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Abstract 

Background:  In the context of biomedical and epidemiological research, gene-
environment (G-E) interaction is of great significance to the etiology and progression 
of many complex diseases. In high-dimensional genetic data, two general models, 
marginal and joint models, are proposed to identify important interaction factors. 
Most existing approaches for identifying G-E interactions are limited owing to the lack 
of robustness to outliers/contamination in response and predictor data. In particular, 
right-censored survival outcomes make the associated feature screening even chal‑
lenging. In this article, we utilize the overlapping group screening (OGS) approach to 
select important G-E interactions related to clinical survival outcomes by incorporating 
the gene pathway information under a joint modeling framework.

Results:  Simulation studies under various scenarios are carried out to compare the 
performances of our proposed method with some commonly used methods. In the 
real data applications, we use our proposed method to identify G-E interactions related 
to the clinical survival outcomes of patients with head and neck squamous cell carci‑
noma, and esophageal carcinoma in The Cancer Genome Atlas clinical survival genetic 
data, and further establish corresponding survival prediction models. Both simulation 
and real data studies show that our method performs well and outperforms existing 
methods in the G-E interaction selection, effect estimation, and survival prediction 
accuracy.

Conclusions:  The OGS approach is useful for selecting important environmental 
factors, genes and G-E interactions in the ultra-high dimensional feature space. The 
prediction ability of OGS with the Lasso penalty is better than existing methods. The 
same idea of the OGS approach can apply to other outcome models, such as the pro‑
portional odds survival time model, the logistic regression model for binary outcomes, 
and the multinomial logistic regression model for multi-class outcomes.

Keywords:  Gene-environment interaction, Joint model, Lasso, Overlapping group 
screening, Survival prediction, TCGA​
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Background
It is believed that in the development of complex diseases such as cancer, diabetes, and 
so on, gene-environment (G-E) interaction plays a critical role beyond the main genetic 
(G) or environmental (E) factors ([1, 2] and so on). For example, Batchelor et  al. [3] 
showed that the interaction between the gene TP53 and age affects the prognosis of glio-
blastoma. As a consequence, incorporating significant G-E interaction factors into a sur-
vival prediction model would enhance the performance of the later.

In the setting of high-dimensional genetic data analysis, there exist two ways to identi-
fication of important G-E interactions: the marginal and joint analyses [4]. The marginal 
analysis considers only one gene at a time, and fits a model consisting of multiple E fac-
tors, this gene, and its interaction with E factors. the other performs joint analysis and 
considers all genes in a single model.

In the framework of marginal analysis of high-dimensional genetic data, for each 
gene, a model consisting of multiple E factors, a single gene itself, and its interac-
tion with E factors is fitted. Specifically, the conceptual marginal model is “Out-
come ~ Es + G + G*(Es)”, where the outcome variable can be a continuous, categorical, 
or survival time phenotype, Es represents a set of environmental factors such as envi-
ronmental exposures, demographic, clinical, and socioeconomic variables, and G*(Es) 
represents the interaction between the G factor and all E factors under consideration. 
The significant G-E interactions can be selected based on the corresponding marginal 
p-values. Since the marginal model is low-dimensional, its main advantage is its com-
putational stability and conceptual simplicity. Therefore, marginal programs are popular 
in the fields of bioinformatics and biomedicine. However, a common limitation of tradi-
tional methods of marginal analysis is its lack of robustness. In practical genetic studies, 
Xu et al. [5] pointed out that long-tailed distributions and contamination in prognosis 
response and predictors are not uncommon. In addition, human input errors may also 
lead to long-tailed distributions and contamination. In Fig. 1, we displayed The Cancer 
Genome Atlas (TCGA) clinical survival data for esophageal carcinoma (ESCA) and head 
and neck squamous cell carcinoma (HNSCC) to show the long-tailed distribution phe-
nomenon. Moreover, censored survival outcomes make the relevant feature screening 
difficult.

On the other hand, models in the framework of joint analysis better describe disease 
biology given the fact that complex diseases are related to the combined effects of mul-
tiple genetic biomarkers. The conceptual joint model is “Outcome ~ Es + Gs + (Gs)*(Es)”, 
where Gs represents a set of G factors, including gene expressions, SNPs and other types 
of molecular measurements, and (Gs)*(Es) represents the interactions between all G and 
E factors. In this article, we focus on the joint analysis framework. A common challenge 
of joint analysis is its high dimensionality, which makes it difficult to identify significant 
interaction effects. Moreover, right-censored survival outcomes and contaminated bio-
marker data make the task even challenging.

For survival outcomes, popular models include the accelerated failure time (AFT) 
model and Cox’s model. Based on the AFT model, several robust joint regression 
methods have been proposed. The Penalized trimmed regression (PTReg) method [6] 
uses the trimmed regression to account for long-tailed distribution/contamination 
in prognosis response and predictors, and Wu et al. [7] incorporates the G structure 
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into the joint modeling. These methods conduct regularized estimation and selection 
based on the minimax concave penalty (MCP) penalty and utilize a decomposition 
technique to explain the interaction hierarchy. Their main potential disadvantage 
is that the model size is much larger than the sample size, and the statistical power 
under the penalized regression frameworks may be suboptimal [8]. In addition, since 
the gene expression data is often contaminated, the traditional Pearson correlation or 
Gaussian graphical models may not be a suitable measure to quantify the correlation 
among genes [9].

Based on the above rationale, we plan to adopt a two-step screening approach to 
detect G-E interactions by incorporating biological pathways information. The pro-
posed method uses annotated gene sets collected in the molecular signatures data-
base [10], which can be downloaded from the website http://​www.​broad​insti​tute.​org/​
gsea/​msigdb. Wang and Chen [11] described the idea of an overlapping group screen-
ing procedure that aims at gene-gene interaction selection, called the OGS method, 
for survival prediction based on the Cox model. In this work, we extend and modified 
the OGS method to detect G-E interactions, and show that OGS has several advan-
tages: (1) it can alleviate the collinearity problem in regression analysis due to the cor-
relation between biomarkers in the same gene/pathway; (2) it can significantly reduce 

Fig. 1  The long-tailed distribution of clinical survival data for the TCGA ESCA and HNSCC

http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb
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the search space for interaction effects by using the feature grouping structure; and 
(3) it can significantly improve the model selection performed by penalized regres-
sion in an ultra-high dimensional feature space.

Simulation studies under various scenarios reveal that our method works well and out-
performs existing methods in the model selection, estimation, and prediction accuracy. 
In the real data application, we combine gene expression profile data with prior path-
way information from the Gene Ontology biological process (GO-BP) database and use 
the OGS approach to select several important environmental factors, genes, and G-E 
interactions that are associated with clinical survival outcomes of patients with HNSCC, 
and ESCA using TCGA clinical survival genetic data [12]. Using the pathway informa-
tion available from the GO-BP database to group genes into several pathways, we fur-
ther conduct accurate survival predictions based on the selected main and interacting 
biomarkers.

Methods
We consider a study with N  independent subjects. For a subject i , suppose that there are 
q environmental/clinical variables ei =

(
ei1, · · · , eiq

)′
 , and p genes xi =

(
xi1, · · · , xip

)′
 

assigned to G possibly overlapping pathways; that is, a given gene may belong to multi-
ple pathways. The pathway information accounts for the natural hierarchical structure of 
genes, and the overlapping pathways commonly exist in the gene expression data. Our 
aim is to determine the main features (genes and environment) and their interactions 
related to clinical survival outcomes, while taking into account the pathway information.

For a subject i , assume the survival outcome ti is related to the environmental/clini-
cal variables ei , gene expression covariates xi , and their component-wise interactions 
ui =

(
ei1xi1, . . . , ei1xip, ei2xi1, . . . , eiqxip

)′
 through the Cox regression model. In the Cox 

regression framework, the hazard function at time t for subject i′s survival given the 
covariates is modeled as.
�(t|ei, xi,ui) = �0(t)exp

(
e
′

iα + x
′

iβ + u
′

iη
)
,where �0(t) is a non-negative deterministic 

baseline hazard function and (α,β , η) are corresponding parameters. Usually the survival 
outcome is subject to censoring, and we use δi to denote whether subject i′s survival time 
is observed or censored.

Incorporating the grouping (pathway) information into the modeling process may 
improve the interpretability and prediction accuracy of the model. When groups overlap 
with each other, special techniques are required to account for the overlapping grouping 
information. According to Jacob et al. [13], we decompose the original coefficient vector 

into the sum of group-specific potential effects, that is, β =
G∑
j=1

γ j where 

γ j =
(
γ
j
1, · · · , γ

j
p

)′

 is the latent coefficient vector for group j . For j = 1, . . . ,G and 

k = 1, . . . , p , we set γ j
k = 0 if gene k does not belong to group j . Redefine the latent coef-

ficient γ j by removing the zero elements therein, and form the latent coefficient vector γ 
by stacking the vectors γ 1, . . . , γG . Let d be the length of γ . We can then rewrite β = Sγ , 
where S is a p× d matrix whose elements are 1 or 0. A simple example for illustration is 
given in Additional file 1: Appendix S1.

On the basis of the coefficient decomposition, the original regression model can be 
transformed into a new model, that is,XN×pβp×1 = XN×pSp×dγ d×1 = X̃N×dγ d×1 , 
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where X = (x1, ..., xN )
′
 . Equivalently, this new model can be constructed by duplicat-

ing the columns of overlapping variables in the original design matrix. For the new 
transformed model, the hazard function for subject i in the Cox regression model is 
re-expressed as

The method (OGS) for G‑E interaction selection

We apply the OGS method to the environment and gene expression profile data with 
clinical survival trait to detect important main effects as well as interactions by incor-
porating prior pathway information. The steps of the OGS algorithm for G-E interac-
tion selection are described as follows.

Step1 We utilize the overlapping group Cox regression model to identify the candi-
date pathways based on the latent effect approach, which can be performed by the R 
package “grpregOverlap” [14]. We define M̂main as the selected set of pathways, and 
A =

∣∣∣M̂main

∣∣∣ as the size of M̂main.

Step 2 We utilize the sequence kernel association test (SKAT) to obtain the group-
specific significance, where each group is formed by the interaction between the 
genes of each candidate pathway selected in the first step and the environmental fac-
tors in Es, where Es is a set of environmental factors. Following Chen et al. [15], the 
SKAT statistic under the Cox regression model is defined as

Here m is the vector of martingale residuals estimated from the null model by 
regressing survival outcomes on only the environmental covariates Es without con-
sidering the gene expression data; R(k) =

[
r(k)ij

]
N×l

 , where l  is the number of G-E 
interaction pairs in the candidate pathway group k , r(k)ij is the j-th G-E interaction 
pair of i-th subject in the candidate pathway group k , and W (k) is a diagonal weight 
matrix that contains the weights of the l  interaction pairs in the candidate pathway 
group k . Suitable weights can improve the testing power [16]. Following [16], we con-
sider an unsupervised weight manner that is defined as

where vi =
Var(r(k)·i)∑
j Var

(
r(k)·j

) . That is, the square of the weight is a beta probability density 

function with specific parameters 1 and 25, evaluated at the ratio of the sample variance 
of the i-th variable in the data to that of all variables.

Based on the null model by regressing survival outcomes on only the environ-
mental covariates Es without gene covariates, let E is an N × q design matrix for 
the q environmental covariates, and V = diag(c1, . . . , cN )− PP

′
 , where P is an N × ν 

matrix with element pij the baseline hazard for individual i at ordered failure time t(j)
, j = 1, . . . , ν, and ci the cumulative hazard for individual i at observed time ti.

�(t|ei, x̃i,ui) = �0(t)exp
(
e
′

iα + x̃
′

iγ + u
′

iη
)

Qk = m
′
R(k)W (k)W (k)R

′

(k)m, k = 1, . . . ,A

√
W (k)i,i = Beta(vi, 1, 25), i = 1, . . . l; k = 1, . . . ,A
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Let 
∑

(k) = W (k)R
′

(k)

(
V − VE

(
E
′
VE

)−1
E

′
V

)
R(k)W (k) be the covariance matrix of 

the vector W (k)R(k)m under the null hypothesis of all gene-environment interaction 
pairs in the candidate pathway group k having null effects. Under the null hypothesis, 
the SKAT statistic follows a weighted sum of chi-square distribution:

where �(k)j,j = l,…, l are the eigenvalues of 
∑

(k) , and χ2
1,j ’s are independent 1-df central 

chi-square random variables.
We use the Davies method [17] to approximate the tail probability of the mixture 

chi-square distribution, which can be calculated by the R package “CompQuadForm” 
[18]. Generally speaking, the Davies method is accurate [19]. The p-values 

{
p1,..., pA} 

are used as our group screening measure; a smaller p-value corresponds to a higher 
group importance and therefore leads to a higher priority of selection.

Step 3 In the third step, we select significant G-E interactions based on the per-
mutation procedure with the cutoff point determined by the soft-thresholding rule, 
where the permutation is applied to the covariate matrix consisting of both genes and 
environmental covariates. We randomly permute the original data {Yi, ei , xi} to form 
the permuted data.{

Yi, eπ(i) , xπ(i)
}

 following the null model, where Yi = (ti, δi) is the survival outcome, 
and {π(1), ..., π(N )} is a random permutation of the index. Then we apply again the 
SKAT test for each of the candidate pathway groups with the permuted data to obtain 
the group screening measures (p-values) 

{
p∗1 , ..., p

∗
A

}
 and the desired threshold τ is 

obtained by taking the minimum of 
{
p∗1 , ..., p

∗
A

}
.

To obtain a stable threshold, we repeat the above permutation process more times 
and define a cutoff point to select candidate pathway groups by using the median of 
the obtained desired thresholds, that is Cint = median {τ1 , ..., τI } . We adopt Cint to 
select candidate pathway groups, i.e.

is our selected set of candidate pathway groups. In practice, we take I as 30.
Note that he permutation procedure used to determine a data-driven threshold was 

similar to that proposed by Fan et al. [20], which implicitly assumes that the censor-
ing mechanism is independent of all covariates. This stronger assumption on censor-
ing mechanism will not invalidate the permutation procedure since what we indeed 
require for the null hypothesis is that the tuple of time and censoring indicator is 
independent of all the covariates.

Step 4 Finally, in the framework of joint modeling, based on environmental covari-
ates, and selected genes and G-E interactions, a penalized regression with an appro-
priate penalty is used to establish the final survival prediction model. Therefore, we 
apply the penalized Cox’s regression together with the Ridge or Lasso penalty to build 
the final prediction model based on all environmental variables, genes in M̂main and 

Q(k) ∼

l∑

j=1

�(k)jχ
2
1,j ,

M̂int =
{
b : pb <Cint , b = 1, ..., A},
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G-E interactions in M̂int . The penalized Cox regression model with the Ridge or Lasso 
penalty can be obtained through the R package “glmnet” [21].

In the first step and the second step of the new OGS method, as the original OGS 
method in Wang and Chen [11], we still apply the overlapping group selection method to 
identify the causal pathways and the SKAT test to obtain the group-specific significance. 
However, the new OGS method improves the original one [11] by using an unsuper-
vised manner for weight construction in the second step of the OGS procedure. In the 
third step of the new OGS method, we perform multiple permutations to obtain a stable 
threshold for interaction group selection, where the permutation process is the same as 
in the original OGS, except that permeation is now applied to a covariate matrix con-
sisting of genes and environmental factors. Finally, the penalized Cox’s regression with 
the Ridge or Lasso penalty is still applied to build the final survival prediction model 
based on the environmental factors, the selected genes and the selected G-E interac-
tions. These modifications bring better performance for model selection, estimation, and 
prediction.

Results

Comparison with alternative methods in variable selection, estimation, and prediction

In the following simulations, we study the performances of the proposed OGS approach 
in variable selection, estimation and prediction, and compare them with the perfor-
mance of the “Oracle”, “SIS Lasso”, “Ordinary Lasso” and “GSIS SCAD” methods. The 
“Oracle” method is based on the underlying true model, which is known in the simula-
tions but unknown in real applications. The “SIS Lasso” method [8] uses univariate Cox’s 
regression to select environmental variables, genes, and G-E interactions one by one, 
with a prefixed number 

(
N

log (N )

)
 of top-ranked predictors as our candidate model, and 

then includes the selected variables in a penalized Cox regression model with the Lasso 
penalty to form the final prediction model. The “Ordinary Lasso” method is the penal-
ized Cox regression model with the Lasso penalty considering all environmental varia-
bles, genes, and G-E interactions in the model. The “GSIS SCAD” method is an 
overlapping group Cox regression model with the SCAD penalty based on the latent 
effect approach, which can be performed by the R package “grpregOverlap” [14].

For performance comparison, we adopt the root mean squared error (RMSE) to meas-
ure estimation accuracy, defined as

where S is the size of the full model including all main and interaction covariates and 
θ ′ =

(
α′,β ′, η′

)
.

To evaluate the estimation performance, we report RMSE.M, the mean of the root 
mean square errors of 200 simulations. To evaluate the performance of the selection 
accuracy, we consider various criteria: P.int is the proportion of the underlying effec-
tive G-E interaction variables contained by the selected G-E interaction variables; 
Sen. is the sensitivity, defined as the proportion of the underlying effective variables 

RMSE =

√√√√1

S

S∑

j=1

(
θj − θ̂j

)2
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being selected; Spe. is the specificity, defined as the proportion of the underlying inef-
fective variables not being selected. We also report the median size of the selected 
models, S.model, in 200 simulations. To evaluate the performance of survival predic-
tion, we consider three measures of prediction accuracy: the deviance, the c-index 
proposed by Harrell et al. [22] and time-dependent AUC proposed by Blanche et al. 
[23]; smaller deviance or larger c-index and time-dependent AUC corresponds to bet-
ter prediction accuracy. The median values of these measure over 200 simulations are 
reported.

Let θ̂
′

=

(
α̂

′

, β̂
′

, η̂
′

)
 an estimator of the (penalized) Cox regression parameter in a 

prediction model obtained from the training dataset. Let 
(
t∗i , δ

∗
i , e

∗

i , x
∗

i ,w
∗

i

)
 be the sur-

vival and covariate data of subject i in the test data. Define 
(
e
∗′
i , x

∗′
i ,w

∗′
i

)
θ̂ as the prog-

nosis index (PI) value for subject i in the test data. The Cox test is defined as the 
p-value of PI when PI is used as the covariate in the univariate Cox model for survival 
outcomes in the test data. Similarly, the LR-test is the p-value of the log-rank test for 
the null hypothesis of equal survival between the “good” and “poor” prognostic 
groups in the test data, where the “good” and “poor” prognostic groups are classified 
according to whether the PI value is higher or lower than the median PI value in the 
test data. Smaller Cox-test and LR-test values correspond to better predictive power.

In simulations we consider survival data with a cohort size 300 in the training set, 
where each subject’s survival time follows the Cox proportional hazards model

with the covariates e and x jointly following a multivariate standard normal dis-
tribution with correlation corr

(
e·j , e·k

)
= 0.3|j−k| and corr

(
x·j , x·k

)
= 0.5|j−k| , and 

corr
(
e·j , x·k

)
= 0 for all j, k . The censoring time distribution follows a uniform dis-

tribution. We then generate survival data, independent of the training data, with 
a cohort size 100 as the test data to assess the prediction accuracy for different 
methods.

In this simulation study, we consider 5 environmental variables and assume that 
the first 4 are related to the survival outcome, and the corresponding effects are 1.5, 
2.25, 3, -1.5. On the other hand, the gene covariates considered contain 25 groups 
that have different group sizes (the numbers of genes) and may share with each other 
some of the genes. The group sizes and the overlapping structure (i.e. the number of 
the shared genes between two overlapping groups) are shown in Table 1, where the 
overlapping groups are shown side by side. For example, group 1 contains 3 genes, as 
group 2 does, but the two groups contain only 5 unique genes, and 1 gene is shared 
between the two groups. As a result, there are a total of 500 genes and 632 group-spe-
cific latent effects (see “Methods” section) in this example. Figure 2 displays the gene 
network structure. Groups 1, 7, 13, and 19 are set to be effective, and genes in each of 
them have constant latent effects of 3, 3, 2, and − 2, respectively. In addition, effective 
interactions (E1 * G22, E1 * G24, E2 * G26) with the corresponding effects (1.5, 1.5, 2) 
and (E2 * G78, E3 * G83, E3 * G88) with the corresponding effects (−1,−1.5,−2) are in 
group 7 and group 13, respectively. The number of effective environment, gene, or 
G-E interaction factors is 91 among a total of 3,005 such factors. We examine the 

�0(t|e, x,w) = 10exp
(
e
′α + x

′β + w
′η
)
,
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performances of different methods under a censoring rate of 30%, 50%, or 70%. We 
also conduct further simulations to demonstrate the performances of the new pro-
posal, whose details and results can be seen in Additional file 1: Appendix S2.

Summary of simulation results

From the simulation results shown in Table 2 and Additional file 1: Table S3 in Appen-
dix S2 where the gene network structure is complex, we see that the OGS method using 
the Lasso or Ridge penalty performs substantially better than the “SIS Lasso”, “Ordinary 
Lasso” and “GSIS SCAD” methods in variable selection, effect estimation, and survival 
prediction. On the other hand, simulation results shown in Additional file 1: Table S3 
of Appendix S2 where a simpler gene structure is considered, the performance of OGS 
with Lasso or Ridge penalty is worse than that of the “Ordinary Lasso” method when the 
censoring rate is 30%; while when the censoring rate is higher (50% or 70%), the OGS 
with the Lasso or Ridge penalty performs better than the “Ordinary Lasso”.

Furthermore, further simulation studies with a small cohort size are conducted under 
the scenario where all simulated settings are the same as those in the previous simulation 
study except for a cohort size defined as 150/50 (training/testing). We still obtain simi-
lar numeric results patterns; these corresponding results are shown in Additional file 1: 
Tables S5–S7 in Appendix S3. In addition, we also conduct a simulation study that the 
overlapping genes occur among three groups instead of just two, where we still obtain 
result patterns similar to those under two groups; please see Additional file 1: Table S8 in 
Appendix S2.

Real data application: TCGA HNSCC data

The TCGA HNSCC RNA-Seq expression data, together with the phenotype data con-
taining the survival time and censoring status data, can be downloaded from the R 
package’TCGAbiolinks’ [24], or’UCSCXenaTools’ [25]. After excluding patients with 
missing survival time data, our analysis is focused on the subset of the TCGA HNSCC 
data with 517 patients and 20,501 gene expression variables. The censoring rate of the 

Fig. 2  Gene network structure
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survival time in the data is about 58%. The TCGA HNSCC clinical information data can 
be obtained from the’FireBrowse’ database [26].

Since the number of cancer-related genes is expected to be limited, we conduct pre-
screening using non-parametric inverse probability-of-censoring weighted (IPCW) 
Kendall’s tau correlation [27], which can also improve stability for feature selection. The 
top 2000 genes with the largest absolute IPCW Kendall’s tau correlation are selected for 
downstream analysis.

The five E factors analyzed including AJCC pathologic stage nodes, AJCC pathologic 
stage tumor, age, gender, and ICD O3 site. Summary information for these clinical vari-
ables is reported in the Table 3. Some of the clinical variables contain missing values, 
and we use the sparse boosting method [28] in the R package “GEInter” [29] to perform 
multiple imputation for the missing values in the clinical variables.

The PTReg method [5] was developed to conduct robust joint analysis using penal-
ized trimmed regression with the MCP penalty under the AFT model for the right-cen-
sored survival outcome. We are interested in comparing the PTReg approach with our 
proposed OGS approach in the real data application. The whole 12,005 main and G-E 
interaction predictors are considered for the “SIS Lasso”, “Ordinary Lasso”, and “PTReg” 

Table 2  The median of the performance measures out of 200 simulation replications for different 
approaches

Oracle GSIS SCAD SIS lasso Ordinary lasso OGS ridge OGS lasso

Censoring rate = 30%

RMSE 0.3520 0.2936 0.3629 0.3582 0.3667 0.3194

P.int 1.0000 0.0000 0.0000 0.1667 0.5000 0.5000

Sen 1.0000 0.8901 0.3736 0.7473 0.9670 0.9670

Spe 1.0000 1.0000 0.9962 0.9823 0.9399 0.9875

C.model 91.0000 81.0000 46.0000 120.0000 266.0000 124.0000

Deviance − 125.2257 − 113.7699 − 60.0277 − 114.7706 − 70.2329 − 250.4203

C-index 0.8727 0.9244 0.7875 0.8722 0.8969 0.9549

AUC​ 0.9392 0.9730 0.8540 0.9418 0.9650 0.9908

Censoring rate = 50%

RMSE 0.3437 0.3668 0.3631 0.3618 0.3670 0.3451

P.int 1.0000 0.0000 0.0000 0.1667 0.5000 0.3333

Sen 1.0000 0.8901 0.3516 0.5934 0.9670 0.8791

Spe 1.0000 1.0000 0.9955 0.9825 0.9221 0.9911

C.model 91.0000 81.0000 45.0000 104.5000 311.0000 104.0000

Deviance − 96.4789 − 32.3585 − 43.5888 − 66.1335 − 50.0469 − 132.8876

C-index 0.8841 0.8027 0.7915 0.8491 0.8929 0.9222

AUC​ 0.9363 0.8537 0.8433 0.8985 0.9461 0.9668

Censoring rate = 70%

RMSE 0.3407 0.3671 0.3643 0.3654 0.3674 0.3561

P.int 1.0000 0.0000 0.0000 0.0000 0.5000 0.1667

Sen 1.0000 0.8901 0.2747 0.4176 0.9670 0.6484

Spe 1.0000 1.0000 0.9942 0.9849 0.9224 0.9935

C.model 91.0000 81.0000 43.0000 83.0000 294.5000 77.0000

Deviance − 0.8763 − 16.1453 − 22.9206 − 31.5497 − 31.7002 − 58.9638

C-index 0.8617 0.7569 0.7791 0.8174 0.8837 0.8866

AUC​ 0.8996 0.7844 0.8136 0.8430 0.9201 0.9212
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methods. For the OGS method, among the 2000 preselected genes, prior pathway infor-
mation for 1489 genes, which are mapped into 6015 pathways based on the GO biologi-
cal process database, is utilized. The 511 genes that are not mapped into any pathways in 
the GO biological process database are either discarded or put together as a group for 
the latent effect analysis in the OGS method, leading to a total of 8939 or 12,005 main 
and G-E interaction effects considered.

We take ten random splits of the whole data into 413:104 training/test sets to evalu-
ate the performances of all the methods considered in the TCGA HNSCC data appli-
cation. Table 4 reports the median of the survival prediction results over the ten folds 
when the 511 ungrouped genes are discarded from analysis. We see that the perfor-
mance of the OGS method with Ridge or Lasso penalty is better than the “SIS Lasso”, 
“Ordinary Lasso”, and “PTReg” methods. The OGS approach putting the 511 ungrouped 
genes together as an additional group results in the same prediction model as the one 
discarding the ungrouped genes. Also, the OGS analysis results based on the pathway 
information obtained from other annotated gene set databases, including GO cellular 
component (GO-CC), GO molecular function (GO-mf), and KEEG, are compared with 
the other methods for survival prediction in the TCGA HNSCC data, as shown in Addi-
tional file 1: Table S9. These additional results based on pathway information from alter-
native gene set databases still reveal that the OGS approach performs better than the 
other methods.

Based on one random split of the data, Fig.  3 displays the Kaplan–Meier survival 
curves of the “good” and “poor” prognosis groups in the test data. It can be seen that 
the OGS method separates the two groups better than other methods. When applying 
the OGS with the Lasso penalty to the entire data based on the GO biological process 

Table 3  The selected clinical variables information of the TCGA HNSCC

Variable Coding Missing status Continuous(EC) 
/discrete(ED)

AJCC pathologic nodes n0 = 0, n1 = 1, (n2, n2a, n2b, n2c) = 2, n3 = 3, 
nx = 4

YES ED

AJCC pathologic tumor t0 = 0, t1 = 1, t2 = 2, t3 = 3, (t4, t4a, t4b) = 4, tx = 5 YES ED

age No EC

gender female = 0, male = 1 No ED

ICD O3 site (C00.9, C01.9, C02.1, C02.9) = 0, (C03.0, C03.1, 
C03.9, C04.0, C04.9) = 1, (C05.0, C05.9 C06.0, 
C06.2, C06.9) = 2, (C09.9, C10.3, C10.9) = 3, (C13.9, 
C14.8) = 4, and 5 for others

No ED

Table 4  Results (median of prediction accuracy of different methods in the TCGA HNSCC data over 
10 random splits of 413:104 training /test sets based on GO-BP database)

GSIS SCAD SIS lasso Ordinary lasso OGS ridge OGS lasso PTReg

Cox-test 0.1842 0.0048 0.0029 0.0002 0.0013 0.0660

LR-test 0.2949 0.0115 0.0117 0.0015 0.0077 0.0580

Deviance 34.6441 8.7698 2.8340 0.0899 2.8927 44.9984

C-index 0.5534 0.6323 0.6471 0.7066 0.6618 0.5851

AUC​ 0.5231 0.6505 0.6432 0.7005 0.6660 0.6213
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database, we identify several important G-E interaction effects, and obtain the corre-
sponding parameter estimates, as shown in Additional file1: Table  S10. We note that 
the clinical variable “Age” interacts with several genes, and most of these genes, such as 
“CAMP” [30], “DEFB1” [31], “MAP2K7” [32] have been shown to be related to HNSCC. 
And “Age” factor has been shown to be related to HNSCC [33].

Real data application: TCGA ESCA data

The TCGA ESCA RNA-Seq expression data, together with the phenotype data con-
taining the survival time and censoring status data, can be downloaded from the R 
package’TCGAbiolinks’ [24], or’UCSCXenaTools’ [25]. After excluding patients with 
missing survival time data, our analysis is focused on the subset of the TCGA ESCA 
data with 368 patients and 20,501 gene expression variables. The censoring rate of the 
survival time in the data is about 58%. The TCGA ESCA clinical information data can be 
obtained from the’FireBrowse’ database [26].

Since the number of cancer-related genes is expected to be limited, we conduct pre-
screening using non-parametric inverse probability-of-censoring weighted (IPCW) 
Kendall’s tau correlation [27], which can also improve stability for feature selection. The 
top 2000 genes with the largest absolute IPCW Kendall’s tau correlation are selected for 
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Fig. 3  Kaplan–Meier curves for the 104 subjects in the TCGA HNSCC testing data. Good and poor groups are 
identified by the median of the PI scores in the test dataset
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downstream analysis. The seven clinical variables whose E effects are analyzed include 
age, gender, esophageal tumor central location, person neoplasm cancer status, race, 
BMI, and AJCC pathologic stage, and their summary information is reported in the 
Table  5. Some of the clinical variables contain missing values, and we use the sparse 
boosting method in the R package “GEInter” to perform multiple imputation for the 
missing values in the clinical variables. Based on the GO biological process database, 
1458 genes among the top 2000 genes are mapped into 4360 pathways and such prior 
pathway information is utilized in the OGS method. Excluding the genes without being 
mapped into any pathway, there are a total of 11,671 main and G-E interaction covari-
ates in the proposed OGS method. On the other hand, a total of 16,007 main and G-E 
interaction predictors are considered in the “SIS Lasso”, “Ordinary Lasso”, and “PTReg” 
methods.

We take ten random splits of the whole TCGA ESCA data into 294:74 training/test 
sets to evaluate the performances of all methods for survival prediction in the TCGA 
ESCA data. Table 6 reports the median of the survival prediction results among the 
ten folds. We see that the performance of the OGS method with the Ridge or Lasso 
penalty is better than the “SIS Lasso”, “Ordinary Lasso”, and “PTReg” methods. In 
addition to the OGS analysis discarding the 542 genes without mapped pathways in 
the GO biological process database, we also perform the OGS analysis putting the 
unmapped genes together as an additional group, and the two different implements 
of the OGS method result in the same prediction model. Also, different annotated 
gene sets databases, including GO-CC, GO-MF, and KEEG, are also used in the OGS 

Table 5  The selected clinical variables information of the TCGA ESCA data

Variable Coding Missing status Continuous(EC) 
/discrete(ED)

Esophageal tumor central location proximal = 1, mid = 2, distal = 3 Yes ED

Person neoplasm cancer status tumor free = 1, with tumor = 2, Yes ED

Race white = 1, asian = 2, black or African 
american = 3

Yes ED

BMI weight/height^2 Yes EC

AJCC pathologic stage (stage i, stage ia, stage ib) = 1 (stage ii, 
stage iia, stage iib) = 2 (stage iii, stage 
iiia, stage iiib, stage iiic) = 3 (stage iv, 
stage iva) = 4

Yes ED

Age days_to_ birth No EC

Gender female = 0, male = 1 No ED

Table 6  Results (median of prediction accuracy of different methods in the TCGA ESCA data over 10 
random splits of 294:74 training /test sets based on GO-BP database)

GSIS SCAD SIS lasso Ordinary lasso OGS ridge OGS lasso PTReg

Cox-test 0.4685 0.0024 8.2557e − 09 6.0168e − 10 8.0676e − 10 0.0330

LR-test 0.4944 0.0308 6.1948e − 08 1.8792e − 08 1.2942e − 07 0.0244

Deviance 161.1422 11.4386 − 31.7249 − 44.0441 − 41.3946 57.3278

C-index 0.5452 0.6400 0.8759 0.8984 0.8862 0.7041

AUC​ 0.4843 0.5968 0.9006 0.9294 0.9109 0.7899
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approach to catch pathway information. As shown in Additional file 1: Table S11. the 
OGS method still outperforms than the other methods using such alternative path-
way information.

Based on one random split of the data, Fig.  4 displays the Kaplan–Meier survival 
curves for the “good” and “poor” prognosis groups in the test data. It is seen that the 
two survival curves are better separated by the OGS approach than other methods. 
When applying the OGS with the Lasso penalty for whole data based on the GO bio-
logical process database, we identify and estimate several important G-E interaction 
effects, which are shown in Additional file 1: Table S12. We note that the clinical vari-
able “Age” interacts with several genes, and most of these genes, such as “CD40LG” 
[34], “DEK” [35], “IL6” [36] have been shown to be related to HNSCC. And two 
“Weight” and “Age” factors have been shown to be related to HNSCC ([37, 38]).

Fig. 4  Kaplan–Meier curves for the 74 subjects in the TCGA ESCA testing data. Good and poor groups are 
identified by the median of the PI scores in the test dataset
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Conclusion
In this article, we propose a two-stage overlapping group screening procedure to 
identify important main and gene-environment (G-E) interaction effects efficiently 
for survival prediction. In the first stage, the new proposal utilizes the latent effect 
approach to identify candidate gene pathways for survival prediction, adjusting for 
the E and G-E interaction factors. Different gene pathways are allowed to overlap 
with each other, i.e., to share common genes. In the second stage, we utilize the SKAT 
approach [15], which is a popular group testing approach, to obtain the group-level 
p-value of each candidate gene pathway as well as the associated G-E factors, adjust-
ing for the E factors. A pathway as well as the associated G-E factors is then selected 
when their group-level p-value is smaller than the one under covariate (both G and 
E factors) permutation. The final survival prediction model is constructed by a Cox 
model based on the E factors, the selected gene pathways as well as the associated 
G-E factors, subject to the Ridge or Lasso penalty. Simulation and real data studies 
demonstrate that, compared with the analysis that ignores pathway information, the 
new proposal can significantly improve the accuracy of gene and gene-environment 
interaction selection, as well as the resulting survival predictions.

The new OGS method aims at gene-environment interaction, while the OGS in 
Wang and Chen [11] aims at gene–gene interaction. The new OGS method improves 
the original one [11] by using an unsupervised manner for weight construction in step 
2 of the OGS procedure, and performing multiple permutations to obtain a stable 
threshold for interaction group selection in step 3 of the OGS procedure. These mod-
ifications bring better performance for model selection, estimation, and prediction.

Discussion
The OGS method is flexible. Although we focus on survival prediction based on 
the Cox proportional hazards model, the same idea can straightforwardly apply to 
other outcome models, such as the proportional odds survival time model, the logis-
tic regression model for binary outcomes, and the multinomial logistic regression 
model for multi-class outcomes. For example, the SKAT statistic involved in the OGS 
method can be modified simply by using the residuals from the alternative model 
under consideration.

Since the gene data is high-dimensional, following the conventional feature screening 
idea, the initial step of the OGS method is to use some univariate approach to screen 
gene variables for downstream analysis. Such a supervised screening procedure is com-
mon (e.g., Fan et al. [20], Xu et al. [6], and Xu et al. [5]) in literature, and is in fact con-
ducted after splitting the whole sample into the training and testing subsamples. In other 
words, when we evaluate the prediction performance using the test sample, the effect 
of supervised feature screening procedure has been taken into account and the evalua-
tion is fair. We use the nonparametric inverse probability of censoring weighted (IPCW) 
Kendall’s tau correlation [27] to select the top 2,000 genes for downstream analysis. The 
IPCW Kendall’s measure it can be applied to a wide range of survival models, and the 
Kendall’s tau measure is not influenced by outliers, which is a major concern in gene 
expression data where contaminated data are common.
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As in Jacob et al. [13] and Zeng and Breheny [14], the latent effect model is indeed 
over-parameterized, and the effects of each gene decomposed into the pathways are 
latent and unobserved. Owing to this nature of over parametrization, the penalized 
regression (group lasso) method is needed and employed for parameter estimation. 
Using such over-parametrization and penalized regression techniques, it is helpful to 
identify group-specific effects from the original Cox model regression parameters.

The OGS method employs the latent effect approach to extract gene network struc-
ture information in terms of gene pathways. This requires a pre-designated gene 
group (pathway) structure and is limited to genes that can be assigned to at least one 
group (pathway). It is interesting to study how to relax these restrictions to improve 
the performance of feature selection and survival prediction in the presence some 
covariate network structure.

In fact, the OGS procedure does not respect the hierarchy between main and inter-
action effects. We agree with that, if the hierarchy principle can be incorporated, the 
accuracy of interaction selection may have improved strength. Wu et al. [7] utilize a 
decomposition technique to explain the interaction hierarchy, and such decomposi-
tion technique may be incorporated into the OGS procedure as a further extension.

Moreover, the OGS method does not select at both the pathway level and the gene 
level simultaneously. How to improve the OGS in selecting pathways and genes 
simultaneously will be investigated in our future work. The last step of the OGS is to 
apply penalized Cox regression together with Ridge or Lasso penalty to build the final 
prediction model, we can try to combine the other penalties like MCP, Adaptive Lasso 
to enhance the robustness of the estimation of the OGS (Jiang et al. [39], Ren et al. 
[40]). This issue will also be investigated in our future work.
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