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Abstract: Benzo[c]phenanthridine (BCP) derivatives were identified as topoisomerase I 

(TOP-I) targeting agents with pronounced antitumor activity. In this study, hologram-

QSAR, 2D-QSAR and 3D-QSAR models were developed for BCPs on topoisomerase I 

inbibitory activity and cytotoxicity against seven tumor cell lines including RPMI8402, 

CPT-K5, P388, CPT45, KB3-1, KBV-1and KBH5.0. The hologram, 2D, and 3D-QSAR 

models were obtained with the square of correlation coefficient R2 = 0.58 − 0.77, the 

square of the crossvalidation coefficient q2 = 0.41 − 0.60 as well as the external set’s 

square of predictive correlation coefficient r2 = 0.51 − 0.80. Moreover, the assessment 

method based on reliability test with confidence level of 95% was used to validate the 

predictive power of QSAR models and to prevent over-fitting phenomenon of classical 

QSAR models. Our QSAR model could be applied to design new analogues of BCPs with 

higher antitumor and topoisomerase I inhibitory activity. 

Keywords: QSAR; topoisomerase; benzo[c]phenanthridine; cytotoxicity; model assessment; 

confidence level 
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1. Introduction 

The topoisomerases (TOP) are enzymes involved in DNA replication, repair, transcription, 

recombination and segregation. The DNA topoisomerase I (TOP-I) is considered as one of the most 

effective targets for developing anti-cancer agents, not only due to its abnormally high intracellular 

levels, but also by the restriction of corrective mechanisms’ cleavage of stabled TOP-I-DNA [1,2]. 

Among the groups showing the resistance to TOP-I activity, the substances similar to 

benzo[c]phenanthridine synthesized by Lavoie and colleagues (Figure 1) have shown significant 

cytotoxicity [3–11]. Although over 130 compounds have been synthesized but the QSAR studies on 

this group are still rare and its application is limited [12,13].  

Figure 1. Structure of nitidine and fagaronine. 

 

In this study, a dataset of 137 benzo[c]phenanthridine (BCP) analogues with TOP-I inhibitory 

activity and antitumor activity against seven cell lines, including RPMI8402, CPT-K5, P388, CPT45, 

KB3-1, KBV-1 and KBH5.0, were chosen for hologram-QSAR (H-QSAR), 2D-QSAR as well as  

3D-QSAR studies with CoMFA and CoMSIA analyses. By combining three QSAR methods, we 

expect that the theoretical results can decrease the error of the prediction and offer some useful 

information for designing and screening more potential antitumor compounds with less time and cost. 

2. Result and Discussion  

2.1. The Benzo[c]phenanthridins and Their Biological Activity Data 

The compounds studied in this work were BCP derivatives having a similar core to the two 

alkaloids nitidine and fagaronine shown in Figure 1 [1,14]. The in vitro TOP-I inhibition data (REC, 

which is the relative effective concentration of TOP-I related to topotecan) and IC50 values (the 

concentration of compound causing 50% cell growth inhibition against tumor cell lines) on 

RPMI8402, CPT-K5, P388, CPT45, KB3-1, KBV-1, KBH5.0, U937 and U937rs of 137 chemical 

structures related to BCPs were collected from the literature [3–11]. However, not all bioactivity data 

of different cell lines is available for each compound. Compounds numbers and available bioactivity 

data are listed in Table 1. U937 and U937rs cell lines having a limited number of cytotoxicity data 

were not used for developing the QSAR model. REC and IC50 values were converted to negative 

logarithm of REC, IC50 (pREC, pIC50) for use in the QSAR studies. Chemically, the dataset can be 

divided into six groups of general skeletons presented in Figure 2 and the number of compounds of 

each group are shown in Table 1. The number of compounds in the training and external test sets are 

presented in Table 2. The detailed chemical structures and bioactivity of BCP dataset are presented in 

the Supporting Information. 
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Figure 2. General structural skeletons of the BCPs dataset. 
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Table 1. Dataset and biological activities used in this study. 

Bioactivity Number of compounds Number of compounds on each skeleton
G1 G2 G3 G4 G5 G6

CPTk5 101 50 8 12 6 8 17
P388 82 53 1 4 5 9 10

CPT45 73 45 0 4 5 9 10
U937 39 23 9 0 6 0 1

U937rs 33 20 7 0 5 0 1
KB3-1 83 53 10 13 6 0 1
KBV-1 81 52 9 13 6 0 1
KBH 60 46 0 13 0 0 1
TOP-I 94 52 8 12 5 9 8

Table 2. Dataset division. 

Bioactivity RPMI 8402 CPT-K5 P388 CPT45 KB3-1 KBV-1 KBH5.0 TOP-I

Number of compounds 133 101 82 73 83 81 60 94 
Training set 105 80 66 58 68 60 48 74 

External test set 28 21 16 15 15 21 12 20 

2.2. Over-fitting Problem 

A well-accepted QSAR model should be able to accurately predict activities of a new compound 

which is not included in the training set. Over-fitting or over-estimation occurs when the predictive 

ablility on external set is bad, some papers use r2 for this assessment [15,16]. However, using the 

square of correlation coefficient is not exact in all cases and cannot manifest the meaning of the model 
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predictions. In this study, the results of 3D QSAR model of RPMI8402 cell line and 2D QSAR model 

of CPT45 cell line were given as examples. Accordingly, RPMI-fs45 model (R2 = 0.812 for training 

set; r2 = 0.701 for test set) was assessed as having a good result and the ability to predict accurately but 

in fact the predictive power of this model is bad (Figure 3A) with the external set of model RPMI-fs45 

(red triangle) tending to go out of the two limit lines at a confidence level of 95% of training set (blue 

circle), whereas, the CPT45-2D model gave a reasonable result based on the 95% confidence level 

assessment method, which is shown in Figure 3B. Hence, the QSAR model with high value r2 of 

training and test sets does not necessarily correlate with a good predictive model. 

Figure 3. The relationship between observed and predicted data from QSAR model and its 

95% confidence interval of (A) RPMI8402 cell line from 3D QSAR with steric analysis 

fields and (B) CPT45 cell line from 2D QSAR. Compound of training set are in blue circle 

and test set in red triangle.  

(A)  (B)  

2.3. Model Assessment Method 

For QSAR validation, several parameters such as R2, q2, standard error of training and test sets,  

Y-scrambling analyses, and confidence interval estimators were used to judge the QSAR  

models [12,13,16–20]. Confidence level is the result of statistical estimation based on observations on 

a population. This estimated level is hard to reach 100%, therefore, the statisticians often use the 

estimate of 90%, 95%, 99% confidence intervals [15,18]. For classical QSAR study, 95% confidence 

interval is commonly used as the parameter in validation of QSAR models. In this study, the QSAR 

model evaluation method based on confidence level is presented as below.  

At a confidence level of 95%, the limit is calculated so that 95% of training is in the area limited by 

the upper and lower bounds as shown in Figure 3. The two bounds are almost straight lines parallel to 

the baseline y = x. If the two bounds meet the horizontal axis at the points x1= −x2= δ (δ > 0), they can 

be assumed as two lines y = x − δ and y = x + δ. The d value represents the desired predictability of the 

model which depends on squared correlation coefficient R2 and standard error of the predicted results 
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compared with experimental values of training set. If the model gave the predicted β, then 95% of β 

was in the range β ± δ. 

The model predictions are confirmed as true to its ability when the external evaluation set with 

coordinates (xi = pIC50 expected, yi = pIC50 experimental) lies within the boundaries of the two lines, 

the type I error probability is 5% (if the external set is large enough, there will be 5% of compounds 

with the predicted value lies outside the confidence interval). 

The assessment step in this study is done as follows: 

- Determine the δ from the training set. 

- Use a set of external set to assess the reliability of the value of δ. The reliability of the value of δ is 

evaluated by seeing how much the coordinates of the compounds in the external set properly 

distributed in the confidence limits. This number is not required to be larger than or equal to the value 

of reliability (95%) but the difference of those two numbers must not be too large. The signs were used 

in this study for assessing the value δ with possitive (+), negative (−) and unknown (+/−). 

- If r2 is also greater than 0.5, the model can be proposed to predict beyond the range of  

values evaluated. 

In addition, several new metrics , and  proposed by Roy’s reasearch group was also 

calculated for both training and test set to validate our QSAR models [21–23]. These additional 

validation parameters were used to assess the predictive quality of QSAR models. For the good QSAR 

models, the values of  should have be more than 0.5 and  values should preferably be lower than 

0.2 for both of the training and test sets. The equations for calculation of , and  metrics could 

be found at supporting information. 

2.4. Hologram, 2D and 3D QSAR Modeling 

In this study, eight 2D QSAR models, eight hologram QSAR models and thirteen 3D QSAR models 

for TOP-I inhibitory activity and anti-toxicity on RPMI8402, CPT-K5, P388, CPT45, KB3-1, KBV-1, 

KBH5.0 tumor cell line were developed and the results are presented in Table 3 (2D), Table 4 

(Hologram), Table 5 (3D) and the assessments of corresponding models with a confidence level of 

95% are also presented. Based up on 95% confidence interval, the δ value, assessment and range of 

prediction of all obtained models were calculated. There are several models with good R2 and q2 values 

of training and test sets but those models could not give the predictive power for external test set by 

applying the confidence intervals (Table 5).  

The models of RPMI-8402, KB3-1 cell lines and on TOP-I inhibitory activity have correlated and 

results in all three methods’ building QSAR models are reasonable. The hologram, 2D and 3D- QSAR 

models performed on pREC (topoisomerase inhibitory activity) and pIC50 of RPMI8402, KB3-1  

cell-lines showed not only significant statistical quality, but also predictive ability, with the square of 

correlation coefficient R2 = 0.584 − 0.768, the square of the crossvalidation coefficient q2 = 0.406 − 0.594 

as well as the external set’s square of predictive correlation coefficient r2 = 0.514 − 0.795. For RPMI 

8402 cell line and KB3-1 cell-lines, the largest range of prediction are [−1:3] from hologram model 

and [−0.5:2.2] from 2D QSAR, respectively, were obtained. The best range of prediction for  

anti-topoisomerase 1 is [−2.5:1] is achieved from 3D QSAR model. Based on the calculation of , 
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and  metrics, several good QSAR models are highlighted in bold numbers in tables 3–5. 

Detailed of 29 QSAR models are available in supporting information.  

QSAR models on topoisomerase inhibitory activity and cytotoxicity of RPMI8402, KB3-1  

cell-lines were used for further investigation on application set. The prediction on application set 

containing 1214 new virtual designed compounds offers a short list of 94 compounds with better 

predictive antitumor activity. Several selected compounds with predicted bioactive values are listed in 

supporting information. Analysis of the results from our QSAR models shows the general points of the 

relationship between chemical structures and antitumor activity of BCP derivatives summarized in 

Figure 4 and described as follows:  

(1). The steric interaction plays an important role in determining the bioactivities of the BCP 

against many tumor cell lines, including cytotoxicity and TOP-I inhibitory ability. Substituents 

at 8,9-dimethoxy position on the skeletons are necessary for the biological effects. The results 

have shown that methoxy group at position 2 is essential for bioactivity while position 3 is not 

essential. The substituents at position 11, 12 affect the activity and should have a length of 4-5 

carbons or lower, be straight up with the bulky end groups. 

(2). Reducing the amount of nitrogen in the rings system and increasing the number of nitrogen 

atoms in the substituent can improve the bioactivity. Nitrogen in position 6 gave a better effect 

than position 5.  

(3). The substituents at two positions 11 and 12 could have a positive effect on cytotoxicity and 

TOP-I inhibitory activity. The substituent at position 12 gives a stronger effect on bioactivity 

than position 11.  

Figure 4. The summary for BCPs structures—antitumor activity relationship. 
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Table 3. Results of 2D-QSAR. 

Model RPMI CPTk5 P388 CPT45 KB3-1 KBV KBH TOP-I 
Number compounds in training set 105 80 66 58 68 60 48 74 
Number compounds in external test set 28 21 16 15 15 21 12 20 
R2 (Training set) 0.584 0.452 0.655 0.472 0.627 0.632 0.536 0.602 
Standard Error (Training set) 0.543 0.400 0.271 0.338 0.414 0.248 0.218 0.355 
q2 (L.O.O.) 0.511 0.302 0.417 0.230 0.537 0.474 0.394 0.475 
Standard Error (L.O.O.) 0.641 0.522 0.489 0.527 0.520 0.364 0.29 0.477 
rt

2 (External set) 0.514 0.248 0.334 0.043 0.514 0.314 0.053 0.657 
Standard Error (External set) 0.803 0.434 0.799 0.943 0.665 0.858 0.78 0.417 
p-value of model 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Number of 2D molecular descriptor 7 9 10 9 6 8 6 10 
Greates p-value of used descriptors 0.039 0.018 0.014 0.000 0.026 0.002 0.026 0.008 
Model assessment         
δ 1.45 1.30 1.10 1.20 1.25 1.00 1.00 1.25 
Assessment + + + + + + + + 

Range of prediction 
−1.5 
2.2 

−1.2 
1.4 

0 
2.3 

−0.5 
1.25 

−0.5 
2.2 

−1.2 
1.5 

0.5 
1.7 

−2 
0.5 

 0.584 0.452 0.655 0.472 0.627 0.632 0.536 0.602 
 0.399 0.374 0.424 0.284 0.433 0.506 0.264 0.451 
 0.491 0.413 0.540 0.378 0.530 0.569 0.400 0.527 
 0.186 0.078 0.231 0.188 0.194 0.126 0.272 0.151 

 0.514 0.248 0.256 0.018 0.591 0.278 0.035 0.588 
 0.324 0.169 0.187 0.012 0.549 0.180 −0.007 0.413 
 0.419 0.208 0.222 0.015 0.570 0.229 0.014 0.501 
 0.190 0.079 0.068 0.006 0.042 0.099 0.042 0.175 



Molecules 2012, 17 5697 

 

Table 4. Results of Hologram-QSAR. 

Model RPMI CPTk5 P388 CPT45 KB3-1 KBV KBH TOP-I 

Number compounds in training set 105 80 66 58 68 60 48 74 

Number compounds in external test set 28 21 16 15 15 21 12 20 

R2 (Training set) 0.765 0.573 0.439 0.483 0.622 0.501 0.624 0.616 

Standard Error (Training set) 0.489 0.428 0.675 0.586 0.658 0.418 0.439 0.594 

q2 (L.O.O.) 0.568 0.320 0.182 0.123 0.514 0.328 0.482 0.406 

Standard Error (L.O.O.) 0.777 0.733 0.828 0.777 0.757 0.697 0.516 0.754 

rt
2 (External set) 0.525 0.285 0.302 0.010 0.541 0.708 0.439 0.690 

Standard Error (External set) 0.567 0.382 0.941 0.635 0.752 0.306 0.339 0.433 

Hologram lengths 151 53 353 199 61 71 59 307 

Principal components 6 5 6 3 3 3 3 4 

Limitation of atoms in each fragment 5–10 5–10 5–8 5–6 2–8 5–6 5–7 1–7 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Model assessment         

δ  1.10 1.20 1.30 1.20 1.35 1.2 0.80 1.20 

Assessment  + + + + + + + + 

Range of prediction −1 −1.5 0 0.2 0 −0.5 0.5 −2 

  0.765 0.572 0.439 0.482 0.621 0.500 0.624 0.616 

  0.633 0.504 0.132 0.297 0.425 0.348 0.387 0.466 

  0.699 0.538 0.286 0.389 0.523 0.424 0.506 0.541 

  0.132 0.068 0.307 0.185 0.196 0.152 0.237 0.150 

  0.507 0.276 0.289 0.006 0.503 0.645 0.367 0.569 

  0.362 0.159 −0.033 0.005 0.342 0.493 −0.054 0.378 

  0.435 0.217 0.128 0.005 0.422 0.569 0.154 0.473 

  0.145 0.117 0.322 0.001 0.161 0.151 0.415 0.190 
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Table 5. Results of 3D-QSAR. 

Model 
RPMI-
fs43 

RPMI-
fs45 

CPTk5
-sh44 

P388-
s15 

CPT45
-s53 

KB3-
s34 

KB3-
e12 

KB3-
h34 

KB3-
eh32 

KBV-
s34 

KBH-
fs43 

TOP-I 
-s34 

TOP-I 
-h54 

Number compounds in training set 105 105 80 66 58 68 68 68 68 60 48 74 74 
Number compounds in test set 28 28 21 16 15 15 15 15 15 21 12 20 20 
R2 (Training set) 0.734 0.812 0.650 0.667 0.496 0.721 0.698 0.768 0.731 0.629 0.696 0.701 0.700 
Standard Error (Training set) 0.601 0.510 0.522 0.537 0.589 0.597 0.593 0.528 0.559 0.523 0.394 0.535 0.536 
q2 (L.O.O.) 0.594 0.607 0.338 0.309 0.203 0.584 0.552 0.539 0.582 0.372 0.330 0.423 0.345 
Standard Error (L.O.O.) 0.742 0.737 0.718 0.774 0.741 0.707 0.722 0.744 0.697 0.680 0.586 0.743 0.792 
rt

2 (External set) 0.685 0.701 0.471 0.570 0.202 0.661 0.496 0.636 0.620 0.436 0.282 0.795 0.836 
Standard Error (External set) 0.742 0.724 0.545 0.739 0.570 0.647 0.789 0.670 0.686 0.857 0.796 0.518 0.338 
3D-descriptor Fs fs sh S S S e h eh s Fs S H 
Column filter 4 4 4 1 5 3 1 3 3 3 4 3 5 
Principal component 3 5 4 5 3 4 2 4 2 4 3 4 4 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Model assessment              
δ  1.10 1.00 1.05 1.05 1.20 1.15 1.20 1.10 1.15 1.00 0.75 1.10 1.2 
Assessment  + - + + + + + + + +/− + + + 

Range of prediction 
−1.5 
2.5 

− 
− 

−1.5 
1 

−0.2 
2 

−0.2 
1 

−0.5 
2 

0 
2 

−0.2 
2.2 

−0.2 
2 

0 
1.2 

−0.5 
2 

−2.5 
0.5 

−2.5 
1 

  0.571 0.812 0.650 0.667 0.496 0.721 0.697 0.767 0.730 0.628 0.696 0.701 0.700 
  0.530 0.703 0.592 0.442 0.312 0.565 0.531 0.634 0.579 0.501 0.494 0.578 0.577 
  0.550 0.758 0.621 0.554 0.404 0.643 0.614 0.701 0.654 0.564 0.595 0.639 0.638 
  0.041 0.109 0.058 0.225 0.183 0.156 0.166 0.133 0.151 0.127 0.202 0.123 0.123 

  0.663 0.324 0.429 0.569 0.188 0.585 0.461 0.636 0.591 0.332 0.282 0.604 0.523 
  0.568 −0.451 0.294 0.332 0.063 0.546 0.162 0.409 0.349 −0.014 −0.009 0.431 0.318 
  0.616 0.064 0.362 0.450 0.126 0.565 0.312 0.522 0.470 0.159 0.137 0.517 0.421 
  0.095 0.775 0.135 0.237 0.125 0.039 0.299 0.278 0.242 0.346 0.291 0.173 0.206 
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The previous studies indicated that topotecan, the synthetic derivative of camptothecin is the most 

potent anticancer drugs in clinical use [24]. Topotecan, ethoxidine, fagaronine and BCP related 
compounds indicated the selectivity on TOP-I than TOP-II. These novel compounds acted as DNA 
intercalators and have two mechanisms including (i) TOP-I poison activity like fagaronine; and (ii) 
TOP-I suppressor activity like ethoxidine [24,25]. Our preliminary results from in silico modeling 
indicated that BCP compounds may inhibit the TOP-I activity via suppression mechanism. From this 
QSAR study, the important role of natural functional groups related to biological activity is indicated 
in Figure 4. Hence, the combination of our QSAR models with other classification on TOP-I and 
cytotoxicity predictive models and molecular docking studies [12,25,26] could provide insight into the 
molecular basis of BCPs derivatives on antitumor and TOP-I inhibitory activity. 

3. Materials and Methods 

3.1. QSAR Study Process  

The QSAR study process is summarized in Figure 5. 

Figure 5. Process of combined QSAR studies. 
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3.2. Preparation of the Data Sets  

A total of 137 chemical structures of benzo[c]phenanthridine analogues were collected from the 

literature (Table 6). The structures of the compounds were first drawn in Molecular Operating 

Environment sofware (MOE), named and put into global dataset [27]. The published data is direct 

copied and converted from *.pdf into a table in accordance with the format *.csv. Data will be 

imported into the used programs with the command “import”, “read”, “merge” based on the name of 

each subtance in order to ensure the precision and convenience. Recheck the drawn structures by using 

SAR report in MOE and Ligand Prepare in SYBYL-X 1.1 [28]. 

Using the SAR report generated by MOE, the dataset was devided into six groups according to 

structural skeleton similarity. Then we calculated the weight descriptors and sorted the compounds in 

order of molecular weight. The training and test sets were generated by random division using the 

original variable descriptors along with cytotoxicity and TOP-I inhibitory activity values. The data set 

is split randomly for five times into 80% for training and 20% for the test set and the results were 

presented in Table 2. 

Table 6. Chemical structure of 137 benzo[c]phenanthridine analogues. 

1. BMC_03_1475_10 

 

6. BMC_03_1475_15 11. BMC_03_1475_8 

2. BMC_03_1475_11 

 

7. BMC_03_1475_2b 12. BMC_03_1475_9 

 

3. BMC_03_1475_12 

 

8. BMC_03_1475_5 13. BMC_03_1809_5a 

 

4. BMC_03_1475_13 

 

9. BMC_03_1475_6 

 

14. BMC_03_1809_5b 

5. BMC_03_1475_14 

 

10. BMC_03_1475_7 

N
N

O

O

O

15. BMC_03_1809_6 
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Table 6. Cont. 

16. BMC_03_1809_7 

 

24. BMC_03_2061_3h 32. BMC_03_3795_10b 

 

17. BMC_03_1809_8 

 

25. BMC_03_2061_3i 33. BMC_03_3795_10c 

 

18. BMC_03_2061_3b 

 

26. BMC_03_2061_3j 

 

34. BMC_03_3795_10d 

19. BMC_03_2061_3c 

 

27. BMC_03_2061_3k 35. BMC_03_3795_10e 

20. BMC_03_2061_3d 

 

28. BMC_03_2061_4a 36. BMC_03_3795_10f 

 

21. BMC_03_2061_3e 

 

29. BMC_03_2061_4b 37. BMC_03_3795_12b 

 

22. BMC_03_2061_3f 

 

30. BMC_03_2061_9k 38. BMC_03_3795_12c 

 

23. BMC_03_2061_3g 

 

31. BMC_03_3795_10a 

N

O

O

O

O

 

39. BMC_03_3795_12d 
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Table 6. Cont. 

40. BMC_03_3795_3 

 

48. BMC_03_521_7g 

 

56. BMC_04_3731_4b 

41. BMC_03_3795_4 

 

49. BMC_03_521_7h 

 

57. BMC_04_3731_4c 

42. BMC_03_3795_5 

N
N

O

O

O

O

 

50. BMC_04_3731_2 

 

58. BMC_04_3731_4d 

 

43. BMC_03_521_7b 

 

51. BMC_04_3731_3a 59. BMC_04_3731_5 

 

44. BMC_03_521_7c 

 

52. BMC_04_3731_3b 
O

N
N

NN+

O-

O

O

O

 

60. BMC_04_5585_15b 

 

45. BMC_03_521_7d 

 

53. BMC_04_3731_3c 

 

61. BMC_04_5585_15d 

 

46. BMC_03_521_7e 

 

54. BMC_04_3731_3d 62. BMC_04_795_1b 

 

47. BMC_03_521_7f 

 

55. BMC_04_3731_4a 
O

N
N

N

NH2

O

O

63. BMC_04_795_1c 
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64. BMC_04_795_1d 

N
N

N

O

O

O

O

O

 

72. BMC_05_6782_7b 80. BMC_05_6782_9e 

 

65. BMC_04_795_1e 

 

73. BMC_05_6782_7c 

N

O

O

O

O

O O
N

81. BMC_05_6782_9f 

 

66. BMC_04_795_1f 

 

74. BMC_05_6782_7d 82. BMC_05_6782_9g 

 

67. BMC_04_795_1g 

 

75. BMC_05_6782_7e 83. BMC_05_6782_9h 

 

68. BMC_04_795_1h 

 

76. BMC_05_6782_9a 84. BMC_05_6782_9i 

 

69. BMC_04_795_2 

 

77. BMC_05_6782_9b 85. BMC_05_6782_9j 

70. BMC_05_6782_1 

 

78. BMC_05_6782_9c 86. BMC_05_6782_9k 

 

71. BMC_05_6782_7a 

 

79. BMC_05_6782_9d 87. BMC_05_6782_9l 
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88. BMC_06_3131_10b 

 

96. BMC_06_3131_10l 104. BMC_08_8598_16 

 

89. BMC_06_3131_10c 

 

97. BMC_06_3131_10m 105. BMC_08_8598_17 

 

90. BMC_06_3131_10d 

 

98. BMC_08_8598_10 

 

106. BMC_08_8598_18 

 

91. BMC_06_3131_10f 

 

99. BMC_08_8598_11 

 

107. BMC_08_8598_19 

 

92. BMC_06_3131_10g 

 

100. BMC_08_8598_12 

 

108. BMC_08_8598_20 

 

93. BMC_06_3131_10i 

 

101. BMC_08_8598_13 109. BMC_08_8598_21 

 

94. BMC_06_3131_10j 102. BMC_08_8598_14 

 

110. BMC_08_8598_22 

 

95. BMC_06_3131_10k 103. BMC_08_8598_15 111. BMC_08_8598_23 
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112. BMC_08_8598_9 

 

120. BMC_09_2877_18 128. BMC_09_2877_8 

 

113. BMC_09_2877_10 

 

121. BMC_09_2877_19 

N

O

O

O

O

N

129. BMC_09_2877_9 

 

114. BMC_09_2877_11 

O

N

O

O

NH2

O  

122. BMC_09_2877_20 130. BMCL_02_3333_3c 

 

115. BMC_09_2877_12 

O

N

O

O

N

O  

123. BMC_09_2877_21 131. BMCL_02_3333_4c 

 

116. BMC_09_2877_14 

 

124. BMC_09_2877_22 132. JMC_03_2254_16a 

 

117. BMC_09_2877_15 

 

125. BMC_09_2877_3 133. JMC_03_2254_3 

 

118. BMC_09_2877_16 

 

126. BMC_09_2877_6 

 

134. JMC_03_2254_4b 

 

119. BMC_09_2877_17 

 

127. BMC_09_2877_7 135. JMC_03_2254_5b 
O

N
N

N

O

O

NH2
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136. JMC_03_2254_6b 

 

137. LDDD_04_198_1 

 

3.3. Hologram-QSAR 

3.3.1. Calculated Fragment Descriptors 

Using all suggested descriptors but in order to save computational time, the limitation of number’s 

atoms must be set from 4–7 and change step by step from 1 to 10 [28]. 

3.3.2. Hologram-QSAR Process 

The standardized structures in 2D-QSAR were used in building Hologram-QSAR by SYBYL 

software. The importable files must be *.sdf, which are results from MOE. Changing the parameters of 

atoms’ limitation and doing Partial least squared regression with default principal components. 

3.4. 2D-QSAR 

3.4.1. Calculated 2D-descriptors 

The structures of the compounds were first standardized by “Depict2D” command then calculated 

of 184 2D-descriptors in MOE software [27]. 

3.4.2. 2D-QSAR Process 

The data was transferred to Rapidminer software for multi linear 2D-QSAR process [29]. The 

process has eight main steps which are shown in Figure S1 in the Supporting Information: 

1st step: Transfer data from MOE. 

2nd step: Remove useless descriptors with more than 20% compounds having value = 0.  

3rd step: Remove the desriptors with intercorrelation greater than 0.8. 

4th step: Optimize selection with modified forward selection using multi linear regression algorithm 

(MLR). The modifications include limiting of descriptors, keeping more than 1 best subset of 

descriptors and validating by Leave One Out (L.O.O.) cross-validation.  

5th step: Build the model using MLR and use L.O.O. to validate the predictive ability  

6th step: Give the parameters on the training set. 

7th step: Give the parameters on the external set. 

8th step: Give the predictive results on application. 
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Several subset of chemical descriptors having an effect on the performance of predictition of 

anticancer and TOP-I inhibitory activity were selected and showed in supporting informtion for each 

QSAR models. The detailed of these molecular descriptors are described in Table 7. 

Table 7. Description of 35 molecular descriptors using to create the 2D QSAR models. 

No Molecular descriptor Description 
1 a_acc Number of hydrogen bond acceptor atoms 
1 a_acc Number of hydrogen bond acceptor atoms 
2 a_aro Number of aromatic atoms 

3 a_ICM 
Atom information content (mean). This is the entropy of the element 
distribution in the molecule (including implicit hydrogens but not lone 
pair pseudo-atoms). 

4 a_nN Number of nitrogen atoms: #{Zi | Zi = 7}. 
5 a_nO Number of oxygen atoms: #{Zi | Zi = 8}. 
6 b_1rotR Fraction of rotatable single bonds: b_1rotN divided by b_heavy. 
7 BCUT_PEOE_0 

The BCUT descriptors [Pearlman 1998] are calculated from the 
eigenvalues of a modified adjacency matrix. 

8 BCUT_PEOE_1 
9 BCUT_PEOE_2 
10 chi1v_C Carbon valence connectivity index (order 1). 
11 density Molecular mass density: Weight divided by vdw_vol (amu/Å3). 
12 diameter Largest value in the distance matrix 

13 GCUT_PEOE_1 
The GCUT descriptors are calculated from the eigenvalues of a 
modified graph distance adjacency matrix. 

14 GCUT_SLOGP_0 The GCUT descriptors using atomic contribution to logP instead of 
partial charge. 15 GCUT_SLOGP_1 

16 GCUT_SMR_0 
The GCUT descriptors using atomic contribution to molar refractivity 
instead of partial charge. 

17 opr_leadlike 
Atom Counts and Bond Counts: One if and only if opr_violation < 2 
otherwise zero. 

18 PEOE_VSA_FHYD Fractional hydrophobic van der Waals surface area. 
19 PEOE_VSA_FNEG Fractional negative van der Waals surface area. 
20 PEOE_VSA_NEG Total negative van der Waals surface area. 
21 PEOE_VSA+0 Sum of vi where qi is in the range [0.00, 0.05). 
22 PEOE_VSA+1 PEOE: Sum of vi where qi is in the range [0.05, 0.10). 
23 PEOE_VSA+2 PEOE: Sum of vi where qi is in the range [0.10, 0.15). 
24 PEOE_VSA+3 PEOE: Sum of vi where qi is in the range [0.15, 0.20). 
25 PEOE_VSA-0 PEOE: Sum of vi where qi is in the range [−0.05, 0.00). 
26 PEOE_VSA-1 PEOE: Sum of vi where qi is in the range [−0.10, −0.05). 
27 petitjean Largest value in the distance matrix 

28 SlogP 
Log of the octanol/water partition coefficient (including implicit 
hydrogens). 

29 SlogP_VSA1 Subdivided Surface Areas: Sum of vi such that Li is in (−0.4, −0.2]. 
30 SlogP_VSA5 Subdivided Surface Areas: Sum of vi such that Li is in (0.15, 0.20]. 
31 SlogP_VSA9 Subdivided Surface Areas: Sum of vi such that Li > 0.40. 

32 VDistMa 
Adjacency and Distance Matrix Descriptors: If m is the sum of the 
distance matrix entries then VDistMa is defined to be the sum of 
log2 m - Dij log2 Dij / m over all i and j. 
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33 vsa_acc 
Approximation to the sum of VDW surface areas (Å2) of pure hydrogen 
bond acceptors 

34 vsa_other 
Approximation to the sum of VDW surface areas (Å2) of atoms typed  
as “other”. 

35 vsa_pol 
Approximation to the sum of VDW surface areas (Å2) of polar atoms 
(atoms that are both hydrogen bond donors and acceptors), such as -OH.

3.5. 3D-QSAR 

3.5.1. Calculated 3D-descriptors 

The stable conformation of the 3D structure is very important to develop a reliable and repetitive 

3D-QSAR models. The search for lowest energy 3D conformations were conducted in MOE with 

forcefield MMFF94 and RMS Gradient 0.0001 kcal.mol−1. The results were transferred to SYBYL and 

MMFF94 charges were assigned to all the molecules [28]. 

Structural alignment is considered as one of the most sensitive parameters in CoMFA and CoMSIA 

analysis. The accuracy of the prediction and the reliability of the contour maps are directly dependent 

on the structural alignment rule. The compound BMC_05_6782_9b was used as a template for 

superimposition, the common fragment for each group was determined based on comparison with this 

compound’s core structure. The aligned compounds are shown in Figure 6. 

Figure 6. Structure of BMC_05_6782_9b and 3D alignment of 137 BCPs chemical structures. 

  

Steric (fa) and electrostatic (fe) fields for CoMFA, steric (s), electrostatic (e), hydrogen bond donor (d), 

hydrogen bond acceptor (a) and hydrophobic descriptor (h) fields were calculated by using the default of 

SYBYL-X 1.1 with an sp3 carbon atom having van der Waals radius of 0.152nm, +1 charge, and 0.2 nm 

grid spacing. The energy cutoff values were set to 30 kcal.mol−1. 

3.5.2. 3D-QSAR Process 

Each training set was conducted on 32 models with different 3D descriptors and a vary column 

filter values from 1 to 5. The PLS analysis was used to construct a linear correlation between the 

subset of descriptors and the bioactivities. To select the best model, the cross-validation L.O.O. was 



Molecules 2012, 17 5709 

 

 

performed to reduce the square of crossvalidation coefficient (q2) and the optimum number of principal 

components. The q2 results were recorded into combination matrix table such as result on KB3-1 in 

Table 8. Detailed of q2 matrix of 3D models for diferrent cell lines could be found at supporting 

information. 

Table 8. Cross-validation results of 3D-QSAR with KB3-1 cells. 

3D descriptor field 
q2 for each column filter values 

1 2 3 4 5 
S 0.583 0.583 0.584 0.579 0.575 
E 0.552 0.551 0.553 0.540 0.542 
H 0.542 0.541 0.539 0.509 0.485 
D 0.014 0.013 0.004 0.000 0.000 
A 0.414 0.415 0.417 0.423 0.429 
s.e 0.580 0.580 0.580 0.576 0.576 
s.h 0.551 0.555 0.555 0.545 0.536 
s.d 0.448 0.446 0.473 0.485 0.502 
s.a 0.498 0.507 0.501 0.503 0.505 
e.h 0.582 0.581 0.582 0.571 0.560 
e.d 0.560 0.562 0.568 0.545 0.534 
e.a 0.561 0.558 0.552 0.550 0.547 
h.d 0.437 0.438 0.438 0.411 0.406 
h.a 0.466 0.465 0.465 0.463 0.467 
d.a 0.409 0.412 0.417 0.423 0.427 

s.e.h 0.585 0.581 0.584 0.579 0.570 
s.e.d 0.578 0.578 0.586 0.584 0.575 
s.e.a 0.563 0.564 0.562 0.561 0.558 
s.h.d 0.514 0.527 0.533 0.528 0.516 
s.h.a 0.511 0.515 0.511 0.510 0.511 
s.d.a 0.499 0.507 0.514 0.530 0.509 
e.h.d 0.563 0.565 0.573 0.560 0.552 
e.h.a 0.560 0.557 0.551 0.546 0.540 
e.d.a 0.526 0.528 0.533 0.531 0.520 
h.d.a 0.444 0.446 0.445 0.443 0.449 

s.e.h.d 0.572 0.574 0.579 0.571 0.562 
s.e.h.a 0.569 0.569 0.565 0.561 0.555 
s.e.d.a 0.548 0.551 0.555 0.558 0.544 
s.h.d.a 0.493 0.507 0.515 0.518 0.501 
e.h.d.a 0.528 0.529 0.530 0.523 0.513 

s.e.h.d.a 0.545 0.547 0.543 0.540 0.537 
CoMFA 0.549 0.549 0.546 0.547 0.551 

s: steric, e: electrostatic, h: hydrophobic; d: H-bond donor; a: H- bond acceptor. 

4. Conclusions  

In this study, the hologram, 2D- and 3D-QSAR analyses were used to build up the model for 

prediction of 137 BCP analogues based on their anti-topoisomerase-1 activity and cytotoxicity on 
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seven tumor cell lines. The best model was obtained between pREC (topoisomerase inhibitory activity) 

and pIC50 of RPMI8402, KB3-1 cell-lines biological data and BCP analogues. In addition, the 

reliability test with 95% confidence interval was applied as a parameter for QSAR models validation 

on internal and external dataset and to prevent over-fitting problem of classical QSAR models. With its 

high accuracy and fast prediction on the BCPs, our QSAR model could be applied to design new 

analogues of BCPs with higher antitumor and topoisomerase I inhibitory activity. 

Supplementary Materials 

The cytotoxicity on seven tumor cell lines and toposisomerase I inhibitory activity of 137 

benzo[c]phenanthridine analogues (eight tables) and the detailed of 29 QSAR models including 

hologram, 2D- and 3D- QSAR were provided. Several new designed BCPs compounds with predictive 

activity from QSAR models and the equations of , and  metrics were also available in detailed. 

The detailed information can be found at: http://www.mdpi.com/1420-3049/17/5/5690/s1. 
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