtotðtÞÞ Vt �
ItotðtÞ

gtotðtÞ

� �

þ
ItotðtÞ

gtotðtÞ
; (15)

where

gtotðtÞ ¼ geðtÞþ giðtÞþ gl (16)

ItotðtÞ ¼ geðtÞEe þ giðtÞEi þ glEl; (17)

for gtotðtÞ and ItotðtÞ, and assuming Vð0Þ ¼ El at the start of each experiment.

For a set of spike times s1:nsp in the interval ½0; S� and parameters Q, the log-likelihood in continu-

ous time is

logpðs1:nsp j x½0;S�;QÞ ¼
X

nsp

i¼1

logðlðsiÞÞ�

Z S

0

lðtÞdt (18)

where the spike rate, lðtÞ, is a function of the voltage plus spike history (Equation 12). This likeli-

hood can be discretely approximated as the product of T Bernoulli trials in bins of width

D (Citi et al., 2014)

logpðy1:T j x1:T ;QÞ ¼
X

T

t¼1

yt logð1� expð�ltDÞÞ� ð1� ytÞltD (19)

where yi ¼ 1 if a spike occurred in the ith bin and 0 otherwise.

The membrane voltage (and firing rate) is computed by integrating the membrane dynamics

equation (Equation 6). In practice, we evaluate V along the same discrete lattice of points of width

D (t ¼ 1; 2; 3; . . . T) that we use to discretize the log-likelihood function. Assuming ge and gi remain

constant within each bin, the voltage equation becomes a simple linear differential equation which

we solve according to Equation 15.

The model parameters we fit were ke, ki, be, bi, and h, which were selected using conjugate-gradi-

ent methods to maximize the log-likelihood.

The reversal potential and leak conductance parameters were kept fixed at Ee ¼ 0mV , gl ¼ 200,

El ¼ �60mV , and Ei ¼ �80mV . For modeling the cells in which we had access to intracellular record-

ings, we set the time bin width to D ¼ 0:1ms to match the sampling frequency of the synaptic current

recordings. For the remaining cells, which were recorded in separate experiments, we set

D ¼ 0:083ms, 100 times the frame rate of the visual stimulus.

The stimulus filters spanned over 100 ms, or over 1000 time bins. Therefore, we restricted the

excitation and inhibitory filters to a low dimensional basis to limit the total number of free
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parameters in the model. The basis consisted of 10 raised cosine ‘bumps’ (Pillow et al.,

2005; Pillow et al., 2008) of the form

bjðtÞ ¼
1

2
cos

log½tþc��fj

a

� �

þ 1

2
for

log½tþc��fj

a
2 ½�p;p�

0 otherwise

(

(20)

where t is in seconds. We set c = 0.02 and a¼ 2ðf2 �f1Þ=p. The fj were evenly spaced from

f1 ¼ logð0:0þ cÞ, f10 ¼ logð0:150þ cÞ so that the peaks of the filters spanned 0 ms to 150 ms. The

spike history filter was also represented in a low-dimensional basis. The refractory period was

accounted for with five square basis functions of width 0.4 ms, spanning the period 0� 2 ms after a

spike. The remaining spike history filter consisted of 7 raised cosine basis functions (c = 0.0001) with

filter peaks spaced from 2 ms to 90 ms.

The log-likelihood function for this model is not concave in the model parameters, which

increases the importance of selecting a good initialization point compared to the GLM. We initial-

ized the parameters by fitting a simplified model which had only one conductance with a linear stim-

ulus dependence, glinðtÞ ¼ klin
>xt (note that this allowed for negative conductance values). We

initialized this filter at 0, and then numerically maximized the log-likelihood for klin. We then initial-

ized the parameters for the complete model using ke ¼ cklin and ki ¼ �klin, thereby exploiting a

mapping between the GLM and the CBEM (see Results).

When fitting the model to real spike trains, one conductance filter would occasionally become

dominant early in the optimization process. This was likely due to the limited amount of data avail-

able for fitting, especially for the cells that were recorded intracellularly. The intracellular recordings

clearly indicated that the cells received similarly scaled excitatory and inhibitory inputs. To alleviate

this problem, we added a penalty term, f, to the log-likelihood to the L2 norms of ke and ki:

fðke;kiÞ ¼
1

2
lejjkejj

2 þlijjkijj
2

� �

(21)

Thus, we maximized

Lð�Þ ¼ logpðy1:T jx1:T ;ke;ki;be;biÞ�fðke;kiÞ (22)

All cells were fit using the same penalty weights: le ¼ 1 and li ¼ 0:2. We note that unlike the typi-

cal situation with cascade models that contain multiple filters, intracellular recordings can directly

measure synaptic currents. Future work with this model could include more informative, data-driven

priors on ke and ki.

In several analyses, we fit the CBEM without the inhibitory conductance, labeled as the CBEMexc.

All the fixed parameters used in the full CBEM were held at the same values in the CBEMexc.

Code for fitting the CBEM has been made available at https://github.com/pillowlab/

CBEM (Latimer, 2018; copy archived at https://github.com/elifesciences-publications/CBEM).

Fitting the CBEM to simulated spike trains
To examine the performance of our numerical maximum likelihood estimation of the CBEM, we fit

the parameters to simulated spike trains from the model with known parameters (Figure 1—figure

supplement 1). Our first simulated cell qualitatively mimicked experimental RGC datasets, with input

filters selected to reproduce the stimulus tuning of macaque ON parasol RGCs (excitation oppositely

tuned and delayed compared to excitation, or ‘crossover’ inhibition). The second simulated cell had

similar excitatory tuning, but the inhibitory input had the same tuning as excitation with a short

delay. The stimulus consisted of a one dimensional white noise signal, binned at a 0.1 ms resolution,

and filtered with a low-pass filter with a 60 Hz cutoff frequency. We validated our maximum likeli-

hood fitting procedure by examining error in the fitted filters, and evaluating the log-likelihood on a

5-min test set. With increasing amounts of training data, the parameter estimates converged to the

true parameters for both simulated cells. Therefore, standard fast and non-global optimization algo-

rithms can reliably fit the CBEM to spiking data, despite the fact that the model does not have the

concavity guarantees of the standard GLM.
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Fitting the conductance nonlinearity
We selected the nonlinear function fg governing the synaptic conductances by fitting a linear-nonlin-

ear cascade model to intracellularly measured conductances evoked during visual stimulation

(Hunter and Korenberg, 1986; Paninski et al., 2012; Park et al., 2013; Barreiro et al., 2014). We

modeled the mean conductance �geðtÞ as

�geðtÞ ¼ aefgððke � xÞðtÞþ beÞþ �t (23)

�t ~Nð0;s2Þ (24)

where x is a full-field temporal stimulus, and ae and be are constants. We selected a fixed function

for the nonlinearity fg. Thus, we chose the ke, ae, and be that minimized the squared error between

the LN prediction and the measured excitatory conductance.

The soft-rectifying function was selected to model the conductance nonlinearity;

fgðsÞ ¼ log 1þ exp sð Þð Þ: (25)

We chose to fix these nonlinearities to known functions rather than fitting with a more flexible

empirical form (e.g., Ahrens et al., 2008; McFarland et al., 2013). Fixing these nonlinearities to a

simple, closed-form function allowed for fast and robust maximum likelihood parameter estimates

while still providing an excellent description of the data.

Fitting the spike-rate nonlinearity
We used a spike-triggered analysis (de Boer and Kuyper, 1968) on membrane voltage recordings

to determine the spike rate nonlinearity, fr, as a function of voltage for the CBEM. This is the same

procedure for estimating the LN-model nonlinearity proposed in Chichilnisky (2001); Mease et al.

(2013), but substituting the filtered stimulus with the average voltage measured across trials. The

membrane potential and spikes were recorded in dynamic-clamp experiments over several repeats

of simulated conductances for two cells. We computed the mean voltage recorded over all runs of

the dynamic-clamp condition, which largely eliminated the action potential shapes from the voltage

trace. Using the spike times from all the repeats, we computed the probability of a spike occurring

in one time bin given the mean voltage, �V :

pðSpj�VÞ ¼
pð�V jSpÞpðSpÞ

pð�VÞ
(26)

where pð�V jSpÞ is the spike-triggered distribution of the membrane potential. The distribution over

voltage in all times bins is pð�VÞ. The spike rate (in terms of spikes per bin) is pðSpÞ. We combined the

spike times and voltage distributions for the two cells to compute a common spike rate function.

We then obtained a least-squares fit to approximate the nonlinearity with a soft-rectification func-

tion of the the form

pðSpj�VÞ» frðtÞD (27)

frðtÞ ¼ a log 1þ exp
ðVt ��Þ

b

� �� �

: (28)

The parameters fit to the empirical spike-rate nonlinearity was a¼ 90sp=s, �¼�53mV and

b¼ 1:67mV .

We chose to fit the spike-rate nonlinearity with the average voltage recorded over repeat data,

instead of looking at the voltage in bins preceding spikes (Jolivet et al., 2006). The average voltage

is closer in spirit to the voltage in our model than the single-trial voltage, because the voltage

dynamics we considered (Equation 6) did not include noise nor post-spike currents.
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Generalized linear models
For a baseline comparison to the CBEM, we also fit spike trains with a GLM. We used the same Ber-

noulli discretization of the point-process log-likelihood function for the GLM as we did with the

CBEM:

logpðy1:T jx1:T ;k;b;hÞ ¼
X

T

t¼1

yt logð1� expð�ltDÞÞ� ð1� ytÞltD (29)

where the firing rate is

lt ¼ frððk � xÞðtÞþ bþðh � yhistÞðtÞÞ: (30)

The stimulus filter is k and the spike history filter is yhist. We used conjugate-gradient methods to

find the maximum likelihood estimates for the parameters. We set frð�Þ ¼ expð�Þ, which is the canoni-

cal inverse-link function for Poisson GLMs. We confirmed previous results that the soft-rectifying

nonlinearity, frð�Þ ¼ logð1þ expð�ÞÞ, did not capture RGC responses as well as the exponential function

(Pillow et al., 2008).

Modeling respones to spatio-temporal stimuli
For spatio-temporal stimuli, the filters for the CBEM and GLM (k; ke; and ki) spanned both space and

time. Although the stimulus we used was a 10 � 10 grid of pixels, the receptive field (RF) of the neu-

rons did not cover the entire grid. We therefore limited the spatial extent of the linear filters to a 5

� 5 grid of pixels, where the center pixel was the strongest point in the GLM stimulus filter.

The filters were represented as a matrix where the columns span the pixel space and the rows

span the temporal dimension. The number of parameters was reduced by decomposing the spatio-

temporal filters into a low-rank representation (Pillow et al., 2008). The filter at pixel x and time t

became

kðx;tÞ ¼
X

J

j¼1

ks;jðxÞkt;jðtÞ (31)

where ks;j was a vector containing the spatial portion of the filter of length 25 (the number of pixels

in the RF) and kt;j represented the temporal portion of the filter. The temporal filters were projected

into the same 10-dimensional basis as the temporal filters used to model the full-field stimuli and the

spatial filters were represented in the natural pixel basis. For identifiability, we normalized the spatial

filters and forced the sign of the center pixel of the spatial filters to be positive. We used rank two

filters (J ¼ 2) for the CBEM and GLM. Therefore, each filter contained 2 � 25 spatial and 2 � 10 tem-

poral parameters for a total of 70 parameters. In the GLM, we found no significant improvement

using rank three filters. To fit these low-rank filters, we alternated between optimizing over the spa-

tial and temporal components of the filters.

Evaluating model performance
We evaluated single-trial spike train predictive performance by computing the log-likelihood on a

test spike train. We computed the difference between the log (base-2) likelihood under the model

and the log-likelihood under a homogeneous rate model (LLh) that captured only the mean spike

rate:

LLh ¼ nsp � log2ð�lÞþ ðT � nspÞ log2ð1� �lÞ (32)

�l¼
nsp

T
: (33)

where the test stimulus is of length T (in discrete bins) and contains nsp spikes. We then divided by

the number of spikes to obtain the predictive performance in units of bits per spike (bits/sp)

(Panzeri et al., 1996; Brenner et al., 2000; Paninski et al., 2004)
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bitsperspike¼
LLmodel�LLh

nsp
: (34)

We evaluated model predictions of spike rate by simulating 2500 trials from the model for a

repeated stimulus. We computed the firing rate, or PSTH, by averaging the number of spikes

observed in 1 ms bins and smoothing with a Gaussian filter with a standard deviation of 2 ms. The

percent of variance in the PSTH explained by the model is

%varianceexplained¼ 100� 1�

PT
t¼1

ðPSTHdataðtÞ�PSTHmodelðtÞÞ
2

PT
t¼1

ðPSTHdataðtÞ�PSTHdataÞ
2

(35)

where PSTHdata denotes the average value of the PSTH.
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Data availability

All modeling tools have been made publicly available at https://github.com/pillowlab/CBEM (copy

archived at https://github.com/elifesciences-publications/CBEM). The datasets analyzed in this paper

have been previously published as the following: 1. Conductance and cell-attached spike recordings:

Philipp Khuc Trong and Fred Rieke (2008). "Origin of correlated activity between parasol retinal gan-

glion cells." https://doi.org/10.1038/nn.2199. Dataset available via figshare https://figshare.com/

articles/ON-Parasol_RGCs_for_the_conductance-based_encoding_model/9636854. 2. Full-field

extracellular recordings (including multiple contrasts): VJ Uzzell and EJ Chichilnisky (2004). "Precision

of Spike Trains in Primate Retinal Ganglion Cells." https://doi.org/10.1152/jn.01171.2003. Dataset

can be accessed through a response to the corresponding author. 3. Spatio-temporal stimuli: Jona-

than W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, EJ Chichilnisky and

Eero P Simoncelli (2008). "Spatio-temporal correlations and visual signalling in a complete neuronal

population." https://doi.org/10.1038/nature07140. Dataset can be accessed through a response to

the corresponding author.

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Kenneth W Latimer,
Fred Rieke, Jo-
nathan W Pillow

2019 ON-Parasol RGCs for the
conductance-based encoding
model

https://figshare.com/arti-
cles/ON-Parasol_RGCs_
for_the_conductance-
based_encoding_model/
9636854

figshare, 10.6084/m9.
figshare.9636854
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