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Background: The mechanisms through which immunosuppressed patients bear
increased risk and worse survival in oral squamous cell carcinoma (OSCC) are unclear.
Here, we used deep learning to investigate the genetic mechanisms underlying
immunosuppression in the survival of OSCC patients, especially from the aspect of
various survival-related subtypes.

Materials and methods: OSCC samples data were obtained from The Cancer
Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and OSCC-
related genetic datasets with survival data in the National Center for Biotechnology
Information (NCBI). Immunosuppression genes (ISGs) were obtained from the HisgAtlas
and DisGeNET databases. Survival analyses were performed to identify the ISGs
with significant prognostic values in OSCC. A deep learning (DL)-based model
was established for robustly differentiating the survival subpopulations of OSCC
samples. In order to understand the characteristics of the different survival-risk
subtypes of OSCC samples, differential expression analysis and functional enrichment
analysis were performed.

Results: A total of 317 OSCC samples were divided into one inferring cohort (TCGA)
and four confirmation cohorts (ICGC set, GSE41613, GSE42743, and GSE75538).
Eleven ISGs (i.e., BGLAP, CALCA, CTLA4, CXCL8, FGFR3, HPRT1, IL22, ORMDL3,
TLR3, SPHK1, and INHBB) showed prognostic value in OSCC. The DL-based model
provided two optimal subgroups of TCGA-OSCC samples with significant differences
(p = 4.91E-22) and good model fitness [concordance index (C-index) = 0.77]. The DL
model was validated by using four external confirmation cohorts: ICGC cohort (n = 40,
C-index = 0.39), GSE41613 dataset (n = 97, C-index = 0.86), GSE42743 dataset
(n = 71, C-index = 0.87), and GSE75538 dataset (n = 14, C-index = 0.48). Importantly,
subtype Sub1 demonstrated a lower probability of survival and thus a more aggressive
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nature compared with subtype Sub2. ISGs in subtype Sub1 were enriched in the tumor-
infiltrating immune cells-related pathways and cancer progression-related pathways,
while those in subtype Sub2 were enriched in the metabolism-related pathways.

Conclusion: The two survival subtypes of OSCC identified by deep learning can
benefit clinical practitioners to divide immunocompromised patients with oral cancer
into two subpopulations and give them target drugs and thus might be helpful for
improving the survival of these patients and providing novel therapeutic strategies in
the precision medicine area.

Keywords: immunosuppression, oral squamous cell carcinoma, survival, deep learning, bioinformatics

INTRODUCTION

Tumor cells can produce a variety of immunosuppressive factors
that can inhibit the normal antitumor functions of immune
cells, such as tumor-associated macrophages (TAMs), tumor-
associated neutrophils (TANs), cancer-associated fibroblasts
(CAFs), and regulatory T cells (Tregs; Liu and Cao, 2016). By the
immunosuppression mechanisms mediated by the interaction
between tumor cells and immune cells, tumor cells can escape
elimination from immune surveillance and tumor immunity,
thereby further contributing to cancer progression (Kim et al.,
2007). Immunosuppression is involved in oral squamous cell
carcinoma (OSCC) pathogenesis and contributes to its increased
incidence and poor cancer-specific outcomes (Chang et al.,
2020). Patients with a history of immunosuppression (e.g.,
organ transplant, autoimmune disease, pulmonary disorder,
hematological malignancy, myeloproliferative disorder, and
HIV infection) have been shown to have an increased risk
of a second malignancy in OSCC (Tota et al., 2018). In
addition, immunosuppression is significantly associated with
poor outcomes of OSCC, and immunosuppressed patients
have been shown to have an approximately twofold increase
in the cancer-specific outcomes (e.g., recurrence and overall
survival) compared with non-immunosuppressed individuals
(Margalit et al., 2016).

The application of immunosuppressive drug agents (e.g.,
calcineurin inhibitors, antiproliferative agents, mTOR inhibitor,
and steroids) can inhibit the strength and activity of the immune
system by affecting the expression of many immunosuppression
genes (ISGs) {e.g., cytokines [interleukin (IL)-2, IL-4, IL-6, IL-
15, IL-18, IL-23, interferon gamma (IFN-γ), and tumor necrosis
factor alpha (TNF-α)] and chemoattractant chemokines (e.g.,
CCL-2, CXCL-9, and CXCL-10)} (Misra et al., 2020). Although
the dysregulation of ISGs has been shown to contribute to the
carcinogenesis of oral cancers (Jewett et al., 2006), the specific
ISGs and their mediated signaling pathways involved in the
pathogenesis of OSCC have not yet been identified from a
comprehensive and systematic aspect. The identification of ISGs
as biomarkers in OSCC might have significant value for the
clinical practice: on the one hand, selected ISGs could be used
for evaluating the incidence risk and prognosis of OSCC; on the
other hand, these could be regarded as therapeutic targets for
improved OSCC management.

In order to address this research gap, bioinformatic analyses
were performed based on the human ISGs obtained from
HisgAtlas (Liu et al., 2017) and DisGeNET (Piñero et al.,
2017), and the immunosuppressive drug agents were downloaded
from the DrugBank (Wishart et al., 2018). Gene expression
data regarding OSCC was collected from the TCGA databases
(Tomczak et al., 2015). Deep learning (DL), a machine learning
method harvesting Artificial Intelligence, has shown high impact
in cancer research for classifying the subtypes of cancer samples
in liver cancer (Chaudhary et al., 2018), breast cancer (Rohani
and Eslahchi, 2020), lung cancer (Asuntha and Srinivasan,
2020), and head and neck cancer (Zhao Z. et al., 2020). Since
genetic heterogeneity is a common feature of different tumors,
molecular subtyping of cancers could be very helpful in devising
precision medicine approaches for treating each subtype of
cancer patients (Koo et al., 2016). Therefore, a DL-based model
was applied in this research for classifying OSCC patients into
molecular subtypes based on their significant feature ISGs’
biological functions.

Thus, this study aimed to investigate the genetic mechanisms
of immunosuppression in the pathogenesis of OSCC using
bioinformatics analyses to identify the ISGs with significant
prognostic value in OSCC, and the ISGs-involving pathways
enriched in the aggressive subtype of OSCC, as differentiated by
a deep learning model.

MATERIALS AND METHODS

The Study Design
An overview of the workflow of this study is depicted in Figure 1.
In brief, the TCGA set as inferring set and four confirmation
cohorts were downloaded, and the data information in these
datasets is shown in Table 1. The ISGs were obtained from
three databases [DisGeNET (Piñero et al., 2017), HisgAtlas (Liu
et al., 2017), and DrugBank (Wishart et al., 2018)]. First, the
proportion and expression profiling of 22 TIICs were analyzed by
using CIBERSORT. Second, the survival analysis was performed
to screen out the ISGs that were most significantly related
to prognosis. Afterward, the deep learning-based model was
constructed to achieve the compression and transformation of
gene features. These reduced new gene features were used for
clustering the samples by the K-means clustering algorithm.
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Then, a supervised classification model was constructed by
using the support vector machine (SVM) algorithm. In order to
investigate the difference between the subtypes identified by the
deep learning-based model, the functional enrichment analysis
was performed to identify the functional difference of the ISGs
enriched in varying subtypes.

Data Procurement
Inferring Cohort
Head and neck squamous cell carcinoma (HNSCC) data were
obtained from the TCGA portal1 (Tomczak et al., 2015). Based
on the TCGA-Assembler 2 (Version 2.0.62) (Wei et al., 2018),
the HNSCC samples with the RNA sequencing (RNA-Seq)
data (UNC IlluminaHiSeq_RNASeqV2; Level 3) and the clinical
information were obtained. Among the HNSCC data, a total
of 317 OSCC samples were selected by choosing the specific
anatomic sites, including buccal mucosa, alveolar ridge, floor of
mouth, hard palate, oral cavity, and the anterior two-thirds of
the tongue (Krishna et al., 2014). In order to normalize and
preprocess the data, three steps introduced by Wang et al. were
performed to deal with the missing values (Wang et al., 2014).
First, the biological features [e.g., genes/microRNAs (miRNAs)]
were removed if they have zero value in more than 20% of
patients. The samples were removed if they have missing values
across more than 20% features. Second, we used the impute
function from the R impute package (Xiang et al., 2008) to fill out
the missing values. Third, we removed input features with zero
values across all samples.

Confirmation Cohorts
Confirmation cohort 1 (ICGC cohort and RNA-Seq)
A total of 178 OSCC samples with RNA-Seq data were obtained
from the International Cancer Genome Consortium (ICGC)
portal3 (Zhang et al., 2011). Among these 178 OSCC samples, 40
samples with the survival information were selected. This cohort
was used for validating the analyzing results.

Confirmation cohort 2 (NCI cohort, microarray gene
expression, and GSE41613)
A total of 97 samples with survival information were chosen
from the GSE41613 microarray dataset4(, which was from a
study of patients with OSCC (Lohavanichbutr et al., 2013). The
experimental platform of this dataset is based on GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

Confirmation cohort 3 (NCI cohort, microarray gene
expression, and GSE42743)
A total of 97 samples with survival information were chosen
from the GSE42743 microarray dataset5(, which was from a
study of patients with OSCC (Lohavanichbutr et al., 2013). The
experimental platform of this dataset is based on GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

1https://tcga-data.nci.nih.gov/tcga/
2http://www.compgenome.org/TCGA-Assembler/
3https://dcc.icgc.org/projects/ORCA-IN
4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41613
5https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42743

Confirmation cohort 4 (NCI cohort, microarray gene
expression, and GSE75538)
A total of 14 samples with survival information were chosen from
the GSE75538 microarray dataset6(, which was from a study of
patients with OSCC (Krishnan et al., 2016). The experimental
platform of this dataset is based on GPL18281 Illumina Human
HT-12 WG-DASL V4.0 R2 expression beadchip.

Procurement of ISGs
The immunosuppression-related genes were downloaded from
DisGeNET database7 (Piñero et al., 2017), HisgAtlas database8

(Liu et al., 2017), and Drugbank database9 (Wishart et al.,
2018). After combining ISGs obtained from the above three
databases, a total of 1,181 immunosuppressant genes were
obtained. Afterward, the expression profiling of these 1,181
immunosuppressant genes was extracted from the OSCC
datasets. Among these 1,181 ISGs, the expression level of the
only one gene TNFRSF6B in the OSCC samples was zero
and thus removed, and finally, 1,180 ISGs were used for the
subsequent analysis.

Analysis of Tumor-Infiltrating Immune
Cells in OSCC Samples
Twenty-two tumor-infiltrating immune cells (TIICs) were
obtained based on the CIBERSORT webtool10 (Chen et al., 2018).
First, the expression profiles of ISGs in the OSCC samples were
normalized, and the proportion of tumor-infiltrating immune
cells (TIICs) in OSCC and healthy control samples were predicted
by the CIBERSORT webtool. Second, the expression levels of
varying ISGs in each type of cell were obtained. The average
value of all ISGs in a certain type of cell was regarded as the
expression levels of this type of cell in samples. The heatmap was
plotted to show the expression levels of 22 TIICs in 151 samples (3
healthy samples and 148 OSCC samples). Third, the correlation
plot was drawn based on the expression levels of TIICs in 151
samples in order to analyze the correlation between TIICs in
the pathogenesis of OSCC. The Pearson correlation coefficient
was used for calculating the correlation between any two types
of TIICs. In addition, the Wilcox test was used for examining
the differential expression status of each TIIC in OSCC samples
compared with the healthy samples. Afterward, Kaplan–Meier
analysis was utilized to investigate the prognostic value of 22
tumors infiltrating immune cells in OSCC tissues.

The Survival Analysis of ISGs
The OSCC patients were divided into two groups (i.e., high
expression group and low expression group) according to
the median value of gene expression levels of ISGs. The R
package survival (Lin and Zelterman, 2002) was employed
to mine ISGs that were significant prognostic indicators
using Cox proportional hazards model. The ISGs with a

6https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75538
7http://www.disgenet.org
8http://biokb.nb.org/HisgAtlas/
9https://www.drugbank.ca/
10https://cibersort.stanford.edu/
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FIGURE 1 | The study flowchart of the current research. This flowchart consisted of five sections: sample data collection of five cohorts of OSCC sample; ISGs
obtainment, TIICs analysis, survival analysis of ISGs, and molecular subtyping by DL-based model.

significance level < 0.01 were selected to be survival-associated
ISGs. Regarding these survival-related ISGs, least absolute
shrinkage and selection operator (LASSO) regression analysis
was performed to further screen the genes that were more
representative of prognosis. As for the ISGs obtained by LASSO

regression analysis, multivariate Cox regression analysis was
performed, and Akaike information criterion (AIC) was used
for optimizing the statistical model, and the ISGs that were
the most representative of prognosis were finally identified and
defined as “risk ISGs.” Afterward, a series of analyses were
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TABLE 1 | The detailed data information (i.e., genes number, sample size in the expression profile, sample size with the clinical information, and events of dead and alive,
respectively) of the inferring (TCGA dataset) and cohort datasets (i.e., GSE41613, GSE42743, GSE75538, and ICGC dataset) analyzed in the current research.

Dataset Genes number Samples from the
expression profile

Samples with clinical
information

Events (alive) Events (dead)

TCGA 19754 335 317 203 114

GSE41613 23516 97 97 46 51

GSE42743 23516 103 71 31 40

GSE75538 20818 28 14 11 3

ICGC 24003 40 40 32 8

performed on the risk ISGs. First, the hazard ratio (HR) and
95% confidence interval (CI) were calculated from the univariate
Cox proportional hazards regression model. Cox regression
coefficients are directly related to hazard rates, where positive
coefficients represent unfavorable prognosis (HR > 0.1) and
negative coefficients exert protective effects (HR < 0.1). Based
on the HR and CI values, the forest plot for the risk ISGs of the
multivariable model was plotted.

Afterward, Kaplan–Meier survival analysis was performed
to investigate the prognostic value of the risk ISGs in OSCC;
Receiver operating characteristic (ROC) curve analysis by
“survivalROC” package in R program was performed to assess the
predictive accuracy of these risk ISGs’ prognostic value for time-
dependent cancer death. In the next step, risk curves analyses
were performed to show the relationship between the survival
status of patients and the risk score of genes. Multivariate Cox
proportional hazards regression model was used to calculate
the risk score based on the risk ISGs and the impact of OS
information. The risk score of each sample was calculated using
the formula of risk score = β1Exp1+ β2Exp2+ . . .+ βxExpx (βi,
the coefficient value; Expx, the gene expression level). The OSCC
patients were classified into low- and high-risk groups according
to the median RS survival analysis, and log-rank test was
performed to evaluate the differences between the two groups.
Furthermore, the nomogram was plotted to show the relationship
between the expression levels of risk ISGs and survival time of
OSCC patients. Afterward, the four clinical features (i.e., age,
gender, risk score, and pathological stage) of OSCC samples were
extracted from the TCGA database, ICGC database, and three
datasets (i.e., GSE41613, GSE42743, and GSE75538), and thus,
the nomogram related to the clinical features was plotted.

The Molecular Subtyping of OSCC
Samples
The methods of this section for molecular subtyping of cancer
samples mainly followed the methods described in detail by
Chaudhary et al. (2017; 12). Briefly, an autoencoder with three
hidden layers (500, 100, and 500 nodes, respectively) was
implemented, and DL framework was constructed. The initial
number (1,180) of ISGs gene features was compressed to 100
new gene features. For each of these transformed new gene
features generated by the autoencoder, we built a univariate
Cox proportional hazards (Cox-PH) model and selected features
from which a significant Cox-PH model was obtained (log-rank
p < 0.05). These 100 new gene features were used to cluster OSCC

samples using the K-means clustering algorithm. The two metrics
(Silhouette index and Calinski–Harabasz criterion) were used for
determining the optimal number of clusters. The cross-validation
(CV)-like procedure was used for data partition of TCGA data:
60% (training set) and 40% (test set). The supervised classification
model using SVM algorithm was constructed. Afterward, three
sets of evaluation metrics (i.e., Concordance index, log-rank
p-value of Cox-PH regression, and Brier score) were used for
evaluating the accuracy of survival prediction in the subgroups
identified by the above-described methods. In addition, the
performances of the DL framework were compared with an
alternative approach—principal component analysis (PCA).

The Difference Between Subtypes of
OSCC Samples
Based on the subtypes obtained by deep learning algorithm
and K-means clustering, the differential expression analysis
was performed by using the DESeq2 package (version 1.36.0)
(Love et al., 2014) to identify the differentially expressed
genes (DEGs) between the varying subtypes (p < 0.05, and
llogFCl > 1). The heatmap was plotted to show the expression
profiling of DEGs expressed in varying subtypes of OSCC.
Most importantly, the Gene Set Enrichment Analysis (GSEA)
was performed to identify the Kyoto Encyclopedia of Genes
and Genomes (KEGG) signaling pathways of 1,180 ISGs in
the varying subtypes, respectively. By performing the functional
enrichment analysis, the difference between the function of
varying subtypes can be identified. The significantly enriched
signaling pathways with p < 0.05 were selected for the varying
subtypes, respectively, and thus, the ISGs pathways for the
varying subtypes were constructed by using Cytoscape (version
3.6.1) (Shannon et al., 2003).

Afterward, the protein–protein interaction pairs of 1,180 ISGs
were obtained from the Human Protein Reference Database
(HPRD; Keshava Prasad et al., 2009), and thus, an ISGs-
related PPI network was constructed by using Cytoscape
software (version 3.6.1) (Shannon et al., 2003). The DEGs
dysregulated between these two subtypes were mapped to this
PPI network. The topological characteristics of nodes in this
PPI network were analyzed. In addition, the drugs targeting
the ISGs were downloaded from the DrugBank database, and
thus, an ISGs–target drug interaction network was constructed
by using Cytoscape software (version 3.6.1) (Shannon et al.,
2003). The DEGs dysregulated between subtypes were mapped
to this network.
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RESULTS

Tumor-Infiltrating Immune Cells in OSCC
Samples
A total of 151 samples, including 148 OSCC samples and 3
healthy control samples, were obtained by selecting samples with
a p < 0.05 from the CIBERSORT webtool. The proportion of 22
TIICs in each sample is shown in Figure 2A. The distribution
proportion of macrophages M0, M1, and M2 was obviously
shown to be the greatest in most of all samples, indicating that
macrophages are playing more critical roles in the development
of OSCC than the other types of TIICs.

The heatmap shows the expression levels of 22 TIICs in
151 samples (Figure 2B). As clearly observed from Figure 2B,
macrophages M0 were highly expressed in the OSCC samples,
and the other types of cells were downregulated or nearly non-
expressed in the OSCC samples. The differential expression
of 22 TIICs in 151 samples is shown in Figure 2C. In
terms of macrophages (i.e., M0, M1, and M2), macrophages
M0 occupying the highest fraction (approximately 90%) were
significantly highly expressed in OSCC samples compared to
the healthy control samples (p = 0.012), and macrophages M1
occupying approximately 20% among all immune cells were
significantly lowly expressed in OSCC samples compared to
the healthy control samples (p = 0.016), while macrophage M2
occupying approximately 40% among all immune cells did not
show significant expression changes between OSCC samples
and healthy control samples (p = 0.164 > 0.05). As for the
other TIICs except macrophages, naive B cells and regulatory
T cells (Treg) were found to be lowly expressed in OSCC
samples compared to the healthy control samples [p = 0.007
(naive B cells) and p ( 0.048 (Treg)]. In addition, there were
no statistical differences in expression levels between OSCC and
healthy control samples and as for memory B cells (p = 0.924),
plasma cells (p = 0.549), CD8 T cells (p = 0.479), naive CD4
T cells (p = 0.792), resting memory CD4 T cells (p = 0.084),
activated memory CD4 T cells (p = 0.925), follicular helper T
cells (p = 0.738), gammadelta T cells (p = 0.521), resting natural
killer (NK) cells (p = 0.441), activated NK cells (p ( 0.714), resting
dendritic cells (p = 0.049), activated dendritic cells (p = 0.0636),
resting mast cells (p = 0.958), activated mast cells (p = 0.978),
eosinophils (p = 0.924), and neutrophils (p = 0.4).

Figure 2D shows the correlation among TIICs in the
pathogenesis of OSCC. The most interesting findings from
Figure 2D are the negative correlations between macrophage
M0 and M2 and between macrophage M0 and M1; however,
a positive correlation between macrophage M1 and M2 was
observed. Apart from such important finding regarding the
three subsets of macrophages, the combination of TIICs with
the most obvious correlation was also found and summarized
herein: for example, resting NK cells were significantly positively
correlated with resting memory CD4 T cells (Pearson correlation
value = 0.62); follicular helper T cells were significantly positively
correlated with monocytes (Pearson correlation value = 0.55);
macrophage M1 was significantly negatively correlated with
macrophage M0 (Pearson correlation value =−0.74); and resting

FIGURE 2 | Performance of CIBERORT across TIICs in OSCC. (A) The
distribution of 22 tumor-infiltrating immune cells (TIICs) in OSCC samples. The
abscissa represents the name of 151 samples, and the ordinate represents
the composition ratio of the cells in each sample. Different color represents
different types of cells. The longer column of each cell in a certain sample
indicates that the proportion of this type of cell is higher in this sample.
(B) Heat map of the 22 TIICs proportions in 148 OSCC and 3 healthy control
samples. Each column represents a sample, and each row represents one
type of immune cell population. The levels of the immune cell populations are
shown in different colors, which transition from green to red with increasing
proportions. The abscissa represents the 151 samples: The pink represents
the 148 OSCC samples, and the sky blue represents the 3 healthy samples.
The ordinate represents the expression levels of TIICs in each sample. In the
color bar, green represents the low expression of TIICs in samples, red
represents the high expression of TIICs in samples, and black represents
that the TIICs were not expressed in the samples, meaning the expression level

(Continued)
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FIGURE 2 | Continued
was zero. (C) The differential expression status of TIICs in 151 samples. Violin
plot of OSCC samples and adjacent healthy samples groups for the target
cohort. Red means the OSCC samples group, and blue represents the
adjacent healthy samples group; white dots indicate the average expression
level of TIICs in all samples. The p-value represents the differential expression
status of TIICs in OSCC samples compared with healthy samples. The
abscissa represents the TIICs, and the ordinate represents the overall
expression status of each TIIC in all the 151 samples. (D) Correlation matrix of
22 immune cell proportions and immune/stromal score in OSCC. Variables
have been ordered by average linkage clustering. For comparison,
immune/stromal score has been rescaled to range between zero and one
separately in each study. The correlation between TIICs in the pathogenesis of
OSCC. Both the abscissa and ordinate represent the 22 types of TIICs. The
color bar shows the correlation value of TIICs. Blue means the TIICs were
negatively correlated, and red means the TIICs were positively correlated. The
darker color means the correlation was more significant. The diagonal line
drawn from coordinate (0,22) to coordinate (22,0) has a correlation of 1.

memory CD4 T cells were significantly negatively correlated
with macrophage M0 (Pearson correlation value = −0.65).
Supplementary Figure 1 used the Kaplan–Meier curves to show
the prognostic values of 22 TIICs for the overall survival of OSCC.
Among the 22 TIICs, only one type of TIICs (neutrophils) was
significantly related to overall survival (p = 0.031), while the other
TIICs were not significantly related to the prognosis of OSCC.

Identification of Risk ISGs With
Prognostic Values
By performing the univariate analysis, 42 ISGs with p < 0.01
were identified (Supplementary Table 1). These 42 gene
features were reduced to 19 genes (Figure 3A) by performing
the LASSO regression analysis. As shown in Figure 3A (b),
when the log (Lambda) = 19, the partial likelihood deviance
reached the lowest value. Regarding the 19 genes, multivariate
survival analysis was performed, and thus, 11 risk ISGs were
identified: CXCL8, TLR3, IL22, ORMDL3, FGFR3, CTLA4,
HPRT1, BGLAP, CALCA, SPHK1, and INHBB (Supplementary
Table 2). The forest plot of these 11 risk ISGs is shown
in Figure 3B. In addition, Kaplan–Meier curves shown in
Figure 3C shows that six ISGs (e.g., BGLAP, CTLA4, HPRT1,
ORMDL3, SPHK1, and TLR3) were found to be significantly
associated with the survival rate of OSCC, showing that the
low expression of all these six ISGs has higher survival rate
compared with the high expression group. Figure 3D uses
the time-dependent receiver operating characteristic (ROC)
curves to assess the prediction accuracy of the 11 risk ISGs
signature. Supplementary Table 3 shows the C-index values
and time-dependent area under the curve (AUC) values of
11 risk ISGs in the ROC curves. In general, the ROC curve
showed good performance in survival prediction as for the
almost all 11 ISGs’ 10-year overall survival (AUC > 0.5 and
C-index > 0.5). Specifically, taking ORMDL3 as an example,
the AUC values of ORMDL3 gene were shown to be 0.621,
0.68, and 0.71, respectively, for 3, 5, and 10 years. Taking
CTLA4 as another example, the AUC values of CTLA4 gene
were shown to be 0.571, 0.508, and 0.629, respectively, for 3,
5, and 10 years.

FIGURE 3 | Continued
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FIGURE 3 | The identification of ISGs with significant prognostic values in
OSCC. (A) Demographic and clinical feature selection using the LASSO binary
logistic regression model. (a) LASSO coefficient profiles of the 42 gene
features. A coefficient profile plot was produced against the log(lambda)
sequence. All weights converge toward zero as the penalty parameter
increases. Vertical line was drawn at the value selected using fivefold
cross-validation, where optimal lambda resulted in five features with non-zero
coefficients. (b) Optimal parameter (lambda) selection in the LASSO model
used fivefold cross-validation via minimum criteria. The partial likelihood
deviance (binomial deviance) curve was plotted versus log(lambda). Dotted
vertical lines were drawn at the optimal values by using the minimum criteria
and the 1 standard error (SE) of the minimum criteria (the 1-SE criteria).
(B) The forest plot with hazard ratio (HR) for the 11 risk ISGs. HRs above one
indicates that a gene is positively associated with the event probability and
thus negatively with survival time. The box size is based on precision, and the
x-axis has a logarithmic scale. A bigger box size represents a more precise
confidence interval (95% CI). (C) The Kaplan–Meier curves of the 11 risk ISGs.
Red lines represent high expression group, while blue lines represent low
expression group. The upper line indicates the higher survival rate, while the
lower line indicates the lower survival rate. (D) The time-dependent receiver
operating curve (ROC) is generated for the survival prediction of 11 risk ISGs.
The time-dependent ( 3-, 5-, and 10-year) area under curve (AUC) and
C-index for each risk ISG are respectively labeled in the lower right corner of
each gene’s ROC curve.

Figure 4A (a) shows the risk score of all OSCC samples,
and Figure 4A (b) shows the survival status of each OSCC
sample during the follow-up time. Thereby, two genes (i.e.,
FGFR3 and CXCL8) were found to be highly expressed in the
high-risk group. Furthermore, Figure 4B uses a nomogram to
predict the probability of 1-, 2-, and 3-year overall survival
according to the expression pattern of 11 risk ISGs. By adding
up the points identified on the point scale for each variable,
the total score on the bottom scale shows the probability
of survival. Supplementary Tables 4–8 respectively show the
clinical characteristics of the OSCC samples collected from
the TCGA database, ICGC database, and three datasets (i.e.,
GSE41613, GSE42743, and GSE75538). Based on the information
obtained from Supplementary Tables 4–8, the clinical features-
related nomogram was plotted and shown in Figure 4C.

Identification of Two Molecular Subtypes
of OSCC by Using Deep Learning
Framework
The univariate Cox-PH regression model revealed 10 features,
which were subjective to K-means clustering with cluster number
K ranging from 2 to 10. Figure 5A (a) and (b) show the clustering
evaluation plots by using the silhouette index and Calinski–
Harabasz criterion, respectively. Figure 5A indicates that K = 2
was the optimal number of clusters with the best evaluation
scores for both metrics. Afterward, the two subtypes identified
in the above analysis were used as labels to construct an SVM
classification model. The parameter settings used in the SVM
algorithm and the subsequent autoencoder algorithm are shown
in Supplementary Tables 9, 10, respectively. The classification
effects of the SVM model were evaluated by assessing C-index to
assess the accuracy of the survival subtype predictions and Brier
score to calculate the error of the model fitting on survival data.
The evaluation effects of the model in TCGA (e.g., training data,

FIGURE 4 | The correlation between 11 risk ISGs and survival of OSCC.
(A) Prognostic risk score model analysis of 11 risk ISGs in OSCC patients. (a)
The distribution of the risk scores in the OSCC sample. The x-axis represents
the sample number of OSCC samples; the y-axis represents the risk score
corresponding to the sample number. The green part of the curve that is lower
than the median value represents the comparatively lower risk of survival, and
the red part of the curve that is higher than the median value represents the
higher risk of survival. (b) The distribution of patients’ survival status in the
OSCC sample. The graph is drawn based on whether the final state
of each OSCC patient during the follow-up period is alive or dead. The abscissa

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 August 2021 | Volume 9 | Article 687245

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-687245 August 5, 2021 Time: 15:32 # 9

Li et al. Immunosuppression Involved in Oral Cancer

FIGURE 4 | Continued
represents the risk score of OSCC patients, and the ordinate represents
survival time. Each dot represents an OSCC patient: the red dot represents
that the OSCC patient is dead at the final day of follow-up period, whereas the
green dot represents that the OSCC patients is still alive at the final day of
follow-up period. (c) The 11 risk ISGs expression profiles of patients in the low-
and high-risk groups of OSCC samples. Each column represents a OSCC
sample, and each row represents the expression profile of each gene within
the 11 risk ISGs. The expression levels of the 11 risk ISGs in OSCC samples
are shown in different colors, which transition from green to red. The abscissa
represents the 148 OSCC samples: pink represents the OSCC samples with
low risk of survival, and sky blue represents the OSCC samples with the high
risk of survival. The ordinate represents the expression levels of TIICs in each
OSCC sample. In the color bar, green represents the low expression of 11
ISGs in samples, red represents the high expression of 11 ISGs in samples,
and black represents that the ISGs were not expressed in the OSCC samples,
meaning the expression level was zero. (B) Nomogram for predicting 1-, 2-,
and 3-year probabilities of overall survival in OSCC patients according to the
expression level of 11 risk ISGs. The total score was 0–280. Total score of an
individual patient is calculated and merged based on each variable. A high
score indicates a high risk of survival. A line is drawn upward to determine the
score received for each variable value. The sum of these scores is located on
the total points axis; then, a line is drawn downward to the survival axes to
determine the likelihood of 1-, 2-, or 3-year overall survival. (C) Nomogram for
predicting 1-, 2-, and 3-year probabilities of overall survival in OSCC patients
according to the risk score as well as clinical characteristics of samples (e.g.,
gender, age, and pathological stage). Total score was 0–160. Total score of an
individual patient is calculated and merged based on each variable. A high
score indicates a high risk of survival. A line is drawn upward to determine the
score received for each variable value. The sum of these scores is located on
the total points axis; then, a line is drawn downward to the survival axes to
determine the likelihood of 1-, 2-, or 3-year overall survival.

test data, and all data), and four independent confirmation sets
(i.e., GSE41613 dataset, GSE42743 dataset, GSE75538 dataset,
and ICGC data) are shown in Supplementary Table 8.

Figure 5B shows the significant survival differences for the
TCGA (a) and the two external confirmation cohorts [GSE41613
(b) and GSE42743 (c)]. For the TCGA set, subtype Sub1 received
a lower survival rate compared with the subtype Sub2, showing
that subtype Sub1 is more aggressive and represents the higher
survival risk. Regarding the two confirmation sets (GSE41613 and
GSE42743), the same trend was observed within the beginning
years of the observed time (GSE4163, 0–3 years; GSE42743, 0–
2 years), and the opposite trend was observed for the later years
of observed time. In addition, the performance of the model was
compared by using an alternative approach—PCA. Figure 5C
shows the scatter plots of DL-based model (a) and PCA-based
model (b). Obviously shown in Figure 5C, the two subtypes of
OSCC can be clearly divided by using the DL model [Figure 5C
(a)]; by contrast, the two subtypes of OSCC cannot be clearly
divided by using the PCA model [Figure 5C (b)]. By checking
the C-index and p-value data shown in Supplementary Table 11,
it can be found that the PCA model produced a lower C-index
(0.69) as compared with the DL model (0.77); although the PCA
approach can also yield a significant log-rank p-value (5.36E-
18) in detecting the survival subgroups, the p-value produced by
the PCA model is still much less significant than that by the DL
model (4.91E-22).

FIGURE 5 | The two survival subtypes of OSCC differentiated by deep
learning-based model. (A) The clustering evaluation plots drawn by using the
silhouette index (a) and Calinski–Harabasz criterion (b), respectively. (a) The
silhouette index values for each number of clusters. The abscissa represents
the number of clusters, and the ordinate represents the value of average
silhouette width. The plot shows that the highest value of average silhouette

(Continued)
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FIGURE 5 | Continued
width occurs at two clusters, suggesting that the optimal number of clusters is
two. (b) The Calinski–Harabasz criterion values for each number of clusters.
The abscissa represents the number of clusters, and the ordinate represents
the value of sum of squared errors. The plot shows that when the clusters = 2,
the sum of squared errors arrived at the highest values, indicating that the
optimal number of clusters is two. (B) The survival differences between two
subtypes, respectively, for the TCGA (a) and the two external confirmation
cohorts [GSE41613 (b) and GSE42743 (b)]. The red curve represents the
subtype Sub1, and the blue curve represents the subtype Sub2. The abscissa
represents the follow-up time that was calculated in the number of year, and
the ordinate represents the survival rate. The upper line indicates the higher
survival rate, while the lower line indicates the lower survival rate. (C) The
two-dimensional (2D) scatter plots showing the comparisons between
deep-learning based method (a) and PCA-based method (b). The abscissa
represents the dimension 1 (Dim1), while the ordinate represents the
dimension 2 (Dim2). (a) The scatterplot by using top 100 principal
components as supposed to 100 hidden nodes in deep learning, followed by
the subsequent Cox-PH and K-means clustering. (b) The scatterplot by using
deep learning based method. (D) The heatmap shows the expression
patterns of ISGs–DEGs in two types of samples, i.e., samples of subtype
Sub1 and Sub2. The abscissa represents OSCC samples: the rose-red
samples represent 210 subtype Sub1 samples, and blue samples represent
124 subtype Sub2 samples. The ordinate represents the ISGs that were also
DEGs dysregulated between the two subtypes. Pink represents the
upregulated DEGs, and emerald green represents the downregulated DEGs.
(E) The top list of signaling pathways shows the significantly enriched
cancer-related signaling pathways that were enriched by 1,180 ISGs in the
samples of subtype Sub1 and Sub2, respectively.

Identification of the Difference Between
Varying Subtypes
The DEGs dysregulated between two subtypes are shown in
Supplementary Table 12, ranked by the ascending order of
p-value. Figure 5D used a heatmap to show the expression
pattern of DEGs in the samples of two subtypes. By performing
the functional enrichment of 1,180 ISGs in two subtypes,
the significantly enriched pathways were selected. Among the
enriched pathways, the pathway that was obviously not related
to oral cancer were deleted, and the pathways potentially
related to OSCC were retained and shown as Figure 5E. As
seen from Figure 5E, the ISGs in subtype Sub1 were mainly
enriched in tumor-infiltrating immune cells-related pathways
[e.g., B cell receptor (BCR) signaling and T cell receptor
(TCR) signaling] and tumor progression-related pathways (e.g.,
cell cycle, apoptosis, p53, MAPK, Notch, chemokine, Toll-
like receptor, and JAK-STAT), whereas the ISGs enriched in
subtype 2 were mainly enriched in the metabolism-related
pathways (e.g., metabolism of xenobiotics by cytochrome p450,
arachidonic acid metabolism, and tyrosine metabolism). Based
on the significant pathways listed in Figure 5E, the ISGs-
pathways interaction network for subtype Sub1 and S2 are shown
in Figures 6A,B, respectively.

Supplementary Table 13 lists the fold change, log2(fold
change), p-values, and adjusted p-values of DEGs, which were
differentiated between the two subtypes of OSCC samples. In
addition, Figure 7A shows the ISGs–DEGs-related PPI network,
and the topological characteristics of the top 20 DEGs in
this network are shown in Supplementary Table 14. The PPI
network identified several hub genes that play critical roles

by targeting the greatest number of other genes, for example,
the ISGs-upregulated DEGs (e.g., FN1, ALB, ACTA1, TTN,
MAPT, MMP2), the ISGs-downregulated DEGs (e.g., NOS2,
MUC16, IDO1, IL22, and FEZF2), and ISGs–non-DEGs (e.g.,
NTRK1, JUN, TP53, MYC, EGFR, HSP90AA1, and ESR1).
Furthermore, the ISGs–target drugs interaction network shown
in Figure 7B shows that NOS2—the only ISG-downregulated
DEGs mapped in this network—was targeted by the drug
dexamethasone. In addition, the drug Tretinoin was found to
target three ISGs (i.e., LCN1, PDK4, and RARRES1), which
were upregulated in subtype Sub1; the ISG-HSD3B1, which
was upregulated in subtype Sub1, was found to be targeted
by several drugs including hydrocortisone, hydrocortisone
valerate, hydrocortisone aceponate, hydrocortisone butyrate,
hydrocortisone probutate, hydrocortisone acetate, and trilostane;
and the ISG-PGR, which was upregulated in subtype Sub1 was
found to be targeted by several drugs including fluticasone,
fluticasone furoate, mometasone, mometasone furoate, and
fluticasone propionate.

DISCUSSION

The main findings of the present study include several key
aspects, such as the correlation between tumor-infiltrating
immune cells, identification of 11 ISGs that were significantly
related to the overall survival of immunocompromised OSCC
patients, signaling pathways differentiating the two key molecular
subtypes of OSCC, and the identification of drugs that were
targeted by ISGs.

The interaction between immune cells has been explored by
many previous studies; however, the synergistic or antagonistic
impact of specific immune cells on tumor immunology varies
among different cancer types and therefore remains ill defined.
Existing evidence strongly supports the findings of the present
work; however, contradictory findings have also been reported.
Heterogeneity in tumor-intrinsic type, tumor microenvironment
(TME), and the tissue specificity in various cancer types may
be plausible causes. For instance, considering macrophage
M2 phenotype that displays immunosuppressive functions and
interplays with other immune cells (e.g., NK cells, Treg,
CD8 T cells, and neutrophils) showed a negative correlation
with activated NK cells (p = −0.04) in our study. A study
by Nuñez noted that M2 macrophages can restrain NK cell
activation and effector functions, thereby resulting in suppression
of IFN-γ production by NK cells with impaired cytotoxic
capacity and degranulation ability (Nuñez et al., 2018). Here,
a negative correlation between macrophage M2 and Treg in
OSCC (p = −0.22) was noted, which is contradictory to previous
findings shown in other cancer types. A recent study regarding
renal cell carcinoma reported synergistic effects between
macrophage M2 and Tregs, showing that macrophage M2 played
its protumor and immunosuppressive role by releasing cytokines,
thereby activating and recruiting Tregs (Davidsson et al., 2020).
Another study investigating laryngeal cancer also showed that
the combination of a high number of M2 macrophage and Tregs
indicated worse prognosis (Sun et al., 2017). Furthermore, the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2021 | Volume 9 | Article 687245

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-687245 August 5, 2021 Time: 15:32 # 11

Li et al. Immunosuppression Involved in Oral Cancer

FIGURE 6 | The ISGs-pathways interaction network in OSCC samples of panel (A) subtype Sub1 and panel (B) subtype Sub2. The rose-red round nodes represent
ISGs that were DEGs upregulated between two subtypes of OSCC, the emerald round nodes represent ISGs that were also DEGs downregulated between two
subtypes of OSCC, the yellow round nodes represent ISGs that were not DEGs dysregulated between two subtypes of OSCC, and the diamond nodes represent
the signaling pathways targeted by ISGs.

present study showed a positive correlation between macrophage
M2 and CD8 T cells (p = 0.22), which is contradictory with
previous evidence showing that macrophage M2-like TAMs can
suppress the recruitment and function of CD8 + T cell, thereby
favoring tumor immune escape and driving tumor progression
(Dannenmann et al., 2013; Peranzoni et al., 2018; Quaranta
and Schmid, 2019). Moreover, the present study showed a

positive correlation between macrophage M2 and neutrophils
(p = 0.16), similar to earlier reported findings showing both
M2-like TAMs and TANs can exert immunosuppressive and
protumoral functions and also share overlapping pathways to
crosstalk with T cells (Kim and Bae, 2016). Both types of cells can
work in a partnership to modulate tumor immunity, thus have
been regarded as “partners in crime” (Kumar et al., 2018). Taken
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FIGURE 7 | (A) The PPI network constructed by ISGs and (B) the ISGs-target drugs regulatory network. The rose-red round nodes represent the ISGs that were
DEGs upregulated between two subtypes of OSCC, the emerald round nodes represent the ISGs that were DEGs downregulated between two subtypes of OSCC,
the yellow round nodes represent the ISGs that were not DEGs, the sky blue round nodes represent the genes that were not ISGs, and the diamond nodes
represent the drugs targeted by ISGs.
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together, the research regarding the crosstalk between immune
cells in oral cancer immunology is still in progress and needs
further investigation.

Another important finding regarding TIICs analysis is the
correlation between three phenotypes of macrophages. The
current research showed a positive correlation between M1
and M2 and negative correlations between macrophage M0
and M2 and between M0 and M1. Activated macrophages are
classified as two subsets with the entirely different functions: M1
macrophages, which are proinflammatory and antitumoral, and
M2 macrophages, which are anti-inflammatory and protumoral
(Jayasingam et al., 2020). The current research found a positive
correlation between M1 and M2, which is contradictory to some
previous literature, which is quite variable. Some studies found
negative correlation between M1 and M2 by showing that the
promotion of M2 macrophage polarization could suppress the
M1 macrophage polarization, and vice versa, the inhibition of
M2 macrophage polarization could promote the M1 macrophage
polarization (Abdelaziz et al., 2020; Peng et al., 2020). However, a
previous study regarding breast cancer found a weak correlation
between M1 and M2 macrophage densities in central tumor tissue
of breast cancer (Schnellhardt et al., 2020). One reason for such
contradictory results might be because of the different cancer
types studied. Notably, research investigating the correlation
between M1 and M2 is limited; however, much of the current
cancer research has focused on investigating the M1/M2 ratio and
its relationship with prognosis. It has been well concluded that
the high infiltration of M1 macrophages and the low infiltration
of tumor-infiltrating M2 macrophages are associated with better
prognosis (Jayasingam et al., 2020). Another study based on
TCGA database of oral cancer data also obtained the same
conclusion by showing that a high M2/M1 ratio indicated poor
overall survival in human primary oral cancers (Dan et al.,
2020). In addition, the current research also found a negative
correlation between the non-activated M0 macrophage and
activated macrophages (M1 and M2); however, up until now,
there is no research evidence showing the correlation between
naive non-activated M0 and polarized macrophages M1/M2
phenotype. We speculate that high infiltration of M0 might
inhibit the polarization of M0 to M1/2, and vice versa, the high
infiltration of M1/M2 might promote the polarization of M0
to M1/2, which warrants validation by future work. Another
observation showed a high expression of naive M0 in cancer
samples compared with healthy control samples and significantly
low expression of M1 macrophage in cancer samples compared
to healthy control samples, which in turn confirmed a negative
correlation between M0 and M1.

The role of the identified key genes and signaling pathways
in regulating immunosuppression of OSCC has been largely
validated in previous experimental studies. The survival analysis
showed the 11 ISGs (i.e., CXCL8, TLR3, IL22, ORMDL3,
FGFR3, CTLA4, HPRT1, BGLAP, CALCA, SPHK1, and INHBB)
to be significantly correlated with overall survival in OSCC.
Existing evidence has shown that almost all these genes are
linked to inhibition of the immune response during the
oncopathogenesis in OSCC and are also related to survival in
oral cancer. The overexpression of C-X-C motif chemokine

ligand 8 (CXCL8, also called IL-8) in OSCC has been related
to poor prognostic outcome due to its promoting effect on the
generation and infiltration of CD163-positive M2 type tumor-
associated macrophages, which can support and exacerbate the
immunosuppression by tumor-infiltrating T cells (Hosono et al.,
2017). Toll-like receptor 3 (TLR3) stimulation of oral cancer
cells can cause tumor progression (Urban-Wojciuk et al., 2019),
which is evidenced by the fact that the stimulation of TLR3-
expressing oral cancer cells lines (buccal OC2 cancer cells)
was found to lead to tumor progression via the production of
immunosuppressive factors (Chuang et al., 2012). IL-22 is a
cytokine with tumor-promoting properties, which can mediate
the attraction of immunosuppressive immune cells and regulate
the release of pro- and anti-inflammatory cytokines (Voigt et al.,
2017). ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3)
can encode a protein that belongs to a family of transmembrane
proteins of the endoplasmic reticulum and is found to be
involved in the activation of the immune system by regulating
calcium signaling (Carreras Sureda, 2014). Fibroblast growth
factor receptor 3 (FGFR3), a member of the fibroblast growth
factor receptor (FGFR) family (FGFR 1–4), has been found to be
frequently overexpressed in OSCC (Koole et al., 2016). Using an
FGFR inhibitor to block the binding between FGFR and its ligand
FGF was found to remodel the immune microenvironment of
tumors by inducing new T-cell responses and in turn work
synergistically with PD1 inhibitor in promoting antitumor
immunity (Palakurthi et al., 2019). However, a previous study
obtained conflicting results showing that the overexpression of
FGFR3 protein was not related to overall survival or disease-free
survival in OSCC (Koole et al., 2016).

In addition, ISGs with prognostic values also included CTLA4,
HPRT1, BGLAP, CALCA, SPHK1, and INHBB. The blockade
of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) was
demonstrated to decrease the number of immunosuppressed
cells [e.g., myeloid-derived suppressor cells (MDSCs) and M2
macrophages] and further enhance the activation of T cells,
thereby suggesting a novel therapeutic target for treating
OSCC (Yu et al., 2016). The overexpression of hypoxanthine
phosphoribosyltransferase 1 (HPRT1) can contribute to the
formation of an immunosuppressive tumor microenvironment
by significantly reducing the activation of immune cells (B cells,
CD8 + T cells, CD4 + T cells, macrophages, and neutrophils)
(Townsend et al., 2019). There is still no research reporting the
involvement of bone gamma-carboxyglutamate protein (BGLAP,
also named osteocalcin) in oral cancer. The uncarboxylated
form of osteocalcin (GluOC) was found to suppress tumor
growth of melanoma through immunostimulatory effects via
increasing T-cell proliferation and promoting the interferon-γ
production (Hayashi et al., 2017). Calcitonin-related polypeptide
alpha (CALCA, also named as CGRP) was shown to suppress the
immune reactions by inhibiting the production of tumor necrosis
factor-α and interferon-γ by T helper type 1 cells via elevating
intracellular cAMP levels (Kawamura et al., 1998) and impairing
the capacity of Langerhans cells in stimulating the T cells
proliferation (Hosoi et al., 1993). Sphingosine kinase 1 (SPHK1)-
involved SphK–S1P–S1PR signaling axis was found to mediate
immunosuppressive effects by affecting lymphocyte trafficking,
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activating innate immune cells and inflammation, and directing
T-cell differentiation (Chi, 2011). The inhibin subunit beta B
(INHBB) gene encodes a member of the transforming growth
factor-beta (TGF-β) superfamily. TGF-β has been well accepted
as an immunosuppressive cytokine in cancer progression, which
can suppress the expression of chemokine receptor CXC motif 3
(CXCR3) in CD8 + T cells and thus limit the tumor trafficking
(Gunderson et al., 2020).

Apart from the prognosis-related ISGs described above, the
tumor-infiltrating immune cells-related pathways and tumor
progression-related pathways (TCR, BCR, p53, JAK-STAT,
MAPK, and Notch) enriched in subtype Sub1 cancer samples
were identified to predict worse survival in OSCC. Past work
has highlighted the potential functions of these worse prognosis-
related pathways in the immunosuppression in OSCC. The
prognostic values of tumor-infiltrating T cells and B cells
in OSCC have been widely accepted by cancer immunology
researchers (O’Higgins et al., 2018; Taghavi et al., 2018).
TCRs complex (e.g., costimulatory and coinhibitory receptors)-
initiated TCR signaling has been demonstrated to play significant
roles in regulating immune response, particularly in terms of the
activation, differentiation, proliferation, and survival of T cells;
thus, it might be a therapeutic target for immune suppression
(Hwang et al., 2020). B cell receptor (BCR)-mediated calcium
flux was found to play a crucial role in immunosuppression by
promoting the secretion of an immunosuppressive cytokine—
IL-10 in B cells (Klinker and Lundy, 2012). The mutant
p53 was found to promote the development of tumorigenesis
by interfering with the function of the cytoplasmic DNA
sensing machinery pathway cGAS-STING-TBK1-IRF3 and
further suppressing the innate immune response (Cooks et al.,
2018). The transduction of Janus kinase-signal transducer and
activator of transcription (JAK-STAT) signaling can lead to the
production of the protumor cytokines [e.g., IL-1, IL-17, IL-
10, TGF-β, vascular endothelial growth factor (VEGF)], which
can promote tumor immunogenicity and inhibit the antitumor
immune response (Owen et al., 2019). Mitogen-activated protein
kinase (MAPK) signaling has been shown to inhibit the
expression of negative immune checkpoints [e.g., programmed
death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4)] and T-cell costimulatory molecules [e.g.,
tumor necrosis factor receptor superfamily member 4, and
9 (TNFRSF4, TNFRSF9)]; therefore, the inhibition of MAPK
signaling is promising for combined use with T-cell-dependent
immunotherapy for antitumor treatment (Kumar et al., 2020).
The Notch pathway was found to be a multifaceted regulator
of immune-suppressive cells—myeloid-derived suppressor cells
(MDSCs); thus, inhibiting MDSCs by targeting the Notch
pathway might be a novel immunotherapeutic strategy of cancer
treatment (Hossain et al., 2018). In addition, the Notch pathway
was shown to play a pivotal role in maintaining the stemness of
cancer stem cells in tongue cancers and has prognostic value in
OSCC (Upadhyay et al., 2016).

It is worthwhile to note that the signaling pathways enriched
in subtype Sub1 and Sub2 were quite different, and metabolic
pathways were mainly enriched in subtype Sub2. It has been
well demonstrated that the dysregulated metabolic pathways

of cancer cells could result in enhanced nutrient uptake,
decreased oxygen (hypoxia), and increased acidity of extracellular
milieu, and a shortage of nutrition, and the upregulation
of protumor metabolite production (Jiang et al., 2020). All
these alterations contribute greatly to an immunosuppressive
TME, thereby impairing the antitumor immune response
and further promoting the tumor progression (Biswas, 2015).
Targeting metabolic pathways is therefore an immunotherapeutic
approach to inhibit the tumor progression via restoring the
TME environment (Shi et al., 2020). In the present study,
several signaling pathways related to metabolism were mainly
enriched in subtype Sub2, for example, tyrosine metabolism,
cytochrome p450 metabolism, and arachidonic acid metabolism.
The downregulation of tyrosine metabolism pathway-related
genes (HPD, HGD, GSTZ1, and FAH) was observed in
hepatocellular carcinoma and indicated poor prognosis (Nguyen
et al., 2020); however, investigation of dysregulation of tyrosine
metabolism pathways in OSCC is lacking. In addition, the
inhibitor of tyrosine kinase, Imatinib, was shown to play both
immunostimulatory and immunosuppressive role in the tumor
immunology, an immunostimulatory role by stimulating the
ability of dendritic cells and NK cells, and an immunosuppressive
role by inhibiting the proliferation of T cells (Nishioka et al.,
2011). In terms of the cytochrome p450 (CYP) metabolism
pathway, the polymorphisms of CYP-involved genes (e.g.,
CYP26B1, CYP1A1, CYP2A6, and CYP2E1) have been found
to activate areca nut (AN)-derived nitrosamines, thereby
significantly increasing the susceptibility to tobacco-induced
oral cancer (Lin et al., 2013). Considering the arachidonic acid
metabolism (AAM) pathway, its mutation was shown to suppress
the progression of oral cancer by downregulating it downstream
PI3K-Akt pathway and was also predicted to indicate a better
disease-free survival (Biswas et al., 2014). Together, these reports
lend support to our findings.

Considering targeting drugs, the present study found that
dysregulated ISGs that were differentially expressed between
subtypes Sub1 and Sub2 were mapped to some target drugs, e.g.,
downregulated ISG-NOS2 targeting dexamethasone and target
drug Tretinoin targeting three upregulated ISGs (e.g., PDK4,
LCN1, and RARRES1). The overexpression of the inducible
NO synthase including INOS and NOS2 has been documented
to predict poor survival outcome in multiple cancers, based
on the its involvement in immunosuppression by altering the
tumor microenvironment and resulting in the resistance to
the inhibitor of immune-checkpoint genes (Ekmekcioglu et al.,
2017). However, the expression level and regulating function of
NOS2 varies a lot depending on the cancer type; for example,
the downregulation of NOS2 in the subtype 1 of OSCC was
associated with the worse survival in the present study. The
target drug dexamethasone has been found to mediate T cells-
mediated immunosuppression by inhibiting the expression of
inducible NOS2 and upregulating the expression of the immune-
checkpoint gene CTLA-4 (Korhonen et al., 2002; Giles et al.,
2018); therefore, using an antagonist of dexamethasone might
be an immunotherapy approach for improving the survival
outcome in immunocompromised patients with OSCC. For
another example, the drug tretinoin (also named as all trans
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retinoic acid) targeting three ISGs (PDK4, ICN1, RARRES1) was
shown to dramatically reduce the presenter of immature myeloid
cells, which promoted immunosuppression by increasing the
production of reactive oxygen species, and thus contributed
greatly to tumor progression (Kusmartsev et al., 2003; Wu
et al., 2019). As one of the genes targeting tretinoin, the
overexpression of pyruvate dehydrogenase kinase 4 (PDK4) was
found to promote tumor cells proliferation and invasion by
negatively regulating the IL-10 expression in macrophages and
thus indicated poor prognosis (Atas et al., 2020; Na et al., 2020),
which was in accordance with results obtained in the present
study. As another gene targeting tretinoin, the Lipocalin 1
(LCN1) was found highly expressed in cholangiocarcinoma and
its overexpression indicated poor survival outcome (Tian et al.,
2018); however, its involvement in tumor immunosuppression
has not yet been explored. Another gene targeting tretinoin,
the retinoic acid receptor responder 1 (RARRES 1) gene, was
found to play tumor suppressive function by negatively regulating
metastasis (Huebner et al., 2017); however, its immunological
function in oral cancer has not yet been researched. The
target drugs highlighted through deep learning merit further
experimental research.

Additionally, the potential applications of the present research
findings in precision medicine need to be highlighted. In the
past decade, much cancer research has been largely focused
on identifying certain critical genetic/epigenetic biomarkers
involved in cancers (Tao et al., 2017; Brenner, 2019); however,
stratifying cancer patients according to the genetic biomarkers-
defined subgroups can be of high clinical value. Cancer
patients’ response to the same therapeutic treatment is notably
variable. Some show worse survival, while others show better
outcomes. There is therefore a strong necessity to define the
molecular subtypes of cancer patients and their association
with prognosis (Téllez-Gabriel et al., 2013; Kim et al., 2019).
Cancer precision treatment paradigm should be shifted from
a biomarkers-based paradigm to a subtyping-based paradigm,
and tandem research has also shifted from identification of
certain critical genetic targets to detection of subtype-specific
genetic targets (Dienstmann et al., 2017; Torres and Grippo,
2018; Zhao S. et al., 2020). Based on such shift in the
precision medicine paradigm, increasing number of studies
apply molecular subtyping to establish treatment paradigms
incorporating a precision medicine approach in cancer treatment
(Zhao et al., 2018; Jiang et al., 2019; Lin et al., 2019). The
present research aimed to provide OSCC subtypes that can
enable treatment regimes targeting specific molecules and also
refine prognosis. Here, we devised a deep learning-based model
and provided a simplified approach to successfully stratify
compromised OSCC patients into two different treatment
arms according to their molecular subtypes with different
prognosis. This subclassification approach provided in the
present research has potential clinical transfer value by enabling
drug selection guidance. In the context of the current research,
treatment approach for the two subtypes can be varied:
subtype 1 could be treated with drugs targeting the tumor-
infiltrating immune cells-related pathways (TCR and BCR) and
tumor progression-related pathways (p53, JAK-STAT, MAPK,

and Notch); subtype 2 could be treated with metabolism-
related pathways, particularly tyrosine metabolism, cytochrome
p450 metabolism, and arachidonic acid metabolism. The
development of such treatment strategy has the potential to
improve OSCC outcomes.

It is essential to state the strengths and limitations of the
present research clearly. The greatest strength is that deep
machine learning, an artificial intelligence approach, was used
in combination with bioinformatics for subtype discovery of
oral cancer. The discovery of oral cancer subtypes can benefit
targeted therapy for different subtypes of cancer patients and
guide the precision medicine in oral cancer. Another strength is
that this research was focused on investigating the involvement
of immune suppression in OSCC from different aspects, such
as immune cells, ISGs related to overall survival, target drugs
of ISGs involved in OSCC, and the ISGs-involved signaling
pathways used for differentiating two subtypes of OSCC. The
present study has two main limitations. First, the findings shown
in this study were obtained by computational analysis and
not yet verified by performing molecular biology experiments.
Second, the synergistic relationship between the ISGs-targeting
drugs and commonly used chemotherapeutic drugs used for
treating OSCC was not investigated by designing a drug synergy
prediction model. However, the investigation of this topic could
be regarded as another separate study and comprises our
subsequent research plan.

The current findings have several future implications and
potential clinical transfer value. First, the genetic mechanisms of
ISGs OSCC identified in this study provide a theoretical basis
and research direction for future studies. Future research can
select the most critical ISGs for experimental studies aimed at
investigating the regulating role of these ISGs in influencing
oral cancer cell lines and immune cells (e.g., macrophages,
neutrophils, and T cells) in cancer cells—immune cells coculture
systems—and also investigating the effects of ISGs-targeting
drugs on promoting the functions of immune cells and
their antitumor effects. Studying the synergistic/antagonistic
relationship between ISGs-targeting drugs and common
chemotherapeutic drugs will help identify novel treatment
strategies for immune–chemotherapy combination drugs.
Second, the two subtypes of OSCC discovered by using deep
machine learning could be beneficial for designing precision
treatment plans for OSCC patients. OSCC patients with
molecular subtype 1 could be specially treated with drugs
with the role of targeting tumor immunology and progression,
whereas the patients with subtype 2 could be particularly treated
with drugs targeting metabolism. Such findings could guide
the oral and maxillofacial clinicians to select the right target
chemotherapeutic drugs and further increase the survival time
of OSCC patients.

CONCLUSION

Eleven immunosuppression genes (CXCL8, TLR3, IL22,
ORMDL3, FGFR3, CTLA4, HPRT1, BGLAP, CALCA, SPHK1,
and INHBB) were identified as significantly related to the
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prognosis of OSCC in immunosuppressed patients. A deep
learning-based model was able to differentiate OSCC patients
into two survival subtypes: a subtype with a lower probability
of survival and a subtype with a higher probability of survival.
Several immunosuppression-involved signaling pathways (e.g., T
cell and B cell receptor signaling, p53, Notch, JAK-STAT, and
MAPK) enriched in the aggressive subtype of OSCC suggested
therapeutic targets, which could be valuable for treating OSCC in
immunosuppressed patients and improving the overall survival
in specific groups of patients.
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